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Abstract—This paper develops a typed object-oriented
paradigm equipped with message-based orthogonal persistence.
Messages in this paradigm are viewed as typed objects. This
view leads to a hierarchy of types of messages that belong to
the core of typed reflective capabilities. Unlike most persistent
object-oriented models, this model is equipped with general
integrity constraints that also appear as a hierarchy of types
in the reflective core. A transaction is naturally viewed as a
sequence of messages and it is equipped with a precondition
and a postcondition. The presented framework is motivated
by ambients of persistent concurrent and mobile objects. The
practical result supporting the developed model is a verification
technology for ambients of persistent objects based on a higher-
order verification system. This technology applies to static
interactive verification of transactions with respect to the
schema integrity constraints.
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I. INTRODUCTION

The current object technology has nontrivial problems
in specifying classical database integrity constraints, such
as keys and referential integrity [11][14][15]. No indus-
trial database technology allows object-oriented schemas
equipped with general integrity constraints. In addition
to keys and referential integrity, such constraints include
ranges of values or number of occurrences, ordering, and
the integrity requirements for complex objects obtained by
aggregation [2]. More general constraints that are not nec-
essarily classical database constraints come from complex
application environments and they are often critical for
correct functioning of those applications [3].

Object-oriented schemas are generally missing database
integrity constraints because those are not expressible in
type systems of mainstream object-oriented programming
languages. Since the integrity constraints cannot be specified
in a declarative fashion, the only option is to enforce them
procedurally with nontrivial implications on efficiency and
reliability. The constraints must fit into type systems of
object-oriented languages and they should be integrated
with reflective capabilities of those languages [18]. Most
importantly, all of the above is not sufficient if there is no
technology to enforce the constraints, preferably statically,

so that expensive recovery procedure will not be required
when a transaction violates the constraints at run-time [2][3].

The object-oriented database model presented in this pa-
per integrates message-based orthogonal persistence, object-
oriented schemas equipped with general integrity constraints
accessible by reflection, and transactions that are required to
satisfy the schema integrity constraints. The model is based
on a type system and it offers a significantly different view of
messages in comparison with the mainstream object-oriented
languages. The model applies to ambients of persistent and
concurrent objects.

A message in mainstream object-oriented languages such
as Java or C# is specified in a functional notation. This
functional view fits messages that cause no side-effects and
report the properties of the hidden object state. The func-
tional view also fits queries. Other categories of messages
do not fit the functional notation. An update message is a
message that changes the state of the receiver and possibly
other objects as well. An update message does not have a
result and its semantics does not fit the functional notation.

An asynchronous message [23], in general, does not have
a result either and hence the functional notation is not
appropriate. A particular type of an asynchronous message
(a two-way message) has a result, but this result is not
necessarily immediately available at the point of the message
send. Asynchronous (remote) queries would fit this pattern.
A transient message has a limited lifetime and a sustained
message does not have this limitation. A message may
be one-to-one with a single receiver or a message may
be a broadcast message sent to a set of receiver objects.
Many messages naturally combine the features of the above
mentioned message types. For example, a two-way transient
message, a one-to-one query message, a one-to-many sus-
tained update message, etc. [10].

Further development of this approach leads to an orthog-
onal model of persistence [6] that is based on a special mes-
sage type that promotes the receiver object to persistence. A
transaction is defined as a sequence of messages of different
types. Concurrency control and recovery protocols can now
be implemented in the object-oriented style. Indeed, seri-
alization protocols require knowledge of types of messages
(queries versus updates) and impose an appropriate ordering
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of conflicting messages. Similar comments apply to recovery
protocols that are in our view sequences of do, undo and redo
messages.

Object-oriented constraints are a key feature of the pre-
sented model. Specifying the behavior of objects of a mes-
sage type is naturally done using an object-oriented assertion
language. Object-oriented assertion languages allow speci-
fication of database integrity constraints as class invariants,
declarative specification of transactions with pre and post
conditions, and queries whose filtering (qualification expres-
sion) is specified as an assertion predicate. The assertion
languages used to express constraint-related features of the
model presented in this paper are JML (Java Modeling
Language) [12], and Spec# [13].

A database transaction is accessing a large amount of
data. Checking constraints at run-time is often prohibitively
expensive, and violation of constraints may require expen-
sive recovery procedures. The idea of static verification
of transactions is not new [8][20][21]. However, all the
previous attempts failed to produce results at a practical,
applicable level. The main idea is that a transaction is
statically verified to satisfy the schema integrity constraints
so that either no run-time checking or just limited run-time
checking of constraints will be required. This means that
data integrity will be provably guaranteed with no penalty
on efficiency and a significant increase of reliability.

Two critical pieces of the technology that supports the
model presented in this paper are: an extended virtual plat-
form for constraint management and verification techniques
that apply to constraints. The extended virtual machine inte-
grates constraints into the run-time type system, allows their
introspection and enforcement [18]. Verification techniques
apply to object-oriented transactions written in Java or C#.
The verification technologies are based on PVS (Prototype
Verification System) [3], and automatic static techniques of
Spec# [2].

PVS is chosen because of its sophisticated type system
which includes predicate subtyping and bounded parametric
polymorphism. Because of this the PVS type system is a
good match for the type systems of mainstream object-
oriented programming languages. In addition, PVS has pow-
erful logic capabilities and as a higher-order system it allows
embedding of specialized logics suitable for the object-
oriented paradigm such as temporal or separation logic.

We first present in Section II a motivating application
based on ambients of concurrent and service objects. The
fundamentals of the view of messages as typed objects is
developed further in Section III, along with the hierarchy
of message types. The model of persistence is described in
Section IV. Queries and transactions are discussed in Section
V. Type safe reflection, which includes run-time representa-
tion of types (including message types) and assertions is the
subject of Section VI. Finally, in Section VII, we present
our technology based on PVS for static verification of

transactions with respect to the schema integrity constraints.

II. MOTIVATING APPLICATION: AMBIENTS OF
CONCURRENT OBJECTS

In this introductory section, we describe the environments
that lead to the view of messages as typed objects. An
ambient [10] is a dynamic collection of service objects. The
types of service objects are assumed to be derived from the
type ServiceObject. This is why the class Ambient is
parametric and its type parameter has ServiceObject as
its bound type as follows:

abstract class Ambient
<T extends ServiceObject> {. . .}

When a message is sent to an ambient object, one or
more service objects is selected depending upon the type
of the message, and the message is sent to those service
objects. Messages sent to an ambient are in general asyn-
chronous, hence they are of the type Message. When such
a message object is created, it has its identity, a lifetime, and
behaves according to one of the specific subtypes of the type
Message. For example, a transient message has a limited
discovery time and a sustained message does not. Moreover,
messages can be sent to message objects. For example, if a
message is a two-way message, a message that refers to the
future method may be sent to the two-way message object
to obtain the result when it becomes available [23].

An ambient has a filter, which selects the relevant service
objects that belong to the ambient. This predicate is defined
for a specific Ambient class, i.e., a class that is obtained
from the class Ambient by instantiating it with a specific
type of service objects. An ambient has a communication
range, which determines a collection of service objects that
are in the ambient’s range. The reach of an ambient object is
then the collection of all service objects of the given type that
satisfy the filter predicate and are within the communication
range of the ambient object.

The class Ambient is equipped with a scheduler, which
selects the next message for execution according to some
strategy. So the Ambient class looks like this:

abstract class Ambient
<T extends ServiceObject> {

abstract boolean filter(T x);
Set<Message> messages();
Set<T> communicationRange();
Set<T> reach();
invariant (forAll T x)
(x in this.reach() <=>

this.filter(x) and x in
this.communicationRange());

}

An example of a specific ambient class is

class StockBroker extends ServiceObject {
int quote(String stock);
int responseTime();
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. . .
}
class StockBrokerAmbient

extends Ambient<StockBroker> {
String[] displayStocks(){. . .};
void requestQuote(String stock){. . .};
boolean filter(StockBroker x)

{return x.responseTime() <=10;}
}
StockBrokerAmbient stockbrokers =

new StockBrokerAmbient();

In a more general concurrent setting [23], a concurrent
object is equipped with its own virtual machine. A virtual
machine is equipped with a stack, a heap, a queue of
messages, and a Program Counter (PC), as shown in Figure
1.

Stack Heap
messages
Queue of

PC

Figure 1. A concurrent object

interface ConcurrentObject {. . .}
class ConcurrentObjectClass

implements ConcurrentObject {
private VirtualMachine VM();

}

In a concurrent paradigm of [23], a concurrent object
executes messages that it receives by invoking the corre-
sponding methods. In order to be able to do that, the heap
of the object’s virtual machine must contain reflective classes
such as Class, Method, Message, etc. These classes are
stored on the heap of the object’s virtual machine. The heap
also holds the object state. Execution of a method is based
on the object’s stack according to the standard stack-oriented
evaluation model.

A concurrent object gets activated by receiving a message.
If a concurrent object is busy executing a method, the
incoming message is queued in the message queue of the
object’s virtual machine. Messages in the queue will be
subsequently picked for execution when an object is not
busy executing a method. So at any point in time an object
is either executing a single message or else it is inactive
(i.e., its queue of messages is empty).

In the extreme case, all objects are concurrent objects, i.e.,
the class ConcurrentObjectClass is identified with
the class Object. A service object is now defined as a
concurrent object:

interface ServiceObject
extends ConcurrentObject {. . . }

VM VM

VM

VM

CO
CO

CO

SO

Concurrent object

Concurrent object

Concurrent object

Service object

VM

Region

Figure 2. Regions of concurrent and service objects

We can now redefine an ambient in this new setting as a
concurrent object, which represents a dynamic collection of
concurrent service objects:

class Ambient <T extends ServiceObject>
extends ConcurrentObject {

. . . }

Since an ambient is a concurrent object, it has its own
virtual machine with a queue of messages sent to the ambient
object and not serviced yet.

A mobile object is a concurrent object that is equipped
with a location:

interface MobileObject
extends ConcurrentObject{

Location loc();
}

A region is an ambient that captures the notion of locality.
It consists of all concurrent objects within the region as well
as the service objects in that region, as illustrated in Figure
2.

class Region <T> extends Ambient<T> {
Set<ConcurrentObject> objects();
boolean withinRegion(MobileObject x);
invariant (ForAll MobileObject x)

(this.withinRegion(x) =>
x in this.objects());

}

For example, if class Server extends

ServiceObject {. . .} then Region<Server>
would be an example of a region type. Since a region is
a concurrent object, it is equipped with its own virtual
machine. Also, since a region is an ambient, it receives
messages that are queued in the message queue of the
region’s virtual machine to be serviced. Servicing a message
sent to a region amounts to selecting a server object and
sending the message to that server.
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III. TYPES OF MESSAGES

Non-functional messages in this paradigm are objects.
A message is created dynamically and it has a unique
identifier like any other object. In the concurrent architecture
described in Section II, object identifiers must be global. The
attributes of a message are the receiver object and the array
of arguments along with a reference to a method. Messages
of specific subtypes will have other attributes. This produces
a hierarchy of message types that are subtypes of the type
Message.

interface Message {
Method m();
Object receiver();
Object[] arguments();
int timeStamp();

}

When a message object is created its time stamp is
recorded. The implementing class would have a constructor:

class MessageObject implements Message {
MessageObject(Method m, Object receiver,

Object[] arguments);
int timeStamp();
Method m();
Object receiver();
Object[] arguments(); }

Creating a message could be done just like for all other
objects:

Message msg =
new MessageObject(Method m, Object receiver,

Object[] arguments);

This implies message send in the underlying implemen-
tation. However, Message and MessageObject belong
to the reflective core along with Class, Method, and
Constructor. These types should be final in order to
guarantee type safety at run-time. So an alternative is to
have a special notation to create an asynchronous message.
A functional (and hence synchronous) message is denoted
using the usual dot notation:

x.m(a1,a2,. . .,an).

A non-functional (asynchronous etc.) message would be
created as follows:

Message msg = x<=m(a1,a2,. . .,an).

In general, an asynchronous message does not have a result.
The basic type of a message is point-to-point, one-way,
and immediately executed. This type of a message could
be expressed in a traditional notation

receiver.m(arguments)

In the new paradigm, the result of an asynchronous
message send is a reference to the created message object.
An example is:

Method requestQuote =
getClass(‘‘StockBrokerAmbient’’).getMethod(

‘‘requestQuote’’,getClass(‘‘String’’));
Message requestQuoteMsg =

new MessageObject(requestQuote,
stockbrokers,stock);

An alternative notation looks like this:

Message requestQuoteMsg =
stockbrokers <= requestQuote(stock);

An update message is a message that mutates the state of
the receiver object and possibly other objects as well. An
update message does not have a result, hence we have:

interface UpdateMessage extends Message {. . .}

A special notation for an update message is

x<:=m(a1,a2,. . .,an)

The type of this expression is UpdateMessage.
A two-way message requires a response, which commu-

nicates the result of a message. The result is produced by
invoking the method future on a two-way message [23].
This method has a precondition, which is that the future is
resolved, i.e., that it contains the response to the message.

interface TwoWayMessage extends Message{...}

The implementing class would contain a constructor,
which takes the reply interval as one of its parameters.

class TwoWayMessageObject
implements TwoWayMessage {

TwoWayMessageObject(Method m,
Object receiver, Object[] arguments,

int replyInterval);
boolean futureResolved();
boolean setFuture();
Object future()
requires this.futureResolved();

}

An example of a two way message is:

TwoWayMessage requestQuoteMsg =
new TwoWayMessageObject(requestQuote,

stockbrokers,stock,20);

A suggestive notation for a two way message is:

TwoWayMessage requestQuoteMsg =
stockbrokers <=> requestQuote(stock,20);

A one-to-many message is of the type
BroadcastMessage and it is sent to multiple objects.
Using a suggestive notation for a one-to-many message, we
would have:

Message requestQuoteMsg =
stockbrokers <<=> requestQuote(stock);

A transient message has a discovery time specified as
a finite time interval. If a message is not discovered and
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QueryMessage

SustainedUpdateBroadcastMessage TwoWayTransientQueryMessage

Figure 3. Message type hierarchy

scheduled for execution before its discovery time has ex-
pired, the message will be regarded as expired and will
never be scheduled for execution. The discovery time will
be specified in the constructor of the implementing class.
A suggestive notation for a transient message is <=|. A
sustained message (i.e., a message whose discovery time
is not limited) denoted as <=∼ is specified by a special
message type SustainedMessage.

IV. PERSISTENT OBJECTS

An object is promoted to persistence by executing a
message persist, which specifies a user name and a
name space. This message binds the object to the given user
name in the given name space. The root class Object is
equipped with a method persist, which means that the
model of persistence is orthogonal, i.e., objects of any type
may be promoted to persistence. This is in contradistinction
to the model of persistence in the mainstream object-oriented
languages such as Java or C#, or the model of persistence
in the ODMG (Object Data Management Group) [9], and
most other object data models, which are not orthogonal.

class Object { . . .
void persist(NameSpace scope,String userID);
}

A name space consists of bindings of user names to
objects. Name spaces can be nested. A name space is
equipped with methods for establishing such a binding and
for looking up an object in a name space bound to a given
user id. Typically, name spaces are persistent.

interface NameSpace extends ConcurrentObject{
boolean bind(Object x, String name);
Object lookup(String name);

}

The type PersistMessage is now defined as follows:

interface PersistMessage extends Message {
NameSpace scope();
Object userID(String name);

}

Creation of a persist message is denoted by a special
notation using the symbols <=!persist.

A schema extends a name space with additional methods.
One of them is the method select that returns a set of
objects in the schema that satisfy a given assertion.

interface Schema extends NameSpace { . . .
Set<Object> select(Assertion a);

}

The integrity constraints of a schema are specified in its
invariant as illustrated in the example below. The schema
StockMarket is equipped with a key constraint, a refer-
ential integrity constraint, and a value constraint.

interface Stock {
String code();
float price();

}
interface Broker {
String name();
Set<Stock> stocks();
}
interface StockMarket extends Schema {
Set<Stock> stocks();
Set<Broker> brokers();

invariant
keyConstraint:

(forAll s1,s2 in this.stocks():
(s1.code()==s2.code()) ==>

s1.equals(s2));
refIntegrity:

(forAll b in this.brokers():
(forAll sb in b.stocks():

(exists s in this.stocks():
(sb.code() == s.code()))));

valueConstraint:
(forall s in this.stocks():

s.price() > 0);
}

As for a specific assertion language, our previous results
such as [3][5] are based on JML and more recent exper-
iments are based on Spec# [2][7]. In fact, our extended
virtual platform [18] accommodates a variety of assertion
languages.

V. QUERIES AND TRANSACTIONS

A query message is specified below as an asynchronous
message. Its type is a subtype of TwoWayMessage. So the
result of a query may not be immediately available. When
it is, it will be available by sending a functional message
future to the query message object.

interface QueryMessage
extends TwoWayMessage {

Schema scope();
Assertion query();
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}

Creation of a particular query object is illustrated below
using a special notation with the symbol <=?select:

StockMarket sch; QueryMessage q;
q <=?select(

forAll b in sch.brokers():
(exists s in b.stocks():

s.code()==‘‘SNP500’’));

A database server is a specific subtype of a service (and
hence concurrent) object. It implements a schema:

interface DbServer
extends ServiceObject, Schema {

Sequence<Message> log();
}

Since a database server is a concurrent object, it is
equipped with its own virtual machine. Typically, a database
server is a persistent concurrent object. Hence by reach-
ability, its schema (which includes persistent objects and
integrity constraints) and its virtual machine will also be
persistent.

A database server is equipped with a log of received mes-
sages. Here the view of messages as typed objects is critical.
Committing a transaction requires extraction of the update
and persist messages to reflect those changes in database
collections. Implementing serializability protocols requires
distinguishing update and query messages and controlling
the order of their execution. All of this is possible because
these messages are objects belonging to different types so
that their properties can be inspected by sending functional
messages to those objects.

Unlike the ODMG model [4][9], a transaction type is
parametric. Its bound type specifies that the actual type
parameter must be derived from the interface Schema.

interface Transaction<T extends Schema> {
boolean commit();
boolean abort();

}

Another distinctive feature of the notion of a transaction
with respect to ODMG and other persistent object models is
that a transaction is naturally equipped with a precondition
and a postcondition and it is defined as a sequence of
messages of different types (such as query, update and
persist messages). The implementing class of the interface
Transaction would have the following form:

class TransactionObject<T>
implements Transaction<T extends Schema>{

TransactionObject(T dbSchema);
Sequence<Message> body();
boolean commit();
boolean abort();

}

Taking this approach one step further, a transaction is a
concurrent object defined as follows:

class ConcurrentTransactionObject<T>
implements ConcurrentObject,

Transaction<T extends Schema>
{. . . }

A few illustrative examples of transaction specification
in an object-oriented assertion language are given below.
A transaction insertStock is bound to a schema of
the type StockMarket. The actual update has a frame
specification, which states that this transaction modifies the
set of stocks leaving the set of brokers unaffected. The
precondition specifies that the code of the stock to be
inserted is different from the codes of all existing stocks
in the set of stocks. This guarantees that the key constraint
will not be violated by this insertion. In addition, the
precondition requires that the stock to be inserted satisfies
the schema‘s value constraint. The postcondition guarantees
that the insertion has been performed. More precisely, a
stock with the code of the newly inserted stock does indeed
exists in the set of stocks.

interface insertStock
extends Transaction<StockMarket> {

StockMarket schema();

void update(Stock newStock)
modifies stocks;
requires

(forall s in this.schema().stocks():
s.code() <> newStock.code());

requires (newStock.price() > 0);
ensures

(exists s in this.schema().stocks():
s.code()==newStock.code());

}

The updateStock transaction given below performs an
increase of the value of a stock with the given stock code by
a given percentage. The frame constraint specifies that the
transaction modifies only the set of stocks. The precondition
requires that a stock with a given code does indeed exist
in the set of stocks and that the percentage of increase is
greater than 1. The postcondition guarantees that the stocks
with the given code (there will be only one because of the
key constraint) has been correctly updated.

interface updateStock extends
Transaction<StockMarket> {

StockMarket schema();

void update(String stockCode,
float increase)

modifies stocks;
requires
(exists s in this.schema().stocks():

s.code()==stockCode);
requires (increase > 1);
ensures

(forAll s in this.schema().stocks():
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(s.code()==stockCode) ==>
(s.price()==s.price()*increase));

}

A transaction deleteStock involves maintaining the
referential integrity constraint, hence its frame condition
specifies that the transaction modifies both the set of stocks
and the set of brokers. The precondition requires that a stock
with a given code does indeed exist in the set of stocks.
There are two postconditions. The first one guarantees that
the stock has been deleted from the set of stocks. The second
postcondition guarantees that the deleted stock does not exist
in the set of stocks of any broker.

interface deleteStock extends
Transactions<StockMarket> {

StockMarket schema();

void update(Stock delStock)
modifies stocks, brokers;
requires
(exists s in this.schema().stocks():

s.code()==delStock.code());
ensures

(forall s in this.schema.stocks():
s.code()<> delStock.code());

ensures
(forall b in this.schema().brokers():

(forall s in b.stocks():
s.code() <> delStock.code()));

}

VI. REFLECTION

Just like in Java Core Reflection (JCR), reflection in a
language that supports messages as typed objects includes
classes Class, Method, and Constructor. The main
differences in comparison with JCR are:

• Reflection includes the interface Message with its
various subtypes.

• Reflection includes the interfaces Assertion and
Expression with their various subtypes.

The core reflective class Class has the following ab-
breviated signature. A distinctive feature is an assertion
representing a class invariant.

class Class { . . .
String name();
Method[] methods();
Method getMethod(String name,

Class[] arguments);
Assertion invariant();

}

The reflective class Method is defined as follows. Its
distinctive features are a pre condition and a post condition
expressed as assertions. Their type is Assertion.

Class Method { . . .
String name();
Class declaringClass();
Assertion preCondition();

Assertion postCondition();
Class[] arguments();
Class result();
Expression body();
Object eval(Object receiver,Object[] args);

}

The body of a method is an expression evaluated
by the function eval. Just like Assertion, the type
Expression belongs to the reflective core. The method
eval evaluates the method body after binding of variables
occurring in the expression representing the method body
is performed. The variables to be supplied to eval are the
receiver and the arguments.

Availability of assertions in the classes Method and
Class is a major distinction with respect to the current
virtual machines such as JVM or CLR (Common Language
Runtime). This is at the same time a major difference with
respect to the assertion languages such as JML or Spec#. Full
implementation of this distinction is given in our previous
work [18].

VII. VERIFICATION TECHNOLOGY

In order to carry out interactive static verification using
PVS, the source object-oriented constraints must be trans-
lated into the PVS notation. PVS specifications are theories.
A class equipped with constraints will be represented as
a theory. Such a theory will encapsulate the underlying
type along with the associated functions and predicates,
and constraints will be represented as formulas in the
appropriate logic. Since PVS is a higher-order system, it
allows specification of specialized logics, such as temporal
or separation logic. The PVS theory of schemas is equipped
with a predicate consistent, which specifies the database
integrity constraints to be redefined in a specific schema.

The transaction theory given below makes use of bounded
parametric polymorphism available in PVS where the bound
for the type parameter is the theory Schema. A transaction
predicate is binary where the two arguments are the database
state before and after transaction execution. The transaction
predicate is a conjunction of two predicates update and
frame. The update predicate specifies the actual effect
of the transaction in transforming the database state. The
frame predicate specifies the frame of the transaction, i.e.,
those components of the database state that are not affected
by the transaction execution. This predicate is critical in
making the task of the verifier tractable. The integrity
theorem states that if the database state is consistent and
a transaction is executed, the state of the database after
transaction execution will be consistent.

Transaction[(IMPORTING Schema)
T: TYPE FROM Schema]: THEORY

BEGIN
Transaction: TYPE FROM Object
schema: [Transaction -> T]
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update: [T,T ->bool]
frame: [T,T ->bool]

S1,S2: VAR T
transaction(S1,S2):bool = frame(S1,S2) AND

update(S1,S2)

Integrity: THEOREM consistent(S1) AND
transaction(S1,S2)

IMPLIES consistent(S2)
END Transaction

A specific PVS theory for the stock market schema as
specified previously in the object-oriented constraint lan-
guage is given below. This theory imports theories that it
needs and we do not present them in this paper. It also
defines StockMarket as a type derived from the type
Schema representing generic properties of all schemas. The
latter contains the predicate consistent, which is rede-
fined in the theory StockMarket as a conjunction of the
key constraint, referential integrity and the value constraint.
These three constraints are defined in the PVS language
as specified in the theory StockMarket. stocks and
brokers are functions, which return a set of stocks and a
set of brokers respectively associated with a given schema.

StockMarket: THEORY
BEGIN
IMPORTING Sets,Stock,Broker,Schema
StockMarket: TYPE FROM Schema

stocks: [StockMarket -> set[Stock]]
brokers: [StockMarket -> set[Broker]]
S: VAR StockMarket

KeyConstraint(S):bool =
(FORALL (s1,s2: Stock):
(member(s1,stocks(S)) AND
member(s2,stocks(S)) AND
code(s1) = code(s2))

IMPLIES s1=s2)
RefIntegrity(S): bool =

(FORALL (b: Broker):
(member(b,brokers(S)) AND

(FORALL (sB: Stock):
(member(sB,bstocks(b))) IMPLIES

member(sB,stocks(S)))))

valueConstraint(s:Stock): bool =
(value(s)> 0)

valueIntegrity(S): bool =
(FORALL (s:Stock):
member(s,stocks(S))IMPLIES

valueConstraint(s))

consistent(S):bool = KeyConstraint(S) AND
RefIntegrity(S) AND
valueIntegrity(S)

END StockMarket

A transaction theory InsertStock is a PVS repre-
sentation of the corresponding transaction in the object-

oriented assertion language. This transaction theory imports
its schema theory, and it is defined as a transaction type
bound to the schema StockMarket. As in the object-
oriented version, the update predicate specifies that the code
of the stock to be inserted is different from all the existing
codes in the set of stocks and that the new stock satisfies the
schema integrity constraint. In addition, the update specifies
that the set of stocks grows in size and that the new
stock indeed exists in the set of stocks after the insertion
transaction. The frame constraint specifies that the set of
brokers is unaffected by this transaction. In addition, the
frame constraint specifies that all the stocks in the initial set
of stocks are still there after the transaction.

InsertStock: THEORY
BEGIN

IMPORTING StockMarket,
Transaction[StockMarket]

InsertStock: TYPE FROM
Transaction[StockMarket]

S1,S2: VAR StockMarket
s: VAR Stock
newStock: VAR Stock

update(newStock)(S1,S2): bool =
(size(stocks(S2))= size(stocks(S1))+1)
AND (FORALL s:

(member(s,stocks(S1)) IMPLIES
(code(s) /= code(newStock))) AND

valueConstraint(newStock) AND
(member(newStock,stocks(S2))))

frame(S1,S2): bool =
(brokers(S1) = brokers(S2)) AND
(FORALL s: (member(s,stocks(S1))

IMPLIES member(s,stocks(S2))))
END InsertStock

The transaction theory UpdateStock given below rep-
resents the corresponding object-oriented transaction in
the PVS notation. StockUpdate is defined as a type
derived from the type Transaction[StockMarket],
i.e., it specifies transactions associated with the schema
StockMarket. The update predicate specifies that a stock
with a given code exists in the set of stocks and that it has
been correctly updated in the resulting set of stocks after
transcation execution. The frame constraint specifies that this
transaction does not affect the set of brokers nor the size of
the set of stocks. In addition, it specifies that the stocks that
existed initially in the set of stocks will still be there after
the update transaction.

UpdateStock: THEORY
BEGIN

IMPORTING StockMarket,
Transaction[StockMarket]

UpdateStock:
TYPE FROM Transaction[StockMarket]

S1,S2: VAR StockMarket
s: VAR Stock
increase: VAR real
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update(s)(increase)(S1,S2): bool =
(FORALL (s1,s2: Stock):
(member(s1,stocks(S1)) AND

code(s1) = code(s) AND
member(s2,stocks(S2)) AND

code(s2) = code(s)) IMPLIES
(value(s2) = (value(s1)*increase)))

frame(S1,S2): bool =
(size(stocks(S2))= size(stocks(S1))) AND

(brokers(S2) = brokers(S1)) AND
(FORALL (s1:Stock):

(member(s1,stocks(S1)) IMPLIES
(EXISTS (s2:Stock):

member(s2,stocks(S2)) AND
(code(s1)=code(s2)))))

END UpdateStock

A transaction theory DeleteStock follows the above
pattern except that the update and the frame predicate reflect
the requirement that the referential integrity constraint of
the schema StockMarket cannot be violated. The update
predicate specifies that the deletion reduces the size of the set
of stocks. More importantly, it specifies that the stock to be
deleted actually exists in the initial set of stocks and it does
not in the resulting set of stocks after deletion. Moreover,
this update predicate specifies that the deleted stock does not
exist in any set of stocks associated with any broker after
the deletion is performed. The frame constraint specifies that
the stocks with code different from the code of the deleted
stock still exist in the set of stocks after deletion.

DeleteStock: THEORY
BEGIN

IMPORTING StockMarket,
Transaction[StockMarket]

DeleteStock:
TYPE FROM Transaction[StockMarket]

S1,S2: VAR StockMarket
s,s1,s2,sb: VAR Stock
b:VAR Broker
delStock: VAR Stock

update(delStock)(S1,S2): bool =
(size(stocks(S2))=(size(stocks(S1))-1))

AND (EXISTS s: (member(s,stocks(S1)) AND
(code(s)=code(delStock)))) AND

(FORALL s: (member(s,stocks(S2))) IMPLIES
(code(s) /=code(delStock))) AND

(FORALL b: (FORALL sb:
member(sb,bstocks(b)) IMPLIES
(code(sb) /=code(delStock))))

frame(delStock)(S1,S2): bool =
(FORALL s1: (member(s1,stocks(S1)) AND

code(s1) /= code(delStock)) IMPLIES
(EXISTS s2: (member(s2,stocks(S2)) AND

(s1=s2))))
END DeleteStock

VIII. RELATED RESEARCH

The orthogonal model of persistence implemented in [6]
and the ODMG model of persistence [9] are based on
promoting an object to persistence by either binding it to a
name in a persistent name space or making it a component of
an object that is already persistent. Message-based model of
persistence presented in this paper is a further significantly
different development after these initial approaches.

In the ODMG model, queries and transactions are objects,
and so are in our model, with additional subtleties. In our
approach messages are objects, and queries and updates are
particular types of messages. A transaction is a concurrent
object, which consists of a sequence of messages. The fact
that messages are objects makes it possible to construct a
transaction log as a sequence of messages of different types
(queries and updates, checkpoints, commits, etc.).

General integrity constraints are missing from most per-
sistent and database object models with rare exceptions such
as [2][5][8]. This specifically applies to the ODMG model,
PJama, Java Data Objects, and just as well to the current
generation of systems such as Db4 Objects [11], Objectivity
[15] or LINQ (Language Integrated Query) [14]. Of course,
a major reason is that mainstream object-oriented languages
are not equipped with constraints. Those capabilities are only
under development for Java and C# [7][12].

Constraints in the form of object-oriented assertions are
a key component of our approach. Database integrity con-
straints are specified as class invariants, transactions are
specified via pre and post conditions, and queries come with
general filtering (qualification) predicates. In comparison
with object-oriented assertion languages, such as JML [12]
and Spec# [7][13], a major difference is that in our approach
assertions are integrated in the run-time type system and
visible by reflection. This makes database integrity con-
straints accessible and enforceable at run-time. Reflective
constraint management, static and dynamic techniques for
enforcing constraints, and transaction verification technology
are presented in [3][5][18].

Our sources of motivation for the view of concurrent,
distributed and mobile objects were the languages ABCL
[22][23] and AmbientTalk [10]. The core difference is that
both of the above languages are untyped, whereas our ap-
proach here is based on a type system. A further distinction
is that ABCL and AmbientTalk are object-based and our
approach is class based. Other related work is given in [19].
Unlike ABCL reflective capabilities, reflection in this paper
is type-safe. A major distinction is the assertion language as
a core feature of the approach presented in this paper.

A major difference in comparison with our previous paper
[1] is in the verification technology based on a higher-
order verification system PVS as it applies to transaction
verification.

A classical result on the application of theorem prover
technology based on computational logic to the verification
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of transaction safety is [20]. Other results include [8] and
the usage of Isabelle/HOL [21]. Our previous results include
techniques based on JML and PVS [3]. Our most recent
results are based on Spec# [2]. Verification techniques of
object-oriented transactions with schemas and transactions
specified in either JML or Spec# are presented in [2][3].

IX. CONCLUSION

Object-oriented assertions allow specification of object-
oriented schemas equipped with database integrity con-
straints, transactions and their consistency requirements, and
queries. The view of messages as typed objects leads to a
typed reflective paradigm equipped with a message-based
orthogonal persistence. Reflection in this paradigm is much
more general than reflection in main-stream typed object-
oriented languages as it includes message and assertion types
that are integrated into the run-time type system.

The presented approach requires more sophisticated users
that can handle object-oriented assertion languages such
as JML or Spec#. Those languages and their underlying
technologies come with nontrivial subtleties as they are
still in the prototype phase. Integrating these technologies
into existing object database systems presents a significant
challenge yet to be addressed in our future research.

One the other hand, the benefits of the availability of
general constraints and static verification of transactions
with respect to those constraints are very significant. Data
integrity as specified by the constraints could be guaranteed.
Runtime efficiency and reliability of transactions are signif-
icantly improved. Expensive recovery procedures will not
be required for constraints that were statically verified. In
addition, more general application constraints that are not
necessarily database constraints could be guaranteed. All
of this produces a much more sophisticated technology in
comparison with the existing ones.
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[18] M. Royer, S. Alagić, and D. Dillon, Reflective constraint
management for languages on virtual platforms, Journal of
Object Technology, vol 6, pp. 59-79, 2007.

[19] J. Schafer and A. Poetzsch-Heffter, JCoBox: Generalizing ac-
tive objects to concurrent components, Proceedings of ECOOP
2010, Lecture Notes in Computer Science 6183, pp. 275-299.

[20] T. Sheard and D. Stemple, Automatic verification of database
transaction safety, ACM Transactions on Database Systems 14,
pp. 322-368, 1989

[21] D. Spelt and S. Even, A theorem prover-based analysis
tool for object-oriented databases, Lecture Notes in Computer
Science 1579, pp 375 - 389, Springer, 1999.

[22] T. Watanabe and A. Yonezawa, Reflection in an object-
oriented concurrent language, Proceedings of OOPSLA, pp.
306-315, ACM Press 1988.

[23] A. Yonezawa, J.-P. Briot, and E. Shibayama, Object-oriented
concurrent programming in ABCL/1, Proceedings of OOP-
SLA, pp. 258-268, ACM Press 1986.


