
342

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The CloudMIG Approach: Model-Based Migration of Software Systems to
Cloud-Optimized Applications

Sören Frey and Wilhelm Hasselbring

Software Engineering Group
University of Kiel

24118 Kiel, Germany
{sfr, wha}@informatik.uni-kiel.de

Abstract—Cloud computing provides means for reducing
over- and under-provisioning through enabling a highly flexible
resource allocation. Running an existing software system on
a cloud computing basis can involve extensive reengineering
activities during the migration. To reduce the correspondent
effort, it is often possible to deploy an existing system widely
unmodified in IaaS VM instances. However, this simplistic
migration approach does not solve the challenge of over-
and under-provisioning or scalability issues per se, as our
experiments using Eucalyptus and the popular open source
system Apache OFBiz show. Moreover, current migration
approaches suffer from several further shortcomings. For
example, they are often limited to specific cloud environments
or do not provide automated support for the alignment with
a cloud environment. We present our model-based approach
CloudMIG which addresses these shortcomings. It aims at sup-
porting SaaS providers to semi-automatically migrate existing
enterprise software systems to scalable and resource-efficient
PaaS and IaaS-based applications. To facilitate reasoning about
the suitability of certain cloud environments for a given system
and the degree of alignment during the reengineering process,
we introduce the Cloud Suitability and Alignment (CSA)
hierarchy. For example, Apache OFBiz used in our experiments
is initially categorized “cloud compatible” but not “cloud
optimized” as it does not exploit the cloud’s advantages.

Keywords-Approach CloudMIG, Cloud Computing, Model-
based software migration to cloud-based applications, Resource-
efficient cloud-based applications, Eucalyptus, CSA hierarchy.

I. INTRODUCTION

Most enterprise applications’ workload underlies substan-

tial variations over time. For example, user behavior tends

to be daytime-dependent or media coverage can lead to

rapidly increasing popularity of provided services. These

variations often result in over- or under-provisioning of data

center resources (e.g., #CPUs or storage capacity). Cloud

computing provides means for reducing over- and under-

provisioning through supplying elastic services. Thereby,

the conformance with contractually agreed Service Level

Agreements (SLAs) has to be ensured. Considering legacy

software systems, is there a way established enterprise

applications can benefit from present cloud computing tech-

nologies? For reasoning about this issue, it is useful to

clarify the main participants in providing and consuming

cloud computing services. Three different roles can be

distinguished. Software as a Service (SaaS) providers (cloud

users) offer software services, which are being utilized by

SaaS users. For this purpose, the SaaS providers may build

upon services offered by cloud providers (cloud vendors). In

the following, we will employ the terms SaaS user, SaaS

provider, and cloud provider.

Newly developed enterprise software may easily be de-

signed for utilizing cloud computing technologies in a green-

field project. Though, SaaS providers may also consider to

grant responsibility of operation and maintenance tasks to a

cloud provider for an already existing software system. Run-

ning established enterprise software on a cloud computing

basis may involve extensive reengineering activities during

the migration. Nevertheless, instead of recreating the func-

tionalities of an established software system from scratch for

being compatible with a selected cloud provider’s environ-

ment, a migration enables the SaaS provider to reuse sub-

stantial parts of a system. The number of system parts which

might be migrated is dependent on the weighting of several

parameters in a specific migration project. For example, im-

plications concerning the performance or structural quality

metrics regarding the resulting software architecture can be

taken into account. Furthermore, aligning a software system

to a cloud environment’s special properties during the migra-

tion process has the potential to increase the software sys-

tem’s efficiency. For example, a reengineer could decide to

prefer utilization of certain resources according to their pric-

ing. Considering such kinds of favorable resource utilization

and a cloud environment’s specific scalability mechanisms

can improve overall resource efficiency (e.g., according to

the aforementioned prioritization) and scalability. However,

there are several major obstacles which can impede such

migration projects. Current approaches are often limited to

specific cloud environments or do not provide automated

support for the alignment with a cloud environment, for

instance. In this work, we propose our model-based approach

CloudMIG, which addresses these shortcomings and focuses

on the SaaS provider perspective. The semi-automated ap-

proach aims at assisting reengineers in migrating existing

enterprise software systems to scalable and resource-efficient

Platform as a Service (PaaS) and Infrastructure as a Service



343

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(IaaS) based applications. This paper is an updated and

extended version of [1]. It mainly adds two contributions

to the original version. First, experiments were conducted

utilizing the IaaS cloud environment Eucalyptus [2] and the

open source system Apache OFBiz [3] that illustrate the

limitations of simplistic migration strategies and advocate

profound evaluation and reengineering measures during a

migration. Second, we introduce the Cloud Suitability and

Alignment (CSA) hierarchy that enables a classification

of existing software systems regarding their suitability for

specific cloud environments and their level of alignment after

initial migration steps.

The remainder of the paper is structured as follows:

The related work is described in Section II. Section III

presents the experiments utilizing Eucalyptus and Apache

OFBiz. These constitute an example scenario for demon-

strating the shortcomings of the prevalent simplistic mi-

gration approaches that are described in Section IV. The

CSA hierarchy forms a basis for reasoning about migration

alternatives and is introduced in Section V. Our approach

CloudMIG is then presented in the following Section VI,

before Section VII draws the conclusions and outlines future

work.

II. RELATED WORK

CloudMIG supports reengineers to migrate existing enter-

prise software systems to the cloud and to reduce complexity

aligning their system with the targeted cloud environment.

The general complexity of legacy system migration as well

as potential measures to cope with the complexity are

described in [4]. The authors in [5] sketch a research agenda

in cloud technologies and summarize the currently published

cloud computing literature. Issues and challenges regarding

the cloud computing technology are investigated in [6]. Here,

the integration of existing legacy systems in the cloud is

regarded a challenging subject, as currently the cloud land-

scape is diversified and there is a lack of common practices

and general interoperability. With CloudMIG we address the

prevalent heterogeneity concerning cloud environments and

strive towards a more generic migration approach.

A case study of migrating an enterprise IT system to

an IaaS cloud environment is presented in [7]. The case

study shows achievable costs savings in the cloud en-

vironment. However, the authors recommend to consider

overall organizational implications as well. A large science

database was migrated to the cloud in [8]. The main hurdles

the authors faced lay in the transfer of huge amounts of

data and performance degradations when trying to avoid

changes to the schema and settings. The design and an

evaluation of the tool CloudAnalyst is presented in [9].

It is a visual modeller that utilizes the cloud simulation

framework CloudSim [10] for analyzing cloud computing

environments and applications. Different user bases, as well

as various regions, data centers, applications, and workloads

can be modeled. A simulation can be used to estimate the

operational costs. However, different application architecture

candidates have to be modeled manually, no information

concerning the structure of an existing software system can

be applied automatically, and the cloud’s utilized resources

cannot be varied dynamically during a simulation run.

The authors in [11] contribute a performance and cost

assessment of real cloud infrastructures. Here, the authors

modeled a Service-Oriented Architecture (SOA) e-business

application and two different workloads. Different pricing

plans and hosting scenarios were modeled and implica-

tions on performance were evaluated as well. Moreover,

platform limitations were explored on a coarse grained

level. Our Cloud Environment Constraint (CEC) model

(see Section IV) allows a more detailed view and automatic

detection capabilities on a source code level compared to

the system level used in that work. The authors deter-

mine a considerable potential for cutting costs running the

modeled application in the cloud. However, they point out

that “optimizing applications for very specific cost models

may result in vendor lock in and a lack of flexibility and

maintainability.” In [12], the authors propose a conceptual

cloud adoption toolkit that addresses the challenges of cloud

adoption in enterprises. The toolkit provides five tools/

techniques. Among those, the cost modeling tool utilizes

Unified Modeling Language (UML) deployment diagrams to

model an intended architecture for running existing software

systems in a cloud environment. The deployment model

is then augmented with price information that enables au-

tomated cost estimation for a specific cloud environment.

In comparison, CloudMIG is intended to generate target

architecture candidates for arbitrary cloud environments and

to calculate the estimated costs for each deployment and in

dependence of the observed or expected workload.

A profit-driven service request scheduling approach for

clouds is described in [13]. Here, a particular focus is on a

service provider and consumer perspective. Service requests

have to be scheduled to satisfy the concerns of the service

providers as well as the consumers. In this context, a pric-

ing model and two profit-driven service request scheduling

algorithms are presented. Linear programming is applied

by the authors in [14] for addressing a task throughput

maximization problem in a budget-constrained scenario.

Our CSA hierarchy evaluates the suitability and alignment

of an existing software system with respect to a specific

cloud environment. It focuses on technical opportunities

and limitations and incorporates an automated detection

of CEC violations (see Section IV). In contrast to that,

the suitability index for the adoption of cloud computing

technologies presented in [15] includes rather non-technical

characteristics like the sensitivity of the system’s data or its

criticality. Nevertheless, it also considers the scale of existing

IT resources and observed resource utilization patterns as

well.



344

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I. EUCALYPTUS HARDWARE CONFIGURATION

Component Variant
CPU type 2x AMD Opteron 2384 2.7GHz (4 cores)
RAM 16 GB DDR2-667
Network 1 Gbit/s

Table II. VM INSTANCE TYPES

Name #CPU cores RAM (MB)
Standard.M 1 512
Standard.L 2 1,024
Memory.M 2 2,048
Memory.L 2 3,584
Compute.M 4 2,048
Compute.L 6 2,048

Table III. VM INSTANCE TYPE PRICE MODEL

VM instance type Costs/hour ($)
Standard.M 0.3
Standard.L 0.4
Memory.M 0.5
Memory.L 0.75
Compute.M 0.6
Compute.L 1.15

III. EXAMPLE SCENARIO

The experiment setup of our example scenario is de-

scribed in Section III-A, the results are then presented in

Section III-B.

A. Experiment Setup

We investigated the deployment of Apache OFBiz 9.04

into an installation of Eucalyptus. Apache OFBiz is a Java-

based open source E-Commerce/ Enterprise Resource Plan-

ning (ERP) system. For instance, it provides several modules

for accounting, order processing, and human resource man-

agement that are accessible via a web-based Graphical User

Interface (GUI).

Eucalyptus is a cloud software for building private, hybrid,

or public IaaS clouds. Its Application Programming Inter-

face (API) is compatible with the popular Amazon EC2 and

S3 services and it is also available in an open source version.

Therefore, Eucalyptus is ideally suited for building cloud

computing research test beds. The hardware listed in Table I

was utilized for Eucalyptus’ cluster and node controllers

responsible for allocating and controlling the cluster of

Virtual Machines (VMs). The superordinate cloud controller

node was installed on an identically equipped machine.

However, that second machine did not provide dedicated

resources for VM allocation. In typical IaaS offerings as

well as with Eucalyptus, a cloud user can choose between

different VM instance types as basic building blocks. A VM

instance type determines the hardware configuration that is

available for running the user’s virtual machine. With every

start of a VM an appropriate instance type can be assigned

according to the user’s current needs.

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Experiment time [min]

In
te

r−
ar

riv
al

 ti
m

e 
[m

s]

0 4 8 12 16 20 24

Figure 1. Inter-arrival time function.

To evaluate the implications of VM instance type selection

we configured the six different VM instance types that are

listed in Table II. In many cloud offerings, the VM instance

types are priced on a pay-per-use basis and proportional

to supplied resources (e.g, see [16], [17]). The selection of

proper VM instance types may therefore have a substantial

impact on overall operational costs. Since in real cloud

offerings the amply equipped VM instance types are more

costly by tendency, we used the price model shown in

Table III that roughly follows this principle. The inter-arrival

time function illustrated in Fig. 1 was applied to simulate a

typical day night cycle usage pattern where the experiment

minutes map to the hours of a day. Our employed user

behavior emulated customers visiting the web store and

browsing a product category. The number of user requests

exhibits two peaks, one in the morning and one in the

evening hours.

It should be noted that the demo installation of Apache

OFBiz 9.04 was used that applies the rather slow embedded

Java database Derby to deliver the demo catalog products.

However, as the focus of our experiments was to compare

the implications resulting from different VM instance types,

this does not affect the results’ validity. We were particularly

interested in the resulting variations concerning the response

times and the observed CPU utilizations. Regarding the

response times we defined a limit of 1.5s that should not be

exceeded for our test user sequence and which can be seen

as a part of a virtual SLA [18]. As illustrated in Fig. 2, the

usage of one single instance of a VM instance type was not

always sufficient to fulfill the SLA. Here, one Standard.L

instance provokes an SLA violation in the evening hours

(Fig. 2 b). The single Standard.M instance (Fig. 2 a) exhibits

an even more distinctive under-provisioning, as the CPU was



345

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

often used up to the full. As a consequence, Apache OFBiz

repeatedly just returned error messages after experiencing

a massive increase in response times up to minute 19, and

therefore, caused the test to stop. Hence, in the following,

we also investigated the minimum number of instances

concerning each VM instance type that were necessary to

satisfy the SLA. Here, we always maximized the Java Virtual

Machine (JVM) heap size that could be configured according

to the VM instance type specifications and that was available

to Apache OFBiz.

B. Results

An overview regarding the measured response times and

CPU utilizations following the varying load for each applied

VM instance type is presented in Fig. 3. To stay below the

1.5s SLA response time limit, two instances of the Stan-

dard.M and Standard.L VM instance types were required in

each case. The according Fig. 3a) and Fig. 3b) therefore

show the average response times and CPU utilizations for

both instances. The response times and CPU utilizations

generally followed the usage pattern with a rise during peak

times and exhibiting lower phases otherwise. Nevertheless,

considering the response times this effect manifests more

blurred for the aggregated measurements of the two Stan-

dard.M and Standard.L instances. Regarding the Standard.M

instances the overall CPU utilization was still rather high.

An interesting detail can be noticed in the Fig. 3c) - 3f)

as there are short bursts around the 14th minute when the

number of user requests leaves behind a local minimum.

Besides for the Standard.M VM instance type, the CPU

utilizations fluctuate at a rather low level. Fig. 4 underlines

this observation by showing the average CPU utilization for

each experiment. Incorporating the Standard.M VM instance

type, the avg. CPU utilizations range from 16%-59%, which

translates to an avg. CPU over-provisioning ranging from

41%-84% at the same time. As mentioned before, we assume

presence of a pay-per-use billing model. Considering our

defined VM instance type price model (see Table III) the

resulting operational costs being extrapolated for one month

are presented in Fig. 5. Here, we simplifying presume that

the usage pattern repeats each day and therefore the number

of the minimally required instances remains stable. The cost

minimum is reached by utilizing one Memory.M instance.

IV. CURRENT SHORTCOMINGS

The example scenario described in Section III reveals sev-

eral general challenges considering the migration of software

systems to a cloud environment. These shortcomings of the

prevalent simplistic migration approaches form basic tech-

nical difficulties of cloud migration projects that need to be

addressed by reengineers when migrating existing systems to

the cloud and reworking them for optimized alignment. The

example scenario emulates a common approach to minimize

the migration effort and to obtain working results in a

Standard.M (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

00
0

40
00

0
60

00
0

80
00

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
Response time SLA
CPU utilization

Standard.L (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
50

0
10

00
15

00
20

00
25

00
30

00

0 4 8 12 16 20 24
0

10
20

30
40

50
60

70
80

90
10

0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
Response time SLA
CPU utilization

(a)

(b)

Figure 2. SLA violation when using a single instance of the Standard.M (a)
or Standard.L (b) VM instance type.

short period. It deploys the regarding software system to

coarse grained IaaS building blocks (VMs). After altering

the persistency layer the existing system can be used in a

cloud environment.

However, the experiments presented in Section III high-

light many open issues. Running an existing application

in the cloud does not imply relief of under- and over-

provisioning concerns as such. Instead of supplying inap-

propriate physical on premise hardware configurations, the



346

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Standard.M (2x)

Experiment time [min]

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
[m

s]

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

Av
er

ag
e 

C
P

U
 u

til
iz

at
io

n 
[%

]

Average response time
Average CPU utilization

Standard.L (2x)

Experiment time [min]

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
[m

s]

0
20

0
40

0
60

0
80

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

Av
er

ag
e 

C
P

U
 u

til
iz

at
io

n 
[%

]

Average response time
Average CPU utilization

Memory.M (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

Memory.L (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

Compute.M (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

Compute.L (1x)

Experiment time [min]

R
es

po
ns

e 
tim

e 
[m

s]

0
20

0
40

0
60

0
80

0

0 4 8 12 16 20 24

0
10

20
30

40
50

60
70

80
90

10
0

C
P

U
 u

til
iz

at
io

n 
[%

]

Response time
CPU utilization

(a) (b)

(c) (d)

(e) (f)

Figure 3. Response times and CPU utilizations for each VM instance type. Two instances were used for Standard.M (a) and Standard.L (b).



347

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

under- and over-provisioning of resources can easily be

migrated to a cloud environment itself. For example, an

inappropriate number of VM instances or unsuitable VM

instance types could be employed. Fig. 2 demonstrates the

resource under-provisioning in our example scenario. The

hardware configuration of Standard.M and Standard.L VM

instance types is too restricted for utilizing just a single

instance. In this case the response times exceed the defined

limit and cause a violation of the SLA. Moreover, this

scenario shows the constrained scalability of an application

running in a cloud environment. The operation in a cloud

does not solve scalability issues per se. For example, an

IaaS-based application often needs to have built-in self-

adaptive capabilities for leveraging a cloud environment’s

elasticity. In contrast to the former example, Fig. 4 gives

evidence for over-provisioning of cloud resources. Our ex-

periments resulted in a maximum of average 84% over-

provisioning of CPU resources for the Compute.L VM

instance type implicating more than doubled operational

costs compared to the possible minimum (see Fig. 5).

Nevertheless, the effects on additional expenditures cannot

simply be evaluated according to the over-provisioning of

resources. They depend on other factors as for example

the selected VM instance type and do not necessarily scale

linearly, as can be seen in Figs. 4 and 5, considering

the Compute.M VM instance type in contrast. Comparing

different cloud vendors would additionally complicate a cost

estimation, as the different price models and VM instance

type configurations impede assessment of real world usage

scenarios as well. Hence, a better support for anticipating the

operational costs without limiting the modeling capabilities

to, for example, a set of specific cloud environments, a

set of particular configurations, or resource types as VMs

is needed. This is especially the case when incorporat-

ing PaaS cloud environments, which follow other design

paradigms and offer basic building blocks that differ from

the VMs used in IaaS-based clouds. Furthermore, our exam-

ple scenario utilizes a repeating usage pattern as well as ho-

mogeneous VM instance types and a constant number of VM

instances during an experiment run. This is likely to change

in real world scenarios and adds additional complexity in

evaluating migration alternatives and estimating the related

costs. Further difficulties may arise considering architectural

limitations of an existing system. For example, if distribution

and parallelization is omitted in the present system design,

there may emerge data inconsistency issues when scaling up

horizontally while joining the VM instances to an existing

data persistency layer. Moreover, exhibiting a reproducible

short burst in response times after leaving behind a local

minimum in the number of requests (see Section III-B),

the experiments revealed an unexpected behavior of the

application running in the cloud. In that regard, some effects

may generally be hard to predict and therefore require

profound evaluation.

Standard.M
(2x)

Standard.L
(2x)

Memory.M
(1x)

Memory.L
(1x)

Compute.M
(1x)

Compute.L
(1x)

Av
er

ag
e 

C
P

U
 u

til
iz

at
io

n 
an

d 
C

P
U

 o
ve

r−
pr

ov
is

io
ni

ng
 p

er
 e

xp
er

im
en

t [
%

]

0
10

20
30

40
50

60
70

80
90

10
0

Average CPU utilization
Average CPU over−provisioning

Figure 4. Average CPU utilization per conducted experiment. The state-
ments in parentheses indicate the nr. of instances used for each VM instance
type to satisfy the SLA.

Standard.M
(2x)

Standard.L
(2x)

Memory.M
(1x)

Memory.L
(1x)

Compute.M
(1x)

Compute.L
(1x)

C
os

ts
 p

er
 m

on
th

 fo
r t

he
 u

til
iz

ed
 V

M
 in

st
an

ce
 ty

pe
s 

[$
]

0
20

0
40

0
60

0
80

0

Min. costs

Figure 5. Extrapolated operational costs per month. The statements in
parentheses indicate the nr. of instances used for each VM instance type to
satisfy the SLA (included in calculation).

As mentioned before, the scalability issues as well as

challenges regarding under- and over-provisioning are most

often not solved by merely deploying an existing software

system in a virtual machine and running it in an IaaS cloud

environment. Therefore, we argue that migrating typical

enterprise software to a cloud-based application usually

implies an architectural restructuring step for aligning it

with a cloud environment and exploit the cloud’s offered

advantages. However, knowledge about the internal structure



348

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of an existing software system is often insufficient and

therefore an architectural model has to be reconstructed

first. The architectural model serves as a starting point

for restructuring activities towards a cloud-optimized tar-

get architecture, which at the moment most often has to

be created manually. This often is not an easy task, as

construction of the advanced architecture usually presumes

profound comprehension of the existing one. Furthermore,

the target architecture must comply with the specific cloud

environment’s offered resources and imposed constraints, for

example application frameworks and limitations of program-

ming interfaces in PaaS cloud environments, respectively.

In this context, we introduced the notions of Cloud

Environment Constraints (CECs), CEC violations, and CEC

violation severities in [19] and [20]. For example, consid-

ering the cloud environment Google App Engine for Java

a CEC would be the restriction of its sandbox environment

that limits usage of Java Runtime Environment (JRE) types

to only a subset of all types. A system that shall be migrated

and that utilizes such an excluded type so far would raise a

CEC violation. We defined the three CEC violation severities

Warning, Critical, and Breaking that describe the likely

effort for fixing a CEC violation, whereas the Breaking
severity is most serious and causes the CloudMIG process

to stop, for instance.

Besides the need for an automated detection of the CEC

violations, a mapping model that describes the relationships

between system parts of the status quo and a target architec-

ture is required as well. Future workload in combination with

the target architecture arrangement will determine resource

utilization of the cloud environment during operation. As

most cloud providers follow the paradigm of utility comput-

ing, and therefore, charge resource utilization on a pay-as-

you-use basis, the arrangement of the target architecture has

a direct impact on the operational costs.

To condense the difficulties and challenges described

in this section, the shortcomings of today’s simplistic

migration approaches from typical enterprise software to

cloud-based applications can be summarized as follows:

S1 Applicability: Solutions for migrating and aligning en-

terprise software to cloud-based applications are limited

to particular cloud providers.

S2 Level of automation: To align existing systems with

a cloud environment and to enable them to exploit

the cloud’s offered advantages, a reengineering step

is required. Here, a target architecture and a mapping

model currently often have to be built entirely manual.

Additionally, the target architecture’s violations against

the cloud environment’s constraints are not identified

automatically at design time.

S3 Resource efficiency: Various migrated software sys-

tems are not designed to be resource-efficient and do

not leverage the cloud environments’ elasticity, because

even transfering an established application to a new

cloud environment can be a cumbersome task itself.

Over- and under-provisioning of resources is a chal-

lenge in cloud environments, too. Furthermore, means

for evaluating a target architecture’s dynamic resource

utilization at design time are most often inadequate.

This even strengthens the general problem that esti-

mating the future operational costs for arbitrary cloud

environments is difficult.

S4 Scalability: Scalability remains a concern in cloud

environments as well. Automated support for evaluating

a target architecture’s scalability at design time is rare

in the cloud computing context.

V. CSA HIERARCHY

To reason about the challenges emerging when migrating

a specific system to a cloud environment and restructuring

its architecture to facilitate a smooth integration into the

cloud’s service landscape, one has to judge the system’s

suitability upfront and the level of alignment with the

cloud environment once the first steps are accomplished. To

enable an evaluation and classification of software systems

in this respect, we introduce the coarse grained Cloud

Suitability and Alignment hierarchy (CSA hierarchy). As

illustrated in Fig. 6, it comprises the five levels cloud
incompatible, cloud compatible, cloud ready, cloud aligned,

and cloud optimized. The levels are defined employing

the notions of CECs, CEC violations, and associated CEC

violation severities (see Section IV) and constitute revisited

and modified applications of CloudMIG’s workflow states

explained in [19]. The five CSA hierarchy levels are being

described in the following.

L0 Cloud incompatible: At least one CEC violation with

severity Breaking exists.

L1 Cloud compatible: No CEC violations with severity

Breaking exist.

L2 Cloud ready: No CEC violations exist.

L3 Cloud aligned: The execution context, utilized cloud

services, or the migrated software system itself were

configured to achieve an improved resource consump-

tion (measurable in decreased costs that are to this

effect charged by the cloud provider) or scalability

without pervasively modifying the software system.

L4 Cloud optimized: The migrated software system was

pervasively modified to enable automated exploitation

of the cloud’s elasticity. For example, it’s architecture

was restructured to increase the level of parallelization.

An evaluation was conducted to identify system parts

which would experience an overall benefit from substi-

tution or supplement with offered cloud services. These

substitutions and supplements were performed.



349

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. The CSA hierarchy.

The CSA hierarchy is “constructive” in its levels L1-L4. For

example, for classifying a software system as cloud aligned
it has to be cloud compatible and cloud ready as well. It

should be noted that the CSA hierarchy solely considers

technical concerns related to a migration to the cloud.

In particular, it does not take organisational or economic

restrictions into account, for example regarding governance

issues, security policies, or a company’s business model.

Regarding the example scenario in Section III, there exist

no CEC violations that would impede proper execution after

Apache OFBiz’s database is transfered to Eucalyptus’ persis-

tent block storage, for instance. Concerning Eucalyptus, this

activity is sufficient to lift Apache OFBiz 9.04 from cloud
compatible to cloud ready. However, only through selecting

the Memory.M VM instance type the application would be

cloud aligned (see Fig. 5).

The CSA hierarchy defines the relationship of a specific

configuration of a software system (e.g., regarding the ver-

sion of the system’s software architecture) and a specific

version of a cloud environment. A system being cloud ready
concerning a specific cloud environment might be cloud
incompatible regarding another one. Moreover, even for the

same cloud environment this could change over time due

to modifications of the incorporated cloud services offered

by the cloud environment. Hence, the classification of a

software system S regarding the CSA hierarchy depends on

its configuration Θ and the cloud services Λ offered by a

cloud environment. More specifically, the cloud environment

provides n cloud services. A cloud service k is present

in a particular version v: λv
k ∈ Λ. The classification of

S regarding the CSA hierarchy level is then called Γ.

Therefore, we can define a CSA tuple as follows:

(
S,Θ,

n⋃
k

λv
k,Γ

)
(1)

CSA tuples are utilized to compare cloud environment

alternatives or competing software architectures when con-

sidering reengineering activities, for instance.

Existing
System

A2

Actual
Architecture

A1

Utilization
Model

Cloud Environment 
Model

Target
Architecture

Mapping
Model

A1

?

?

Constraint
Violations

A3

A4,A3

A5

Rating

A

B
C

A6
Migrated
System

A4,A3

Legend:

A1: Extraction
A2: Selection
A3: Generation
A4: Adaptation
A5: Evaluation
A6: Transformation

Optional

Mandatory

Figure 7. CloudMIG Overview.

VI. THE APPROACH CLOUDMIG

CloudMIG is composed of six activities for migrating an

enterprise system to a cloud environment while addressing

the shortcomings described in Section IV. It provides model-

driven generation of considerable parts of the system’s tar-

get architecture. CEC violations are revealed automatically

through analyzing an extracted system model. Furthermore,

feedback loops allow for further alignment with the specific

properties of the cloud environment and foster resource

efficiency and scalability on an architectural level. Figure 7

outlines the approach. Its activities (A1-A6) are briefly de-

scribed in the following, including the incorporated models.

A. Activity A1 - Extraction

CloudMIG aims at the migration of established enterprise

applications. Usually, the architecture of software systems

tends to erode over time. Therefore, initially envisioned ar-

chitectures frequently diverge from actual implementations.

The knowledge about the internal structure is often incom-

plete, erroneous, or even missing. As CloudMIG utilizes a

model transformation during generation of its target archi-

tecture (cf. A3), a representation of the software system’s

actual architecture has to be available first. Concerning this

issue, an appropriate model is extracted by means of a soft-

ware architecture reconstruction methodology. We propose

OMG’s Knowledge Discovery Meta-Model (KDM) [21] for

building a suitable meta-model.

For leveraging the commonly applied utility computing

paradigm, the target architecture has to be laid out resource-

efficient and elastic. Therefore, CloudMIG includes the

extraction of an established software system’s utilization

model acting as a starting point. The utilization model (resp.

its meta-model) includes statistical properties concerning

user behavior like service invocation rates over time or

average submitted datagram sizes per request. Relevant



350

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information can be retrieved from various sources. For

example, considering log files or instrumenting the given

system with our tool Kieker [22] for setting up a monitoring

step constitute possible techniques. Furthermore, the utiliza-

tion model contains application-inherent information related

to proportional resource consumption. Metrics of interest

could be a method’s cyclomatic complexity or memory

footprint. We propose OMG’s Structured Metrics Meta-

Model (SMM) [23] as a foundation for building the related

meta-model.

B. Activity A2 - Selection

Common properties of different cloud environments are

described in a Cloud Environment Model (CEM) [19].

Selecting a cloud provider specific environment as a target

platform for the migration activities therefore implies the

selection of a specific instance of the CEM. For example, the

CEM comprises entities like VM instances or worker threads

for IaaS and PaaS-based cloud environments, respectively.

As a result, for every cloud environment, which shall be

targeted with CloudMIG, a corresponding instance of CEM

has to be created once beforehand. Transformation rules

define possible relationships to the architecture meta-model.

We plan to attach further information related to scalability

issues to the included entities, which can be configured

by the reengineer in activity A4. For example, VM in-

stances could provide hooks for controlling their lifetime

dependent on dynamic resource utilization during runtime.

Furthermore, the CEM includes constraints imposed by

cloud environments restricting the reengineering activities

(CECs). For example, the opening of sockets or the access

to the file system are often constrained.

C. Activity A3 - Generation

The generation activity produces three artefacts, namely

a target architecture, a mapping model, and a model

characterizing the target architecture’s violations of the

cloud environment constraints. The latter lists the CEC

violations and results in the construction of an initial

CSA tuple. These constraint violations explicitly highlight

the target architecture’s parts which have to be redesigned

manually by the reengineer (cf. A6). The mapping model

assigns elements from the actual architecture to those

included in the target architecture. Finally, the target

architecture constitutes a primary artefact. It is realized

as an instance of the CEM, which embeds this model.

We propose the three phases P1-P3 for the generation of

the target architecture that are illustrated in Figure 8. The

phases are constructed as follows.

P1 - Model transformation: The phase P1 produces an

initial assignment from elements of the existing architecture

to cloud-specific elements available in the CEM. The initial

P
1.

 M
od

el
 tr

an
sf

or
m

at
io

n
P

2.
 C

on
fig

ur
at

io
n

P
3.

 M
ap

pi
ng

 o
f a

rc
hi

te
ct

ur
al

 e
le

m
en

ts

Perform model
transformation

(1) Adjust rules
and assertions

(2) Prioritize
(3) Pin

architectural
elements

Perform mapping

<<decisionInput>>

[Subsequent run]

[Ready for mapping]

[Configuration required]

[First run]

Figure 8. Target architecture generation process.

assignment is created applying a model-to-model transfor-

mation according to the transformation rules included in the

cloud environment model (cf. activity A2).

P2 - Configuration: The phase P2 serves as a configuration

of the algorithm used for obtaining a mapping of archi-

tectural elements in the phase P3. During P2, a reengineer

may adjust rules and assertions for heuristic computation (cf.

P3). A rule could be formulated like the following examples:

“Distribute the five most frequently used services to own

virtual machines” or “The server methods responsible for at

least 10% of overall consumption of the CPU time shall be

moved to client side components if they do not need access

to the database”. An exemplary assertion could be: “An

existing component must not be divided in more than 3 re-

sulting components”. It is intended to provide a set of default

rules and assertions. In addition to that, the reengineer will

be given the possibility to modify them either via altering



351

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the regarding numerical values or applying a corresponding

domain-specific language (DSL). In both cases, the rules and

assertions have to be prioritized after their selection. Hereby,

the reengineer determines their significance during execution

of P3. This means that architectural elements which are

related to higher-weighted rules will be considered priorly

for assignment and therefore have a stronger impact on the

further composition of the target architecture. Furthermore, a

reengineer may pin architectural elements. This prevents the

rearrangement of previously assigned architectural elements

to other target architecture components in phase P3.

P3 - Mapping of architectural elements: The phase P3

improves the initial assignment of architectural elements

generated in phase P1 referring to resource-efficiency. There-

fore, the formulated rules are utilized and the compliance

of the resulting architecture with the defined assertions is

considered. There exists an enormous number of possible

combinations for assigning architectural elements. Efficiency

improvements for one resource can lead to degradation for

other resources or impair some design quality attributes. For

example, splitting a component’s parts towards different

virtual machines can improve relative CPU utilization, but

may lead to increased network traffic for intra-component

communication and a decreased cohesion. Additionally,

those effects do not necessarily have to move on linearly

and moreover, the interrelations are often ambiguous as well.

Therefore, we propose application of a heuristic rule-based

approach to achieve an overall improvement. A potential

algorithm is sketched in Listing 1 and it works as follows.

The rules are considered successively according to their

priority. Thus, rules with higher priorities are weighted

higher and have a stronger impact on the generated target

architecture. The selection criterion of a rule is defined to

deliver a set of scalar architectural elements. All possible

subsets of the set are rated respective to the quality of

the target architecture that would result, if the elements in

the subset would be assigned correspondingly. This aims

at considering interdependencies at the level of a single

rule. For regarding interdependencies on an inter-rule level,

the formulated assertions are taken into account. A rule is

only applied if the reengineer did not formulate an assertion

with a higher priority that would be violated after the

rule’s execution. Furthermore, the rule is applied to all

mentioned subsets in order of their score. However, the

rule is only utilized if no rearrangement of elements is

necessary whose subset was rated higher. The same applies

to assignments that would lead to rearrangement of elements

that were placed by rules of higher priority or formerly

pinned elements.

D. Activity A4 - Adaptation

The activity A4 allows the reengineer to manually adjust

the target architecture towards case-specific requirements

1: EPinned ← Pinned architectural elements

2: R← All rules

3: A← All assertions

4: RSort ← Sort R descending by priority

5: EAllAffected ← EPinned

6: for all r in RSort do
7: Er ← All architectural elements delivered by r’s

selection criterion

8: PE
r ← Power set of Er

9: Score← New associative array

10: for all pEr in PE
r do

11: Score[pEr ]← Rate pEr
12: end for
13: ScoreSort ← Sort Score descending by score

14: ScoreKeys
Sort ← Keys of ScoreSort

15: for all pEr in ScoreKeys
Sort do

16: EFormerlyAffected ← pEr ∩ EAllAffected

17: ENeedReassignment ← Elements of

EFormerlyAffected that need reassignment

conc. r
18: if ENeedReassignment == ∅ then
19: AHigherPrio ← All a ∈ A with higher priority

than r
20: if �a ∈ AHigherPrio with r violates a then
21: Apply rule r to all elements in pEr
22: EAllAffected = EAllAffected ∪ pEr
23: end if
24: end if
25: end for
26: end for
Listing 1. Rule-based heuristics for creating a mapping of architectural
elements that improves resource efficiency.

that could not be fulfilled during generation activity A3. For

example, the generation process might not have yielded an

expected assignment of a critical component. Furthermore,

for leveraging the elasticity of a cloud environment, the

reengineer might configure a capacity management strategy

by means of utilizing the hooks provided by entities con-

tained in the CEM (cf. A2).

E. Activity A5 - Evaluation

For being able to judge about the produced target archi-

tecture and the configured capacity management strategy,

A5 evaluates the outcomes of the activities A3 and A4.

The evaluation involves static and dynamic analyses of the

target architecture. The results can be aggregated in a CSA

tuple. For example, metrics as LCOM or WMC can be

utilized for static analyses. Considering the target archi-

tecture’s expected runtime behavior, we propose to apply

a simulation on the basis of CloudSim. Thus, we intend

to contribute a transformation from CloudMIG’s CEM to

CloudSim’s simulation model.



352

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Activity A6 - Transformation

This activity comprises the actual transformation of the

enterprise system from the generated and improved target

architecture to the aimed cloud environment. No further

support for actually accomplishing the implementation is

planned at this time.

VII. CONCLUSION AND FUTURE WORK

We presented an overview concerning our model-based

approach CloudMIG for migrating legacy software systems

to scalable and resource-efficient cloud-based applications. It

concentrates on the SaaS provider perspective and facilitates

the migration of enterprise software systems towards generic

IaaS and PaaS-based cloud environments. We argued for ex-

plicit reengineering activities during the migration and mo-

tivated them based on experiments we conducted using the

cloud software Eucalyptus and the e-commerce/ ERP system

Apache OFBiz. Our example scenario demonstrated some

of the limitations regarding the currently prevalent sim-

plistic migration approaches. Considering the reengineering

activities, CloudMIG is intended to generate considerable

parts of a resource-efficient target architecture utilizing a

rule-based heuristics. To classify the suitability of cloud

environments for given systems and the degree of alignment

during a reengineering process, we introduced the CSA

hierarchy. The future work focuses on the realization, im-

provement, and evaluation of CloudMIG’s target architecture

generation and evaluation activities (A3 and A5).

REFERENCES

[1] S. Frey and W. Hasselbring, “Model-Based Migration of
Legacy Software Systems to Scalable and Resource-Efficient
Cloud-Based Applications: The CloudMIG Approach,” in
Proceedings of the First International Conference on Cloud
Computing, GRIDs, and Virtualization (Cloud Computing
2010), Lisbon, Portugal, Nov. 2010, pp. 155–158.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-
Source Cloud-Computing System,” in Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009. CCGRID ’09, May 2009, pp. 124–131.

[3] The Apache Software Foundation, “The Apache Open For
Business Project (Apache OFBiz),” http://ofbiz.apache.org/,
(Accessed January 20, 2012).

[4] L. Wu, H. Sahraoui, and P. Valtchev, “Coping with legacy
system migration complexity,” in Proceedings. 10th IEEE In-
ternational Conference on Engineering of Complex Computer
Systems, 2005. ICECCS 2005, Jun. 2005, pp. 600–609.

[5] I. Sriram and A. Khajeh-Hosseini, “Research Agenda in
Cloud Technologies,” CoRR, vol. abs/1001.3259, 2010.

[6] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues
and Challenges,” in Proceedings of the 24th IEEE Interna-
tional Conference on Advanced Information Networking and
Applications (AINA), 2010, pp. 27–33.

[7] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville,
“Cloud Migration: A Case Study of Migrating an Enterprise
IT System to IaaS,” CoRR, vol. abs/1002.3492, 2010.

[8] A. Thakar and A. Szalay, “Migrating a (Large) Science
Database to the Cloud,” in HPDC ’10: Proceedings of the
19th ACM International Symposium on High Performance
Distributed Computing. New York, NY, USA: ACM, 2010,
pp. 430–434.

[9] B. Wickremasinghe, R. Calheiros, and R. Buyya, “CloudAna-
lyst: A CloudSim-Based Visual Modeller for Analysing Cloud
Computing Environments and Applications,” in Proceedings
of the 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2010, pp.
446–452.

[10] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya,
“CloudSim: A Novel Framework for Modeling and Simula-
tion of Cloud Computing Infrastructures and Services,” CoRR,
vol. abs/0903.2525, 2009.

[11] P. Brebner and A. Liu, “Performance and Cost Assessment of
Cloud Services,” in Service-Oriented Computing, ser. Lecture
Notes in Computer Science, E. Maximilien, G. Rossi, S.-T.
Yuan, H. Ludwig, and M. Fantinato, Eds. Springer Berlin/
Heidelberg, 2011, vol. 6568, pp. 39–50.

[12] D. Greenwood, A. Khajeh-Hosseini, J. W. Smith, and I. Som-
merville, “The Cloud Adoption Toolkit: Addressing the
Challenges of Cloud Adoption in Enterprise,” CoRR, vol.
abs/1003.3866, 2010.

[13] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou,
“Profit-Driven Service Request Scheduling in Clouds,” in
Proceedings of the 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid), May 2010,
pp. 15–24.

[14] W. Shi and B. Hong, “Resource Allocation with a Budget
Constraint for Computing Independent Tasks in the Cloud,”
in Proceedings of the IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom),
Dec. 2010, pp. 327–334.

[15] S. C. Misra and A. Mondal, “Identification of a company’s
suitability for the adoption of cloud computing and modelling
its corresponding Return on Investment,” Mathematical and
Computer Modelling, vol. 53, no. 3-4, pp. 504–521, 2011.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb.
2009.

[17] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-
ner, “A break in the clouds: towards a cloud definition,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55,
2009.

[18] W. Iqbal, M. Dailey, and D. Carrera, “SLA-Driven Adaptive
Resource Management for Web Applications on a Heteroge-
neous Compute Cloud,” in CloudCom, ser. Lecture Notes in
Computer Science, M. G. Jaatun, G. Zhao, and C. Rong, Eds.,
vol. 5931. Springer, 2009, pp. 243–253.



353

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] S. Frey and W. Hasselbring, “An Extensible Architecture for
Detecting Violations of a Cloud Environment’s Constraints
During Legacy Software System Migration,” in Proceedings
of the 15th European Conference on Software Maintenance
and Reengineering (CSMR 2011), T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE Computer Society, Mar. 2011, pp.
269–278.

[20] S. Frey, W. Hasselbring, and B. Schnoor, “Automatic
conformance checking for migrating software systems to
cloud infrastructures and platforms,” Journal of Software
Maintenance and Evolution: Research and Practice, doi:
10.1002/smr.582, 2012.

[21] Object Management Group, Inc., “Architecture-Driven
Modernization (ADM): Knowledge Discovery Metamodel
(KDM), V. 1.3,” http://www.omg.org/spec/KDM/, (Accessed
January 20, 2012).

[22] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,
S. Frey, and D. Kieselhorst, “Continuous monitoring of
software services: Design and application of the Kieker
framework,” Department of Computer Science, University of
Kiel, Germany, Tech. Rep. TR-0921, Nov. 2009.

[23] Object Management Group, Inc., “Architecture-Driven Mod-
ernization (ADM): Structured Metrics Meta-Model (SMM),
V. 1.0 Beta 3,” http://www.omg.org/spec/SMM/, (Accessed
January 20, 2012).


