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Abstract—Based on algorithmic differentiation, we present
a derivative code compiler capable of transforming implema-
tations of multivariate vector functions into a program for
computing derivatives. Its unique reapplication feature dlows
the generation of code of an arbitrary order of differentiation,
where resulting values are still accurate up to machine presion
compared to the common numerical approximation by finite
differences. The high memory load resulting from the adjoin
model of Algorithmic Differentiation is circumvented using
semi-automatic interprocedural checkpointing enabled bythe
joint reversal scheme implemented in our compiler. The entee
process is illustrated by a one dimensional implementation
of Burgers’ equation in a generic optimization setting usimg
for example Newton’s method. In this implementation, finite
differences are replaced by the computation of adjoints, ths
saving an order of magnitude in terms of computational
complexity.

Keywords-Algorithmic Differentiation; Source Transforma-
tion; Optimization; Numerical Simulation; Checkpointing

I. INTRODUCTION

A typical problem in fluid dynamics is given by the

continuous Burgers equation [2]

ou ou 0%u
o Vor Vo (1)

describing shock waves moving through gasedenotes
the velocity field of the fluid with viscosityy. Similar

u; j+1 for time stepj + 1 according to

At
Ui g1 = Ui j—1 — - (Ui j (Uit1,j — Ui—1,5))
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where At is the time interval andAxz is the distance
between two grid points. In general, if the initial conditso

u;,0 cannot be accurately measured, they are essentially
replaced by approximated values. To improve their accuracy
additional observed values®® ¢ R"=*" are taken into
account. The discrepancy between observed valglgsand
simulated values:; ; are evaluated by the cost function

v 3D D =) ©

which allows us to obtain improved estimations for the aiiti
conditions by applying, for example, Newton’s method [4] to
solve the data assimilation problem with Burgers’ equation
as constraints [5]. The single Newton steps are repeatdd unt
the residual cosy undercuts a certain threshold.

In Section Il, we introduce Algorithmic Differentiation
(AD) as implemented by our derivative code compitierc
covering both the tangent-linear as well as the adjoint rhode
Section Il provides a user’s perspective on the applicatio
of dcc. Higher-order differentiation models are discussed
in Section IV. Finally, the results of our case study are
discussed in Section VII.

governing equations represent the core of many numerical
simulations. Such simulations are often subject to various

optimization techniques involving derivatives. Thus, &ur The minimization of the residual is implemented by
ers’ equation will serve as a case study for a Comp”er'baseﬂesorting to Newton’s second-order method for mini-
approach to the accumulation of the required derivatives. ization. In general, Newton'’s method may be applied
Suppose we solve the differential equation in (1) byto arbitrary differentiable multivariate vector funct®n
discretization using finite differences on an equidistar@-o  y — F(x) : R* — R™. This algorithm heavily depends on
dimensional grid withe,. points. For given initial conditions  the accurate and fast computation of Jacobian and Hessian

u;,0 With 0 < i < n, we simulate a physical process by inte- values, since one iterative stap — x;,1 is computed by
grating overn, time steps according to the leapfrog/DuFort-

Frankel scheme presented in [3]. At time sjewe compute

Il. ALGORITHMIC DIFFERENTIATION

Xit1 =X — VQF(Xi)il : VF(Xz) . (4)
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The easiest method of approximating partial derivatives:ost(F). Note that for scalar functions witth = 1 the
V., F uses the finite difference quotient accumulation of the Jacobian amounts to the computation
F(x+h-e)—F(x) of one gra}djent yielding a runtime cost 6¥(1) - cost(F')

" , (5) for the adjoint model compared ©(n) - cost(F) for the
) _ ) tangent-linear model. In this particular case, we are able t
for the Cartesian basis vectef € R™ and withx € R"”,

d | h bi ¢ tivari compute gradients at a small constant multiple of the cost
h — 0. In order to accumulate the Jacobian of a multivari-¢ 5 single function evaluation. The reduction of this facto

ate function the method is rerum times to perturb €ach 4, toward the theoretical minimum of three [6] is one

cqmponent of the input_ vectcx_. The main _advantage C_)f of the major challenges addressed by ongoing research and
this method resides in its straightforward implementgtion development in the field of AD [7], [8]

no additional changes to the code of the functidoare nec- The core idea of this paper is to develop a source

essary. However, the derivatives accumulated througrefinity o noformation tool or compiler that transforms a given C
differences are only approximations. This represents @maj e into its differentiated version. In general, this eases
drawback for codes that simulate highly nonlinear systemsy,o ditferentiation order fromi to d + 1. le., by taking

resulting in truncation and cancellation errors or simply 4 o input a handwritten first-order code we end up with a

providing wrong results. In particular by applying the %@yl ~ gecond-order code. Taking this insight a step further wet wan
expansion to the second-order centered difference quotieR,: our tool accepts its output as an input. Thus, starting

we derive a machine precision induced approximation erofom a given code, we are able to iteratively generate an

of 77, with € being the rounding error. _ arbitrary order of differentiation code. This unique featu
AD [6] solves this problem analytically, changing the un- ;¢ being presented in Section IV.

derlying code to compute derivatives by applying symbolic - g\, thermore our derivative code compiler is able to use
differentiation rules to individual assignments and usting checkpointing techniques for the adjoint mode, by using

chain rulg to propagate derivatives along the flow of.controljoint reversal as opposed to split reversal as a reveral
The achieved accuracy only depends on the machine’s Pr¢achnique. This will be explained in Section V.

cisione. There exist two distinct derivative models, differing

Vi, F(x) =

in the order of application of the associative chain rulet Le Ill. DCC - A DERIVATIVE CODE COMPILER
VF be the Jacobian of'. Thetangent-linearcode Numerical optimization problems are commonly
. o o1 b implemented as multivariate scalar functions
F(x,y) x5 F(x,xy,y) , y=F(x):R" — R, describing some residuaj of a
+ Ll numerical model. We assume that the goal is to minimize a
where (6)  norm of this residual; by adapting the inputs. Therefore,
y=VF(x) % for better readability and without the loss of generality, i
and y=F(x) , this paper, we will only cover multivariate scalar function

o o The main link betweedcc and the mathematical models
of F" computes the directional derivatiyeof the outputsy  of AD is the ability to decompose each function implemen-

with respect to the inputs for a given directionk € R™,  tation into single assignment code (SAC) as follows:
while arrows designate inputs and outputs. By iteratively s

ting x equal to each of the Cartesian basis vectors R, (8)
we accumulate the entire Jacobian. This leads to a runtime v = @;(vi)i<;j

complexity identical to finite differences @(n) - cost(F),  The entire program is regarded as a sequenge-ofi ele-
where cost(F') denotes the computational cost of a singlemental statements. In each statement an elemental function

forj=n,...,n+p

function evaluation. ¢, is applied to a set of variablés; ), -, yielding the unique
By exploiting the associativity of the chain rule, the intermediatevariablev; with i < j denoting a dependence
adjoint code of v; on v;. The independentnputs are given by; = z;
1 dec =1 L4 fori=0,...,n—1 while thedependenbutput of F' is the
F(X7 }’) — F(vaay,}’) ) final valuey = v,1,. Whendcc applies the tangent-linear
v v model to each of the + 1 assignments, we obtain
where (7) for 1
v = F(x) Orj—n,..é;;-i-p
and x=x+VF(x)T 'y , 6= g )
of F computesadjointsx € R™ of the inputsx for given i
adjointsy € R™ of the outputs. To accumulate the entire v = ¢5(vi)ix;
Jacobian we have to iteratively sgiequal to each Cartesian Considering thej-th assignment in (9), the locatth entry
basis vector oR™ yielding a runtime complexity o®(m) - of the gradient(%)k<j is provided inv; by settingvy
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to one and all(v;)r+i~; to zero. The gradient component : void t1_f(int n, doublex x, doublex t1_x
(%)ke{omn,l} is obtained by evaluating (9) and setting 2 ( , double& y, double& t1_y)

iy, to one and all othefi;)y,icfo, 1) tO zero. To get |
the whole gradient we have to evaluate {9}imes letting s for(int i=0ji<n;i++) {
% range over the Cartesian basis vector®ih The adjoint ¢ ¥1:y*ft|2(X[lsi]r)1;x ) avecos(x[ i D) etl (i1
model is acquired by transforming (8) into: : —y=tl_y=sin(x[i])+y=cos(x[i])«t1x[i]:
9 P
forj=n,...,n+p 0}
v; = 0;(vi)i<j Listing 2: Tangent-linear version dfas generated bgicc
fori<jandj=n+p,...,n (10)
_ 0y _
T COLSTRY L for(int i=0; i<n;i++) {
i 2 tl_x[i]=1;
The first part consists of the original assignmefits=  ° élrag(iZ’m?i]ilaxy’-y’ ty):
n,...,n + p and is calledforward section The reverse . t1_x[i]=0; -
sectionfollows with the computation of the adjoint variables s

in the orderj = n+p,...,n. Note the reversed order of the Listing 3: Driver for t1_f
assignments as well as the changed data flow of the left and
right-hand sides compared with the original assignmernts. T
compute the local gradiemt%)k<j we have to initialize . o
(0:)i<; With zero ando,; with one. The initialization with ~directly affected by the differentiation process.
zero is mandatory becaugg;);~; occurs in (10) on both void f(int n, double *x, double &y)
sides of the adjoint assignment. According to (7), the adjoi t
variablev; is an input variable. Therefore it is initialized ;,r;t(,;'_o’
with the Cartesian basis vector i for(i=0;i<n;i++) {
The important advantage of the adjoint model is that by y=yxsin(x[i]):
evaluating (10) only once we obtain the full gradieg:}ct
inz, =9, fort =0,...,n — 1. To achieve this we have
to initialize (Z;);=0,...n—1 With zero andy with one. As
mentioned abov& must be zero because it occurs not only  Using the command linécc f.c -t, we instruct the
on the left-hand side in (7) angis initialized with the value  compiler to use the tangent-lineart() mode in order to
of the Cartesian basis vector generate the functior_f (tangent-linearlst-order version
In (8), we assumed that the input code is given as af f) presented in Listing 2. The original function arguments
SAC. This is an oversimplification in terms of real codes.x andy are augmented with their associated tangent-linear
The adjoint code has to deal with the fact that real codevariablest1_x andti_y. Inside a driver program this code has
variables are overwritten frequently. One way to simulhte t to be rerunn times letting the input vecton_x range over
predicate of unique intermediate variables is to storeagert the Cartesian basis vectors Ri* to accumulate the entire
left-hand side variables on a stack during the augmentegradient. Listing 3 shows how to use the generated code of
forward section. Candidates for storing on the stack are.isting 2 in a driver program. Lines 2 and 5 let input variable
those variables that are being overwritten and are required_x range over the Cartesian basis vectors. By settingi]
for later use during the computation of the local gradientso 1 the function_f (line 3) computes the partial derivative
and associated adjoints. Before evaluating the correspgnd of y with respect tox[i].
adjoint assignment in the reverse section the values are The command linedcc f.c -a tells dcc to apply
restored from the stack. the adjoint mode-(a) to f. c. The result is the function
For illustration purposes we consider Listing 1 show-a1_f (adjoint, 1st-order version off) shown in Listing 4.
ing an implementation of the non-linear reductionAs in the tangent-linear case each function argument is
y(x) = H;‘:—Ol sin(z;). dcc parses only functions withoid augmented by an associated adjoint component, here
as a return type (line 1). All inputs and return values are and a1_y. As mentioned above we need a stack in the
passed through the arguments, which in turn only consisadjoint code for storing data during the forward section.
of arrays (called by pointers) and scalar values (called byrhe augmented forward sectiomses stacks to store values
reference). Additionally we may pass an arbitrary number othat are being overwritten and to store the control flow. The
integer arguments by value or by reference. We assume thattual implementation of the stack is not under considenati
all differentiable functions are implemented using valoés here; therefore we replaced the calls to the stacks withanacr
type double. Therefore, only variables of typeouble are  definitions for better readability. By defaullcc generates

©® N e O A W N R

Listing 1: dcc input code.
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code that uses static arrays, which ensures high runtime void al_f(int n, doublex x, doublex al_x,
performance. There are three different stacks used in the double& y, double& al_y)
adjoint code. The stack callegk is for storing the control i { int i=0:

flow, FDs takes floating point values ands keeps integer s /1 augmented forward section

values. The unique identifier of the two basic blocks [9] in &~ CS_PUSH(0);

the forward section are stored in lines 6 and 9. For example, ¥g?’( i20; i<n; i++) {
after evaluating the augmented forward section of Listing 4 . CS_PUSH(1);
the stackcs contains the following sequence 10 FDS_PUSH(y); y=yxsin(x[i]);
11 IDS_PUSH(i);
0’\1""’1, (11) E };/ reverse section
n times 14 while (CS_NON_EMPTY) {
15 if (CS_TOP==0) {
In line 10, variabley is stored onto the stack because it s al_y=0;
is overwritten in each iteration although needed in line 21 ¥ -
Hence, we restore the value gfin line 20. For the same 12 'le(SCSP—ggTi_)_;l) {
reason we store and restore the valuei af line 11 and FDS_POP(y) ;
19. The reverse section consist of a loop that processes al_x[i]+=yxcos(x[i])+al_y;
the control flow stackcs. The basic block identifiers are >, ) aLy=sin(x[i])+al y:
restored from the stack and depending on the value, the CS_POP;

corresponding adjoint basic block is executed. For examples }

the sequence given in (11) as content in tsestack leads }

to an-times evaluation of the adjoint basic block one and Listing 4: Adjoint dcc output
afterward one evaluation of the adjoint basic block zero.
The basic block one in line 9 to 11 has the corresponding
adjoint basic block in line 19 to 22. In contrast to (7), in

line 22 the adjointal_y is not incremented but assigned. tangent-linear code (6) withn — 1 for scalar functions

This is due to the fact thag is on both hand sides of yiaigs the second-order tangent-linear code
the original assignment in line 10. This brings an aliasing

The tangent-linear mode reapplied to the first-order

effect into play. This effect can be avoided with help of F(:ici ) deg Z;'(>J'< )%( ;i .9, 7)
intermediate variables; making this code difficult to read. ’ ’?j’?f R ’%’?f’i/’?j ’

For that reason we show the adjoint assignment without .o

intermediate variablesdlcc generates adjoint assignments ~ ) T -

with intermediate variables and incrementation of the- left y=(VF(x)-%) -x+VF(x)-x , (12)
hand side as shown in (7). Thiz c-generated code and the y=VF(x)-x ,

one shown here are semantically equivalent. To accumulate §j=VF(x) -x and

the gradient using the functica1_f, we again have to write y = F(x)

a driver, presented in Listing 5. It is sufficient to initizi ] ) )
the adjoint variablea1_y and call the adjoint functioa1_f ~ Agdain, dcc generates exactly the implementation of the
only once to get the whole gradient (line 2), illustrating th Mathematical model. As we see in (12), the t&vifi (x) - x

reduced runtime complexity of the adjoint mode. must be equal td in order to accumulate the entries of
the HessiarWV2F. As a consequence, must be set td on

, 21—);(,} x, al x, y, al_y); input. The produc{V2F (x) - x) " -x represents a projection

s for(int j=0; j<n;j++) of the Hessian, determined by the vectarandx. In our

4 gradient[j]=al x[j]; case withm = 1 the HessiarWV2F € R"*" hasn? entries.
Listing 5: Driver forai_f To compute the entryfW F; ; of the Hessian the vectors

% and x have to be set to theé-th and j-th Cartesian
basis vectors, respectively. In order to accumulate thdavho
Hessian this step has to be repeated for each entry, yiedding
Numerical optimization algorithms often involve higher- computational complexity 0®(n2) -cost (F'). Taking either
order derivative models. Thus, the need for Hessians iadjoint or tangent-linear first-order input code, we regppl
imminent. With this in minddcc was designed to generate dcc by invokingdcc -t -d 2 t1_foo. cpp. Thistells
higher-order derivative codes effortlessly using isappli- dcc to generate second-orderd 2) tangent-linear {t )
cation feature dcc is able to generatgth-order derivative derivative code while avoiding internal namespace clashes
code by reading;j — 1)th-order derivative code as the input.  Looking at the possible combinations of the two dif-
In this section we will focus on second-order models. ferentiation models, there exist another three secondrord

IV. HIGHER ORDER DIFFERENTIATION
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models. We may either apply the adjoint model to the Augmented forward Store mode
tangent-linear code or apply the adjoint mode to the adjoint mode
code. We will focus on the model where tangent-linear mode
is _apphed to the adjoint code, callgdngent-linear over Reverse mode Restore mode
adjoint mode.

This time the adjoint code (7) is taken as the input for the
reapplication of the tangent-linear mode, obtaining
L+ ddeg b YL Lt
F X, X, Y, — F X,}.(,}_Q)_(, 7.77a7 )
( 4 % y) ( o % iJ 4 y) alfr— alf alfr—alf
where | | | |
j=VF(x) % |
alg alg alg alg—alg
y=Fx) ,
%=%+%xT-V2F(x) -7+ VF(x)T-§ and | | | |
x=x+VF )"y . alh| |alh alh| |alh| |alh—alg
(13)
The generated implementation computes the term (8 Spiit Reversal (b) Joint Reversal
xT-V2F (x)-gy. This time we do not end up with Figure 1: Reversal models

one single entry, but we are able to harvest one complete

row V2F; of the Hessian inx. To achieve this, the term

VF (x)"-y and thusy must be set td) on input. The First we look at the reversal strategy @éc. In general
scalary must be set td. Finally to compute a row of the  the adjoint model consists of a forward section and a reverse
HessianV*F;, & must be set to the-th Cartesian basis section. What happens in the case of interprocedural code
vector. As such, we have to rerun this modekimes in  where a function calls an arbitrary number of functions.
order to accumulate the whole Hessian, yielding only arhere are two distinct ways of adjoining interprocedural

linear increase in runtime complexity 6¥(n) - cost (F). code, namelysplit reversalandjoint reversal

The desired dcc command is dcc -a -d 2 Split reversal, presented in Figure 1ais the straightfotdwa
t1_f oo. cpp resulting in the filea2_t 1_f 0o. cpp. The  way of adjoining code. It strictly sticks to the adjoint made
option- a instructsdcc to generate adjoint code. The original code is executed in an augmented forward run.

The augmentation essentially amounts to the additioneksta

operations introduced in Section Ill. These stacks areajlob
One inherent disadvantage of the adjoint AD model ovedata structures idicc.

the tangent-linear model is its high memory consumption. The augmented forward section is visualized by a square

In the reverse section of an adjoint code, each adjoinwith two right arrows[_J. One arrow stands for the values

computation of a non-linear operation is dependent on &hat are pushed on the stack. The other arrow represents the

value computed during the forward run. As we have seen imriginal function evaluation. The augmented forward secti

Section Il this value is stored on a data stack if it happen®f f calls the augmented forward section gfwhich itself

to be overwritten. In real world programs this process is notalls the augmented forward section of Each function

the exception but the rule. Memory locations are rewrittenpushes its computed values on the floating point data stack

and reused as often as possible so that the program is #sDS).

memory efficient as possible. For the adjoint AD model this After the augmented forward section ¢f the reverse

results in one consumed memory location for nearly evengection off starts, marked by a square with two left arrows

statement. For example, updating a thousand times a variabl_. This corresponds to the reverse adjoint computation with

of type double precision (e.gr, = = + 3?) results at least the needed function values being popped from the stack.

in an additional memory usage of eight thousand bytes. FoFhrough the reverse section gfthe reverse sections g@f

each execution of this statement we have one value pusheohd i are eventually called.

on the stack by’ DS_PUSH (z). In the end, there are two ways of calling a function in
There are several strategies to address this issue. We wi#plit reversal: in augmented forward mode and reverse mode.

present checkpointing, the core method of every AD toolMemory consumption of split reversal is always directly

to reduce memory consumption. In particular we will focusrelated to the sum of pushes in the forward section.

on howdcc deals with checkpointing and how the memory  Joint reversal, as shown in Figure 1b exploits the interpro-

footprint may be influenced by the user. cedural structure of the program by introducing checkpoint

V. REVERSAL STRATEGIES- CHECKPOINTING
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ing at each function call. Each function needs to be able t@onsumption and computational cost. Memory consumption
store and restore its arguments. is reduced by a third fron3 to 2 whereas the computation
We first start by callingf in augmented forward mode cost has risen by fifty percent frofto 9. There has been
D. If a function runs in augmented forward mode it will more investigations into the mixing of these two strategies
make subcalls irstore modet_|. Store mode results ig [10] shows that the optimal reversal strategy is NP-coneplet
storing its arguments (down arrow) and running the originaldcc uses joint reversal as its sole reversal scheme putting
code ofg (right arrow), which itself calls the original code the emphasis on memory efficient code. In the next chapter
of h (right arrow). we will demonstrate how we exploit this feature to achieve a
The reverse mode of calls g in restore modeD. more efficient memory footprint for our Burgers simulation.
g restores its arguments and runs in augmented forward
mode leading tah called in store mode. In joint reversal VI. BURGERSIMPLEMENTATION

the forward section is immediately followed by the reverse As has been described in Section | we compute the ve-

section. Sq; starts its reverse section resultinghirmglled in locity field according to (2). We use dynamic programming
restore modeh restores its arguments and starts its forwardby introducing a data array(i][j] storing the velocity for a

section followed by the reverse section. Aftehas returned,
g finished its reverse section, which eventually leads to
finalizing its reverse section.

By joining the forward and reverse section, the valuest Vvoid h(int& nx, // number of grid points

grid point: in time stepj. The functionh implementing the
computation of the velocity field has the following signatur

. . int t0, // first time step to start

that are pushed on the stack in the forward section aré with P
being popped from the stack in the following reverse section s int n, // number of time steps to
This has two benefits. For one, memory access is struc- compute ,

I | | leadi ¢ fficient loitati 4 double& cost, // cost function
turally more local leading to a more efficient exploitation doublex« uob. // observations
of cache memory. Additionally, memory consumption is ¢ doublexx ub, // basic states
significantly reduced since interprocedural code consumes doublexx u, // model solutions
far | than the sum of all the push operations. I, doublex ui, // initial conditions
ar_ess memory than - p _p 1N, double& dx, // space increment
split reversal we had two ways of calling a function whereaso double& dt, // time increment
in joint reversal we have three; store, restore+augmentet double& r, // Reynolds number

1 double& dtdx,
forward and reverse mode. We now compare the two reversaj double& c0
schemes along the call graph presented in Figure 1. 14 double& c1
For the sake of simplicity, we assume that the originals )

function evaluation, the forward section and the reverse Listing 6: Function h
section of f,g and h have each a computational cost lof
Additionally, we assume that all the pushes of a function’sThis function computesli][j] and updatesost for all grid

forward section have a memory consumptionlofFinally,  pointsz;, 0 < ¢ < nz and for all time stepg, < j < n.

we assume that storing the arguments of a function haSupposing that for each time step we need g pushes on
no additionally memory footprint. Taking all of this into the stack, we end up with approximatelyn,, -n pushes for
account we now compare the two reversal schemes on thbe entire simulation. This is also the memory consumption
call graph presented in Figure 1. for calling the adjoint codei_h.

Split reversal runs all three functions in their forward and The code will now be restructured according to a recursive
reverse section. So we end up with a computational costheckpointing scheme by relying on the interproceduratjoi
of six. All the forward sections are called after each otherreversal mode present bcc.
therefore the memory consumption is three.

e . . . 1 void h(...) {
In joint reversal afterf has finished its forward section ,
we have a memory consumption bf Only the values off 3 half=n—t0/2;
have been pushed on the stack. We assumegtimatalled ! ti%?tdoi;]f'i”;z)”?:tl; ni=n;
in the middle off. So half of the values were popped from g(nx,t0 ,n0, cost ,uob,ub,u,ui,dx,dt,r,

the stack at the moment whenis called in restore mode dtdx,c0,cl); _
(memory=0.5). Whery ends its forward section, memory ’ g(nx at&j)lnlcbcgit) ,uob, ub, u, ui, dx, dt, v,
consumption is atl.5. Assuming thath is called in the 3 R

middle of g we end up with a peak memory consumption ¢ else _

of 2 after the forward section of. The computational cost h(nx att%)'(”égoztl’)@b’“b’u Lui,dx,dt,r,
amounts to the number of squares in the picture, which is, R

equal to9.

- . Listing 7: Function h
In general, joint reversal is a trade off between memory
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Table I: Time and memory requirements for gradient com-
alf alf putation
n 250 500 1000 2000
alg alg—— f(s) 0.03 0.08 0.15 0.32
TLM (s) 33 109 457 1615
ADJ (s) 0.21 0.43 0.85 1.82
TLM-ADJ (s) 150 587 2286 8559
IDS size 7500502 | 15001002 | 30002002| 60004002
alg alg alg alg FDS size 5000002 | 10000002 | 20000002| 40000002
| | | CS size 7500503 | 15001003 | 30002003 | 60004003
alh alh alh alh
1 void f(int n, int nt, double& cost, doublexx
(a) Call graph of ailf u. doublex ui..)
2 |
3 -
——alg .}
Listing 8: Signature of Burgers’ function
alg—alg alg—alg Taking n grid points of ui as the initial conditions we

integrate ovemt timesteps. The values are saved in the two

dimensional array for each grid point and time stepy.

alh alh — alh alh alhF— alh To solve the inverse problem we need the derivatives of
cost with respect to the initial conditions.

The results in Table | represent the runtime of one full
gradient accumulation as well as the memory requirements
in adjoint and tangent-linear mode. Additionally one Hassi

(b) Call graph of aif (cont.) accumulation is performed using the tangent-linear over
adjoint model (13). Different problem sizes are simulated
with varying n. We also mention the different stack size
shown in Section llI.

g has the same signature/asits task is to decompose the It we assume four bytes per mtgger and control stack
element plus eight bytes for a floating data stack element

interval of t|me steps, caliing on a s.ubl.nt.erval ofto, . we end up with a memory requirement of 610 MB for
The resulting call tree as well as its joint reversed coun,,

terpart is illustrated in Figure 2 the Hessian accumulation. The tests were running on a
We assume that th has a computational cost dfover Genuinelntel computer with Intel(R) Core(TM)2 Duo CPU

S . . and with 2000.000 MHz CPU.

the entire interval frontg to n. If we call  in over the entire : - . .
. : : The execution time of the tangent-linear gradient compu-
interval we end up with a forward and a reverse secuon[ Lo . . .

: : ation is growing proportionally to the problem size and
adding up to a computational cost 2fln our new structure the execution time of:
we assume thaf and g have no computational cost and ' ,
no memory consumption. In our examgiehas a cost of FM : cost(F") ~ O(n). (14)
since it only runs over half the interval &f to n. We callh cost(F)
10 times. Thus the computational cost of this call treé.is The single executon ofl_f takes approximately twice as
Note that this is independent from the depth of our recursivgong as the execution df
call tree. The memory consumption though is halved at every The execution time of the adjoint gradient computation is

increase of the recursive call three depth. Ultimately mgmo growing only proportional to the execution time of
consumption can be reduced to the number of pushes in one

Figure 2: Burgers recursive call tree joint reversal

!
single time step. : %(5;)) ~ O(1). (15)
VII. CASE StuDY Finally we accumulate the Hessian using tangent-linear
A. Differentiation of the original code over adjoint mode. Here, the runtime is growing linearly

As discussed in Section I, we run a test case on an inversgith respect ton as well asf since the dimension of the
problem based on Burgers' equation (1). As a start we tak@ePendentost is equal tol.

the code presented in [3] implementing the original functio _cost(F")
with the signature of FM — AM : cost(F) O(n). (16)
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Table 1I: Recursive checkpointing withh = 100000. Interval

¢ : [11]. This feature has been integrated irdoc using an
size of 100000 amounts to no recursion.

adjoint MPI library [12]. Additionally there are attempts t

Interval size| FDS size | Runtime(s) achieve the same goal with OpenMP [13]. For the sake of
100000 | 29999610 69,3 brevity we also did not mention the program analyeisc
10000 2062706 4.9 erforms like for examplactivity and TBR analyses [14]

1000 433242 76,5 P Jor ¢ P y yS¢ .

100 229410 79,1 The compiler is open-source software (Eclipse Public

10 202292 88.3 License) and available upon request. This paper shoul@ serv
as first guideline on how to differentiate C code using this
tool.

For scalar functions in particular, the runtime complexity ~ Finally, the development oficc is largely application
for accumulating the Hessian using AD is the same as thériven, especially with regard to its ability in parsing the
runtime complexity of the gradient accumulation using énit entire C/C++ language.
difference. This enables developers to implement a second-
order model where a first-order model has been used so far.

_ o ) ) o [1] M. Schanen, M. Foerster, B. Gendler, and U. Naumann,
B. Differentiation using recursive checkpointing “Compiler-based Differentiation of Numerical Simulation

. . Codes,” in ICCGI 2011, The Sixth International Multi-
Based on the recursive checkpointing scheme presented Conference on Computing in the Global Information Tech-

in Section V and its implementation in Section VI we nology IARIA, 2011, pp. 105-110.

conducted benchmarks varying the interval size threstoold f

diff where the recursion af will stop by eventually calling  [2] D. Zwillinger, “Handbook of Differential Equations, 8red,’

h. The first order adjoint model was applied to compute a  Boston. MA, p. 130, 1997.

single gradient accumulation. The benchmarks were run on g3 g. kalnay, “Atmospheric Modeling, Data Assimilation dn

cluster node consisting of a single thread on a Sun Enterpris Predictability,” 2003.

75120 cluster 4] T. Kelley, Solving Nonli Equati ith Newton’
At an interval size of 100 we see_ mapr memory sa_vmgs 4 l\/'lethﬁdeg(,er. Igu\;llggmerﬁgllsn?)?;lg(?rﬂﬁr;‘?gs PvgliladeIShiac,)rl]:’Z:

of around 98% whereas the runtime is only marginally SIAM, 2003.

increased by around 15% from 69,3s to 79,1s. This illusrate

that checkpointing is crucial to reduce a computationabpro [5] A. Tikhonov, “On the Stability of Inverse ProblemsDokI.

lem in memory space while keeping the runtime complexity ~ Akad. Nauk SSSRol. 39, no. 5, pp. 195-198, 1943.

at a feasible level.
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