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Abstract—To provide dynamic authorizations to users, access
control must take into account context. Using this idea, we
develop a Contextual Multi-Level Access Control Model based
on Description Logic with Default and Exception named
DL−CMLACδε. To give a formal representation of this model,
we define a non monotonic description logic based system
by which we can deal with default and exceptional language
called JClassic+

δε. It is an extension of JClassicδε in order
to introduce disjunction of concepts. JClassic+

δε is expressive
enough to be of pratical use, it can handle a ”weakened kind
of disjunction” with the connective lcs allowing a tractable
subsumption computation. The connective lcs has the same
properties as the LCS external operation to compute the least
common subsumer of two concepts. Connectives of JClassic+

δε
are used in a cleaver way to represent authorization in a default
context, an exceptional context and composed context.

Keywords - Description logic; reasoner; disjunction; ac-
cess control; context.

I. INTRODUCTION

The purpose of access control models is to assign permis-
sions to users. The most interesting would be to have the
ability to set dynamic permissions, i.e., context-dependent.
Contexts express different types of extra conditions or con-
straints that control activation of rules expressed in the access
control policy. there are several types of context:

- The Temporal context that depends on the time at which
the subject is requesting for an access to the system,

- the Spatial context that depends on the subject location,
- the User-declared context that depends on the subject

objective (or purpose),
- the Prerequisite context that depends on characteristics that

join the subject, the action and the object.
- the Provisional context that depends on previous actions

the subject has performed in the system.
We also assume that each organization manages some

information system that stores and manages different types of
information. To control context activation, each information
system must provide the information required to check that
conditions associated with the context definition are satisfied
or not. The following list gives the kind of information related
to the contexts we have just mentioned:

- A global clock to check the temporal context,
- the subject environment and the software and hardware

architecture to check the spatial context,
- the subject purpose to check the user-declared context,
- the system database to check the prerequisite context,

- an history of the action carried out, to check the provi-
sional context.

We are interested in modeling the user-declared context,
particularly disjunction of several constraints [1].

Literature provides a wide range of access control models
and policy languages. One of them is multilevel access control
commonly used by military organisations in order to protect
the confidentiality of their informations [2]. We propose to
develop an access control model inspired from multilevel
access control with the introduce of user-declared context to
provide dynamic authorization.

In our model, authorization depends not only on classifica-
tion and clearance levels, but also on the current context, in
which user requests a right of access. Each change of context
implies a change in permissions.

There are several type of user-declared contexts. It could be
the regular one (what we call in our work default context) like
it may be an exception to the current context. For example, in
current days, each patient in a hospital is treated by his own
doctor, but when there is an exception like an emergency, the
authorization should change.

Context can be composed of several contexts (constraints).
For example, under normal circumstances, the family has
the right to visit the patient but when there is a risk of
contamination and/or unknown disease, family loses this right.
In this paper, we are interested in disjunction of context (or).

To provide a formal representation, we use the JClassic+δε
[1] developed by us for this purpose. It is a description logic-
based system augmented with two operators δ (for default)
and ε (for exception) inspired by ALδε description logic [3]
and ”lcs” (for disjunction).

This kind of non-monotonic reasoning in description logic
is not sufficiently developed. Actually, there is no system, in
our sense, developed on this kind of reasoning in the web [4].

Description logics are powerful knowledge representation
systems providing well-founded and computationally tractable
classification reasoning. However, expression of disjunction of
concepts has previously been infeasible due to computational
cost.

Donini [5] shows that concept disjunction makes subsump-
tion computation co-NP-Complete. However, disjunction is
very useful for knowledge representation.
JClassic+δε is an extension of JClassicδε [6], [7] by the

operator of disjunction ”lcs”. This operator allows us to define
context disjunction in access control.

The ”lcs” connective has the same properties as the LCS

110

International Journal on Advances in Software, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



external (External insofar as LCS is not a connective of the
language) operation introduced by Borgida et al. [8], which
computes the least common subsumer of two concepts (The
Least Common Subsumer of two concept A and B belonging
to a language L is the most specific concept in L that subsumes
both A and B) [9]. It was introduced by Ventos et al. in Classic
to allow disjunction with a reasonable computation [10], [11].

Because of JClassicδε has been given an intensional se-
mantics, JClassic+δε is provided with an intentional semantics
(called CL+

δε) based on an algebraic approach. For this, we
have first to build an equational system, which highlights the
main properties of the connectives. The equational system
allows to define axiomatically the notion of LCS operation.

The main operation, the computation of the subsumption
relation of JClassic+δε, is used to classify and deduce knowl-
edge. The inheritance relation is used to compute the inherited
properties.

In this paper, we first present our description logic system
JClassic+δε and we give definition of ”lcs”. We illustrate then
the use of this reasoner for access control, using a small
demonstration to show how authorization can be given to user.

II. RELATED WORK

Several approaches have been proposed to model context in
access control. As we have seen earlier, the context makes it
possible to express different kinds of constraint.

In RBAC family models, many works were done in this
sense, some of them extend RBAC model to deal with access
control based on user’s location context [12], [13], [14], [15],
[16], [17], or temporal context [18]. They suggest to combine
concept of role with spatial or temporal condition to obtain
contextual roles.

Georgiadis and al. [19] present a team- based access control
model that is aware of contextual information associated with
activities in application. Hu et al. [20] developed a context-
aware access control model for distibuted healthcare appli-
cation. To provide context-aware access control, the model
defines the notion of context type and context constraint.

In OrBAC family, context is represented by an argument in
the predicate Permission [21].

Several extension where done to take into account various
types of context such as spatial, temporal and composed
context [22], [23].

In these approaches, context is still modeled by an argument
in a predicate using some algebra to write context, the authors
don’t present how the final value of context is calculated. Add
to this, first order logic is known to be semi-decidable.

In our approach, context can be atomic or composed context
using conjunction or disjunction.

III. JClassic+δε
JClassic+δε is an non monotonic reasoner based on descrip-

tion logic with default and exception [3], which allows us to
deal with default and exceptional knowledge.

The set of connectives of JClassic+δε is the union of the
set of connectives of ALδε [3] presented in [7], [24], [25] and
the connective ”lcs”.

The connective δ intuitively represents the common notion
of default. For instance, having Animal as a conjunction with
the concept δF ly in the definition of the concept Bird states
that birds generally fly.

The connective ε is used to represent a property that is not
present in the description of the concept or of the instance
but that should be. For instance, the definition of Penguin in
JClassic+δε is Penguin v Bird u Flyε. The Flyε property
expresses the fact that fly should be in the definition of Penguin
since it is a bird. The presence of Flyε in the definition
of Penguin makes it possible to classify Penguin under the
concept Bird.

Formally, the subsumption relation uses an algebraic se-
mantics. The main interest of this approach is the introduction
of the definitional point of view of default knowledge: from
the definitional point of view, default knowledge can be part
of concept definition whereas from the inheritance is only
considered as a weak implication. A map between the defi-
nition of concept and its inherited properties is done with the
calcuation of its normal form. This combinating of definitional
and inheritance levels improves the classification process.

In this section, we first present the syntax of our system,
we then give details about its algebraic semantic.

A. Syntax of JClassic+δε
The set of connectives of JClassic+δε is the union of the set

of connectives of CLδε [6] and the connective lcs. JClassic+δε
is defined using a set R of primitive roles, a set P of primitive
concepts, the constant ⊥ (Bottom) and > (Top) and the
following syntax rule (C and D are concepts, P is a primitive
concept, R is a primitive role).
δ and ε are unary connectives, u is a binary conjunction

connective and ∀ enables universal quantification on role
values. The Terminological language is given in Table 1.

B. Semantic of JClassic+δε
We endow JClassic+δε with an intentional algebraic seman-

tic denoted CL+
δε.

This framework covers the different aspects of the formal
definition of concepts and subsumption in our language. The
calculating of denotations of concepts in CL+

δε is used in
computing subsumption in the algorithm Sub+δε. CL

+
δε allows

first to show that Sub+δε is correct and complete and secondly
to give a formal characterization of calculation of subsumption
used in the implementation of JClassic+δε.

Subsumption is considered from two points of view:
- A descriptive point of view: it consists on the comparison

of terms through an equational system;
- A structural point of view: it consists on a comparison of

normal forms of concept

1) EQ: an equational system for JClassic+δε: In order to
serve as the basis for the definition of an algebraic seman-
tics, an equational system EQ is defined. From a descriptive
point of view, the calculation of subsumption consists on the
comparison of terms through the equational system EQ. This
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C,D → > the most general concept
| ⊥ the most specific concept
| P primitive concept
| C uD concept conjunction
| ¬P negation of primitive concept (This restriction to primitive concept in the negation is a choice to avoid the untractability)
| ∀r : C C is a value restriction on all roles R
| R AT-LEAST n cardinality for R (minimum)
| R AT-MOST n cardinality for R (maximum)
| δC default concept
| Cε exception to the concept
| ClcsD concept disjunction

TABLE I
SYNTAX OF JClassic+δε

system fixes the main properties of the connectives and is used
to define an equivalence relation between terms and then to
formalize the subsumption relationship.

∀A,B,C ∈ JClassic+δε:
01: (A uB) u C = A u (B u C)
02: A uB = B uA
03: A uA = A
04: > uA = A
05: ⊥ uA = ⊥
06: (∀R : A) u (∀R : B) = ∀R : (A uB)
07: ∀R : > = >
08: R AT-LEAST m u R AT-LEAST n = R AT-LEAST

maxi(m,n)
09: R AT-LEAST 0 = >
10: R AT-MOST m u R AT-MOST n = R AT-MOST

mini(m,n)
11: R AT-MOST 0 = ∀R : ⊥
12: R AT-LEAST m u R AT-MOST n (if n ≤ m).
13: (A lcs B) lcs C = A lcs (B lcs C)
14: A lcs B = B lcs A
15: A lcs A = A
16: A lcs > = >
17: A lcs ⊥ = A
18: (δA)ε = Aε

19: δ(A uB) = (δA) u (δB)
20: A u δA = A
21: Aε u δA = Aε

22: δδA = δA
23: (Aε)ε = δA

Axioms 01 to 12 are classical; they concern description
logic connectives properties [26], [27]. Axioms 13 to 17
concern the connective ”lcs”. The following ones correspond
to ALδε connectives properties[3], i.e., properties of δ and ε
connectives.

Descriptive Subsumption:
We denote vd for descriptive subsumption. vd is a partial

order relation on terms. Equality (modulo the axioms of EQ)
between two terms is denoted =EQ. =EQ is a congruence
relation which partitions the set of terms, i.e., =EQ allows
to form equivalence classes between terms. We define the

descriptive subsumption using the congruence relation and
conjunction of concepts as follow:

Definition 1: (Descriptive Subsumption)
Let C and D two terms of JClassic+δε, C vd D, i.e., D

subsume descriptively C, iff C uD =EQ C.

From an algorithmic point of view, terms are not eas-
ily manipulated through subsumption. We adopt a structural
point of view closer to the algorithmic aspect of computing
subsumption. This allows us to first formalize calculation
of subsumption in the implementation of JClassic+δε and
secondly to endow JClassic+δε with an intensional semantics.

To define the subsumption relation between two concepts
using their description, we need to compare them. For this,
concepts are characterized by a normal form of their properties
rather than by the set of their instances.

2) Normal Form of concept: We present in this section the
structural point of view for the subsumption in JClassic+δε.
This point of view has two main advantages: it is very close to
the algorithmic aspects and is a formal framework to validate
the algorithmic approach, which is not the case description
graph.

We define a structural concept algebra CL+
δε, which is used

to give an intensional semantic in which concepts are denoted
by the normal form of their set of properties. The structural
point of view of subsumption consist then to compare the
normal forms derived by applying a homomorphism from set
of terms of JClassic+δε to elements of CL+

δε.

CL+
δε: an intensional semantic for JClassic+δε

From the class of CL-algebra, we present a structural
algebra CL+

δε, which allows to endow JClassic+δε with an
intentional semantic.

Element of CL+
δε are the canonical intentional representation

of terms of JClassic+δε (i.e., Normal form of the set of their
properties). We call an element of CL=

δε normal forms.
Definition of CL+

δε means definition of a homomorphism h,
which allows to associate an element of CL+

δε to a term of
JClassic+δε.

Using the equational system, we calculate for each concept
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a structural denotation, which is a single normal form of this
concept. The calculation of a normal form from a description
of a concept can be seen as a result of term “rewriting” based
on the equational system EQ.

The normal form of a concept defined with description
T (noted nf(T)) is a pair 〈tθ, tδ〉 where tθ contains strict
properties of T and tδ the default properties of T.
tθ and tδ are 6-uplet of the form (dom,min,max,π,r,ε) with:
dom: is a set of Individuals, if the description contain the

property ONE-OF else the symbol UNIV.
min (resp. max): is a real, if the description contain the

property Min (resp. Max) else the symbol MIN-R (resp. MAX-
R).
π: is a set of primitive concept in description T.
r: have the form 〈R, fillers, least,most, c〉 where:

R: the name of Role.
fillers: set of Individuals, if the description contain the

property R Fills, else ∅.
least (resp. most): is an integer, if the description contain

AT-LEAST (resp. AT-MOST), else 0 (resp. NOLIMIT).
c: is the normal form of C, if the description contain

the property ∀R : C.
ε: set of 6-uplet with the form (dom, min, max, π, r, ε).
Example: The normal form of concept C ≡ A u δB is:
fn (C) = (〈Univ,Min−R,Max−R, {A} , ∅, ∅〉 ,

〈Univ,Min−R,Max−R, {A,B} , ∅, ∅〉).

The interpretation of connectors and constants of CL+
δε is

given in Table 2. b0 is a constant used as a denotation of ⊥
[6].

Structural Subsumption:
Two terms C and D of JClassic+δε are structurally equiv-

alent iff their normal forms are equal. We denote vs for
structural subsumption. vs is a partial order relation.

The structural equality of two terms of JClassic+δε is noted
=CL. =CL is a congruence relation as =EQ in descriptive
subsumption.

We define the structural subsumption using the congruence
relation and conjunction of concepts as follow:

Definition 2: (Structural Subsumption)
Let C and D two terms of JClassic+δε, C vs D; i.e., D

subsume structurally C, iff C uD =CL C.

Theorem 1: (Equivalency between descriptive subsump-
tion and structural subsumption)

Let C and D two terms of JClassic+δε, C vs D⇔ C vd D.

To infer new knowledge in this system, the susbsumption
relation is the main operation. In the next section, we outline
the subsumption algorithm handling defaults and exceptions
named Subδε.

IV. INFERENCE IN JClassic+δε
There are several reasoning services to be provided by

a DL- system. We concentrate our work on the following

basic ones, which are classification of concepts (TBox) and
instance checking (ABox). These two services basically use
the subsumption relation.

A. The Subsumption Relation

Borgida [8] defines the subsumption based on a set theoretic
interpretation as follow: “The concept C subsume D, if and
only if the set of instances of C include or is equal to a set of
instances of D”.

However, the general principle of computing subsumption
between two concepts is to compare their sets of properties,
not their sets of instances.

For this, we use an intensional semantics which is closer
to the algorithmic aspects of computing subsumption, and this
by defining a normal form of description called descriptive
normal form.

Algorithm of Computing Subsumption Sub+δε
Sub+δε is an algorithm of computing subsumption of the

form Normalization- Comparison. It is consists of two steps,
first, the normalization of description, and then a syntactic
comparison of the obtained normal forms.

Let C and D be two terms of JClassic+δε. To answer the
question “Is C subsumed by D?” we apply the following
procedure. The normal forms of C and “C u D” are calculated
with the procedure of normalisation.

There are two steps in the comparison. We compare the
strict parts of the two concepts. If these are equal, then we
compare the default parts. If the two normal forms are equal,
the algorithm returns “Yes”. It returns “No” otherwise.

Algorithm 1 Algorithm Sub+
δε

Require: C and D two description of concepts of JClassic+δε
Ensure: Response “Yes” or “No” to question “Is C subsumed

by D?”
{Compute normal forms}
fn(C) ← Normalization(C)
fn(C u D) ← Normalization(C u D)
{Treatment of bottom}
if fn(C)=b0 then

Response ← “Yes”
else

if fn(C u D)=b0 then
Response ← “No”

else
{Comparison of the obtained normal forms}
Compar(fn(C)θ, fn(Cu D)θ, rep1)
if rep1=”Yes” then

Compar(fn(C)δ , fn(Cu D)δ , rep1)
Response ← rep2

else
Response ← “No”

end if
end if

end if
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JClassicδε CL+
δε

> ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

P ≺ (UNIV, MIN-R, MAX-R, P, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

ONE-OF E ≺ (E, MIN-R, MAX-R, P, ∅, ∅),
(E, MIN-R, MAX-R, ∅, ∅, ∅)�

MIN u ≺ (UNIV, u, MAX-R, ∅, ∅, ∅),
(UNIV, u, MAX-R, ∅, ∅, ∅)�

MAX u ≺ (UNIV, MIN-R, u, ∅, ∅, ∅),
(UNIV, MIN-R, u, ∅, ∅, ∅)�

∀R : C(C 6≡ >etC 6≡ ⊥) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, |cθ.dom|, c〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, |cθ.dom|, c〉}, ∅)�

∀R : CetC ≡ ⊥ ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅)�

∀R : CetC ≡ > ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

RFILLSE(E 6= ∅) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R,E, |E|, NOLIMIT, t〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R,E, |E|, NOLIMIT, t〉}, ∅)�

R FILLS ∅ ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

RAT − LEASTn(n 6= 0) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, n,NOLIMIT, t〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, n,NOLIMIT, t〉}, ∅)�

R AT-LEAST 0 ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅),
(UNIV, MIN-R, MAX-R, ∅, ∅, ∅)�

RAT −MOSTn(n > 0) ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, n, t〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, n, t〉}, ∅)�

R AT-MOST 0 ≺ (UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅),
(UNIV, MIN-R, MAX-R, ∅, {〈R, ∅, 0, 0, b0〉}, ∅)�

C uD c ⊗ d
C lcs D c LCS d
δ C ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, ∅), cδ �
Cε ≺ (UNIV, MIN-R, MAX-R, ∅, ∅, cδ),

(cδ.dom, cδ.max, cδ.min, cδπ , cδr , cδε ∪ cδ)�
⊥ b0

TABLE II
INTERPRETATION OF CONNECTORS AND CONSTANTS OF CL+

δε

The completeness, correctenness and the polynomial com-
putation of JClassicδε have been proved in [7].

B. Classification of concept

The classification of concepts is an operation which inserts
a concept to the most appropriate place in the hierarchy.
The classification process allows to find subsumption relations
between concepts in the taxonomy (hierarchy) and insert new
concept in the hierarchy.

In the JClassic+δε reasoner, the classification of a concept
consists of two phases: first phase is to find the most specific
concepts that subsume the concept C (the concept C is
to classify), they are called subsumeurs (SPS). The second
phase search the most general concepts than C, we call them
subsumed (GSP), it also establish new relations between the
concept to classify C, its SPS and its GSP.

The classification process is triggered when we create a new
concept (primitive or defined).

C. Instance recognition

The recognition of instances is to find for a given individual
the most specific concepts which it may be an instance.

We used the method to achieve Abstraction-Classification
mechanism instantiation of concepts.

The method Abstraction - Classification
This method allows the instantiation of the individual, it

consists of two phases:

Abstraction: calculates the abstract concept of the individ-
ual containing all the information in the form of an abstract
defined concept.

Classification: is to find the abstract concept of SPS, the
SPS corresponds to the direct instances of individual, in other
words: To determine whether an object O is instance of a
concept C, we calculate the abstract concept AO, we then
check if C subsumes AO. If so, we deduce that O is an instance
of concept C, else O is not an instance of concept C.

Ex: if an individual named ”Sara” eats only plants, the
reasoner determine that Sara is an instance of concept VEG-
ETARIAN.

D. Inheritance relation

The inheritance relation allows to compute the inherited
properties of a concept. These properties are the basic ones
in inferential systems.

The inheritance relation serves as a basis for retrieving the
inherited properties, it also helps in distinguishing strict and
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default inherited properties and answering questions concern-
ing conflicts and consistency.

The main task of the inheritance relation is to retract
exceptions from the denotation of a concept (the two ε parts
of denotation). The inheritance-form scenario of a concept C
is:

1- Replace each exception at an even level by a default in
the denotation of C.

2- For each role of C, recursively call inheritance with the
role value restriction.

3- Suppress P (resp. P◦) in cδπ if P◦ (resp. P) is in cφπ .
The resulting denotation is called the inheritance form of C
(The set of primitive concepts P is complemented with a new
set P◦ in order to denote negation. There is no axiom that
relates a primitive concept to its negation. This set P◦ is then
theoretically necessary, but transparent for the user).

Using this relation, we deduce the inherited properties,
and type them between strict and default ones. The inherited
properties are those found in the inheritance form of the
concept. The strict ones (resp. the default ones) are those in
the strict (resp. default) part.

Algorithm 2 Inheritance Map

inheritance: CL+
δε → CL

+
δε, such that

inheritance(a)=
res ← ≺ (aθπ, ∅, ∅), (aδπ , ∅, ∅)�
for all y ∈ aθε ∪ aδε do

res ← res ∪ transform(y,aθε)
end for
for all ≺r, p � ∈ aθr do

res ← res ∪ ≺ (∅, ≺ r, inheritance(p)�, ∅), (∅, ∅, ∅)�
end for
for all ≺r, p � ∈ aδr do

res ← res ∪ ≺ (∅, ∅, ∅), (∅, ≺ r, inheritance(p)�, ∅)�
end for
let res be ≺ (resθπ, resθr, resθε), (resδπ , resδr, resδε)�
for all x ∈ resθπ do

suppress x◦ from resδπ
end for
for all x◦ ∈ resθπ do

suppress x from resδπ
end for
return res

We detailed in the next section the connective ”lcs” and the
operation LCS, by which we compute normal form of A lcs
B (A and B are concepts).

V. THE COMPUTATION OF ”LCS”

The least common subsumer has been introduced in de-
scription logic by Borgida et al. [8] as an external operation
to compute the LCS of two concepts.

The LCS of two concepts A and B belonging to a language
L is the most specific concept in L that subsumes both A and
B.

Definition 3: Let L a terminological language, v the nota-
tion of subsumption relation in L

LCS: L × L → L
LCS(A,B) → C ∈ L iff:
A v C and B v C (C subsume both A and B),
@ D ∈ L such that A v D,B v D and D ⊆ C (i.e., there is

no common subsumers to A and B, which is subsumed strictly
by C)

The next algorithm is to compute the LCS where input are
the normal form of two concepts A1 and A2 and the output
is the LCS of A1 and A2.

Let a and b two normal forms A and B with a and b 6= b0
(b0 is the normal form of ⊥).

Algorithm 3 LCS
Require: a=≺ aθ,aθ � and b=≺ bθ,bθ � two normal forms

of A and B.
Ensure: c=≺ cθ,cθ � the normal form of LCS(A,B)
cθπ ← aθπ ∩ bθπ
cθr ← ∅
for all ≺r, d � ∈ aθr do

if ∃ ≺r, e � ∈ bθr then
f ← LCS(d,e)
cθr ← cθr ∪ ≺r, f �

end if
end for
cθε ← aθε ∩ bθε
cδπ ← aδπ ∩ bδπ
cδr ← ∅
for all ≺r, d � ∈ aδr do

if ∃ ≺r, e � ∈ bδr then
f ← LCS(d,e)
cδr ← cδr ∪ ≺r, f �

end if
end for
cδε ← aδε ∩ bδε

JClassic+δε can be used in differents application. We will
use it to formalize our contextual multilevel access control
model, in which the context could be in different forms.

VI. APPLICATION TO ACCESS CONTROL

To show how we can use our description logic-based system
and how we can infer new knowledge, we define a knowledge
base adapted to formalize a dynamic access control model
named DL − CMLACδε (Contextual Multi-Level Access
Control Model based on Description Logic with Default and
Exception).

In this model, authorization to subject is assigned depending
on context. We consider first that the context is by default
normal, and we represent it using the operator of default (δ).
Then, each change of context is considered as an exception to
the current context, this change is represented by the operator
of exception (ε). We give, as an example, one ABox to show
how authorization can be deduced.
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We are intersted in one kind of policy, which is a multilevel
access control commontly used by military organizations in
order to protect the confidentiality of their informations [2].

In multilevel access control model, a subject s can access to
an object o only if its clearance level is greater than or equal
to the classification level of the object.

To allow the policy designer to define a security policy
independently of the implementation, we introduce an abstract
level.

Subject and Object are respectively abstracted into Role
and View. A role is a set of subjects to which the same
security rule apply and similarly, a view is a set of objects to
which the same security rule apply. For example, the subject
”John” plays the role of ”Doctor” in the organization ”Service
of Pediatrics” and the view ”Medical record” corresponds to
the object ”Medical record of patient”. A clearance level is
assigned to the role and a classification level is assigned to
a View. An abstract authorization is assigned to a role on a
view in a given context if its clearance level is greater than or
equal to the classification level of the view.

The concrete authorization is derived from the abstract one
depending on context.

In our approach, we take into account the context by
considering the following postulate.

Postulate 1 (Normal context). By default, the context is
normal (usual context).

Postulate 2. All actions that are not permitted are prohib-
ited.

Figure 1 describes the general architecture of our access
control model.

Fig. 1. Architecture of DL− CMLACδε

A. TBox

We now conceptualize access control model by a DL knowl-
edge base capturing its characteristics, including the context
with the use of defaults (δ) and exceptions (ε), using the Bell

and La Padula model [28]. We define then TBox and ABox
axioms with examples to illustrate their content and use.

We define a DL knowledge base K. The alphabet of K
includes the following atomic concepts: Subject, Object, Role,
View, LevelR and LevelV. The TBox includes the following
axioms.

• Role attribution axiom:
Subject v >
Role v >
Employ v EmployS.Subject u EmployR.Role

It defines the relationship between subject and role,
where:
EmployS and EmployR are binary relations such as:
- EmployS : EmployS links the concept Employ to the
concept Subject
- EmployR : EmployR links the concept Employ to the
concept Role.

• View definition axiom:
Object v >
V iew v >
Use v UseO.Object u UseV.V iew

It defines relationship between object and view, where:
UseO and UseV are binary relations such as:
- UseO : UseO links the concept Use to the concept
Object.
- UseV : UseV links the concept Use to the concept View.

• Classification definition axiom:
LevelV v >
Attribute v AttributeV.V iew uAttributeL.LevelV

It defines relationship between the view and its classifi-
cation level, where:
AttributeV and AttributeL are binary relations such as:
- AttributeV : AttributeV links the concept Attribute to
the concept View.
- AttributeL : AttributeL links the concept Attribute to
the concept LevelV.

• Clearance definition axiom:
LevelL v >
Assign v AssignR.Role uAssignL.LevelR

It defines relationship between the view and its classifi-
cation level, where:
AssignR and AssignL are binary relations such as:
- AssignR : AssignR links the concept Assign to the
concept Role.
- AssignL : AssignL links the concept Assign to the
concept LevelR.

Depending on the model of Bell and La Padula [28], there
are two types of authorization, one for reading permission
and another one for writing permission. And because we have
two levels in our model: abstract and concrete level, we will
give axioms for abstract permission (reading and writing) and
axioms for concrete permission (reading and writing).
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To define a default permission, we use the following axioms.

• Reading Permission attribution axiom: defines the rela-
tion between role and view. A default reading permission
is given to role R on a view V when its clearance level
is greater than or equal to the classification level of the
view.
δRPermission v RPermissionR.Role u
RPermissionV.V iew uAttribute uAssign u LevelR
Where:
RPermissionR and RPermissionV are binary relations
such as:
- RPermissionR : RPermissionR links the concept RPer-
mission to the concept Role.
- RPermissionV : RPermissionV links the concept RPer-
mission to the concept View.
- LevelR v haslevel At-least LevelV

• Writing Permission attribution axiom: defines the rela-
tion between role and view. A default writing permission
is given to role R on a view V when its clearance level is
less than or equal to the classification level of the view.
δWPermission v WPermissionR.Role u
WPermissionV.V iewuAttributeuAssignuLevelR
Where:
WPermissionR and WPermissionV are binary relations
such as:
- WPermissionR : WPermissionR links the concept
WPermission to the concept Role.
- WPermissionV : WPermissionV links the concept
WPermission to the concept View.
- LevelR v haslevel At-most LevelV

A concrete permission is expressed with the next axioms.

• Concrete Reading Permission axiom:
Is−Rpermitted v Is−RpermittedS.SubjectuIs−
RpemittedO.Object

A concrete reading permission is given to subject S on
an object O, where:
Is-RpermittedS, Is-RpermittedO are binary relations such
as:
- Is-RpermittedS : Is-RpermittedS links the concept Is-
Rpermitted to the concept Subject.
- Is-RpermittedO : Is-RpermittedO links the concept Is-
Rpermitted to the concept Object.

• Concrete Writing Permission axiom:
Is − Wpermitted v Is − WpermittedS.Subject u
Is−WpemittedO.Object

A concrete writing permission is given to subject S on
an object O, where:
Is-WpermittedS, Is-WpermittedO are binary relations
such as:
- Is-WpermittedS : Is-WpermittedS links the concept Is-
Wpermitted to the concept Subject.
- Is-WpermittedO : Is-WpermittedO links the concept Is-
Wpermitted to the concept Object.

Definition of rules of security:
δIs−Rpermitted v Employ u Use u δRPermission
δIs−Wpermitted v Employ u Use u δWPermission

- If a subject S is employed in a role R (Employ), and if
there is a relation between an object O and a view V (Use),
and if we have a default reading permission (resp. default
writing permission) relation between role R and a view V
(δRPermission) (resp. (δWPermission)), we deduce that
a subject S is by default permitted to perform action of
reading (resp. writing) on object O (δIs−Rpermitted) (resp.
δIs−Wpermitted), and because Is−Rpermitted v δIs−
Rpermitted (resp. Is−Wpermitted v δIs−Wpermitted)
(a concrete permision can be deduced from a default per-
mission), we can finally say that a subject S is permitted to
perform action of reading (resp. writing) on object O.
Is−Rpermittedε v Employ u Use uRPermissionε
Is−Wpermittedε v Employ u Use uWPermissionε

- By cons, if we have an exception on a read-
ing permission concept wrote RPermissionε (resp. wrint-
ing permission concept wrote WPermissionε) , we say
that we have an exception on a concept Is-Rpermitted
wrote Is−Rpermittedε (resp. exception on a concept Is-
Wpermitted wrote Is−Wpermittedε) , and because Is −
Rpermitted 6v Is−Rpermittedε (resp. Is−Wpermitted 6v
Is−Wpermittedε) (a concrete permission can not be deduced
from an exceptional permission), we can deduce that a subject
S is prohibited to perform action of reading (resp. writing) on
object O.

B. The ABox

It contains statment about individuals. We could have many
ABox for one TBox depending on applications. We illustrate
this in the next section, we show how a security policy can be
handled by our tool and how we can infer authorizations.

- Using instances of Table 3, the system cannot infer that
Jean has the default permission to read the PS1 because
the classification level of the role Secretary which is played
by Jean is less than the clearance level of the view Project-
statistics. And because the default permission cannot be de-
duced, the concrete permission cannot also be deduced.

Suppose now that the assistant is absent, and the director
needs statistics of the project.

The context now is different, and it is considered as an
exception to the default one. We can give the secretary a
temporary permission by changing his classification level, this
changement is only valid in this context.

We can now deduce that Jean has the default permission
to read the PS1 because the context Absence of the Assistant
is true.

Then we add this instance to the ABox :
δPermission(P1).

Where:
δRPermission(P1) v RPermisionV.V iew(Project −

statistics) uRPermissionR.Role(Secretary)
uAttribute(At2) uAssign(As4) u LevelR
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ABox
Role(Director);
Role(Assistant);
Role(Secretary);
Subject(Adam);
Subject(Sara);
Subject(Jean);
View(Project-contract);
View(Project-statistics);
View(Project-description);
Object(PC1);
Object(PS1);
Object(PD1);
LevelR(Secret);
LevelR(Confidential);
LevelR(Public);
LevelV(Secret);
LevelV(Confidential);
LevelV(Public);
Employ(E1) v EmployS.Subject(Adam) u EmployR.Role(Director);
Employ(E2) v EmployS.Subject(Sara) u EmployR.Role(Assistant);
Employ(E3) v EmployS.Subject(Jean) u EmployR.Role(Secretary);
Use(U1) v UseO.Object(PC1) u UseV.view(Project− contract);
Use(U2) v UseO.Object(PS1) u UseV.view(Project− statistical);
Use(U3) v UseO.Object(PD1) u UseV.view(Project− description);
Attribute(At1) v AttributeV.V iew(Project− contract) uAttributeL.LevelV (Secret);
Attribute(At2) v AttributeV.V iew(Project− statistics) uAttributeL.LevelV (Confidential);
Attribute(At3) v AttributeV.V iew(Project− description) uAttributeL.LevelV (Public);
Assign(As1) v AssignR.Role(Director) uAssignL.LevelR(Secret);
Assign(As2) v AssignR.Role(Assistant) uAssignL.LevelR(Confidential);
Assign(As3) v AssignR.Role(Secretary) uAssignL.LevelR(Public);

TABLE III
ABOX

and, Assign(As4) v AssignR.Role(Secretary) u
AssignL.LevelR(Confidential)

• Access control if the context Absence of the Assistant
is true: Suppose that user Jean want to read the PS1, can
he obtain that privilege?
We know that:
- Jean plays the role of Secretary: Employ(E3);
- and, PS1 is an object used in the view Project-statistics:
Use(U2);
- and, in this context, Secretary has a clearance level equal
to Confidential: Assign(As4);
- and, Project-statistics has a classification level equal to
Confidential: Attribute(At2);
- and finally, by default, each person who plays the role of
Secretary is permitted to consult Project-statistics when
the assistant is absent: δRPermission(P1).
Formally, we write:
Employ(E1) u Use(U1) u δRPermission(P1)
Using security rules, we can deduce that the preceding
proposition subsumes δIs−Rpermitted(I1).
Where:
Is − Rpermitted(I1) v Is −
RpermittedS.Subject(Sara) u Is −
RpemittedO.Object(DB − Exam)
And because Is − Rpermitted(I1) v δIs −
Rpermitted(I1), we can deduce that Jean is permitted

to read PS1 if the assistant is absent.

• suppose that the assistant is absent and a substitute
was brought: can Jean read PS1?
In the context Assistant absent + substitute present ,
the system deduce a new instance P2 and we add to the
ABox the next rule:
Permision(P1)ε v δPermission(P2)
We know that:
- Jean plays the role of Secretary: Employ(E3);
- and, PS1 is an object used in the view Project-statistics:
Use(U2);
- and, in this context, Secretary has a clearance level equal
to Confidential: Assign(As4);
- and, Project-statistics has a classification level equal to
Confidential: Attribute(At2);
- and finally, by default, each person who plays the role of
Secretary is permitted to consult Project-statistics when
the assistant is absent and there is a new substitute:
δRPermission(P2).

We obtain:
Employ(E3) u Use(U2) u δPermission(P2)
≡ Employ(E3) u Use(U2) u δPermission(P1)ε

We know that Aε ≡ δAε, we obtain:
≡ Employ(E3) u Use(U2) u Permission(P1)ε

Using security rules, we can deduce that the precedent
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proposition subsumes Is− permitted(I1)ε.

And, because Is − permitted(I1) 6v Is −
permitted(I1)ε, we cannot deduce Is-permitted(I1).
Therefore Jean is not permitted to read PS1 when there
is a substitute to the absent assistant.

Our policy language allows us to have more than one
exception in a context. Exception at an even level cancel
the effects of exceptions and therefore infers the property by
default [3].

Supose that we have a disjunction of context, for example
”absence of assistant or absence of assistant with substitute
present”, here we can use the connective ”lcs” to deduce
permission

• lcs(absence of assistant, absence of assistant with
substitute present): Suppose that user Jean wants to read
PS1; can he obtain that privilege?
We know that:
- Jean plays the role of Secretary: Employ(E3);
- and, PS1 is an object used in the view Project-statistics:
Use(U2);
- and, in this context, Secretary has a clearance level equal
to Confidential: Assign(As4);
- and, Project-statistics has a classification level equal to
Confidential: Attribute(At2);
- and we have the two previous permissions Permis-
sion(P1) and Permission(P2), defined respectively for the
context (absence of assistant) and context (absence of
assistant with substitute present).

We obtain:
Employ(E3) u Use(U2) u
lcs(δPermission(P1), δPermission(P2))
≡ Employ(E3) u Use(U2) u
lcs(δPermission(P1), δPermission(P1)ε)

using lcs properties, we obtain:
≡ Employ(E3) u Use(U2) u δPermission(P1)
Using security rules, we can deduce that the precedent
proposition subsumes δIs− permitted(I1).

And, because Is − permitted(I1) v δIs −
permitted(I1), we can deduce Is-permitted(I1). There-
fore Jean is permitted to read SP1 when one of these
contexts is true (absence of assistant, absence of assistant
with substitute present).

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper has led to the definition
of a new system based on description logic that is expressive
enough to be used as part of an application and to represent de-
fault knowledge and exceptional knowledge. The JClassic+δε
highlights the interests and the relevance of defaults in con-
ceptual definition. For the JClassic+δε language, we have
given a set of axioms outlining the essential properties of the
connectives from this definitional point of view: property links
default characteristics to exceptional or strict ones. This set of

axioms induces a class of CL+
δε-algebra of which the terms

are concept descriptions. Using the conjunction connectives
u and ”lcs”, the set of concept can be partially ordered
w.r.t the equational system (descriptive subsumption in free
algebra). JClassic+δε is defined with a universel algebraic
corresponding to a denotational semantic, where terms are
denoted exactly by sets of strict and default properties.

This system consists of three modules: a module for rep-
resenting knowledge, a module to use that knowledge and a
module to update knowledge. The module which allows to use
knowledge is endowed with a subsumption algorithm which
is correct, complete and polynomial.

In our work, the description logic is endowed with an
algebraic intensional semantics, in which concepts are denoted
by a normal form of all their properties. These normal forms
(i.e., elements of the intensional semantic) are used directly
as an input to the algorithm of subsumption and algorithm of
deductive inferences.

The developed tool has been used to describe our contextual
access control model in which authorization is assigned to
a subject according to its role in an organization in a given
context. The two operators of default and exception are used
in a clever way to assign permission depending on the context.
Each time, the context changes, permissions are redefined and
re-assigned to subjects.

Context can take several values, it can be a default one,
an exception to the actual context, conjunction of contexts or
disjunction of context. In this paper, we specially lay emphasis
upon the last one.

An interseting topic for future research is to extend our
tool to take into account spacial-temporal context to make our
system more expressive with keeping a reasonable complex-
ity. We also envisage to explore other appropriate and real
applications.

REFERENCES

[1] N. Boustia and A. Mokhtari. JClassic+δε: A Description Logic
Reasoning Tool: Application to Dynamic Access Control. In Proc.
The Second International Conference on Computational Logics, Alge-
bras, Programming, Tools, and Benchmarking, Computation Tools’11,
September 25-30, 2011, Rome, pp. 25-30, ISBN: 978-1-61208-159-5.

[2] D. E. Denning. Multilevel secure database systems: Requirements and
model. In NAS/AFSB Summer Study on Multilevel Database Manage-
ment Security, Working Paper, June 1982.
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Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based
Access Control. In 4th IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy’03), Lake Come, Italie, June
2003.
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