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Abstract—Composition of software components via Web
technologies, scalability demands, and Mobile Computing has
led to a questioning of the classical transaction concept. Some
researchers have moved away from a synchronous model with
strict atomicity, consistency, isolation and durability (ACID) to
an asynchronous, disconnected one with possibly weaker ACID
properties. Ensuring consistency in disconnected environments
requires dedicated transaction support in order to control
transactional dependencies between software components
and provide a scalable concurrency control mechanism. This
paper contributes a simple expression language using Boolean
operators to define transactional dependencies and further
provides rules to derive an execution semantics that could be
exploited by a transaction manager to control the interaction.
This work also discusses the use of data classes that demarcate
data based on concurrency control related aspects and apply a
certain concurrency control mechanism to each class. Such a
classification allows better trade-off between consistency needs
and the overhead caused by the concurrency control mechanism.

Index Terms—Transaction Management; Disconnected Trans-
action Management; Advanced Transaction Models; Concur-
rency Control; Optimistic Concurrency Control; Semantic Con-
currency Control

I. INTRODUCTION

The last few years have shown a need for mechanisms
and technologies to easily compose scalable and everywhere
available applications. Service Oriented Computing (SOC),
specifically the composition of services as well as the au-
tomated execution of business processes, Cloud Computing,
using infrastructure services via the Web in a pay as you need
manner, and the growth in Mobile Computing solutions, avail-
able everywhere, all represent aspects of this development.
In [1] we have presented our first idea of an optimistic and
disconnected transaction model that supports local autonomy
of software components – a key characteristic of SOC and
Mobile Computing

The challenge for transaction management is to provide
scalable mechanisms that ensure that data stays consistent
across local boundaries between departments or even com-
panies while the boundaries of transactions grow with the
integration of new services –and their software components–
to build new composite applications. In its widest form, data
must be maintained consistently across several world wide
distributed physical nodes due to availability demands and thus
scalability is a key issue. Data often needs to be modified even
if the connection is temporarily lost.

To facilitate loose coupling and increase autonomy, data
should be modified in a disconnected and not in an online
manner. This means that the set of proposed modifications
to data is prepared offline and written back using a different
set of transactions and not the same transactions that have
been executed to read the data. This copes also well with
the asynchronous message exchange that takes place in such
an architecture. Data access is asynchronous too. In such an
architecture, the traditional mechanism to keep locks on a
database until the transaction has finished is no longer prac-
tical for the entire interaction. A locking isolation protocol,
for instance, where other concurrent transactions read only
committed results is not reasonable as it leads to long blocking
time caused by the governing application’s duration and the
asynchronous message exchange.

Mobile Computing requires solutions for offline data pro-
cessing despite the fast distribution and coverage of the mobile
Web. Disconnected situations are frequent and users should be
able to keep their data locally and synchronise the modifica-
tions back afterwards. Essentially, the circumstances in Mobile
Computing are similar to that of SOC in that autonomy of
software components is required including autonomy over the
data they process.

A disconnected approach overcomes this challenge at the
price of weakened isolation. The drawback of a weakened
isolation is that other transactions can read pending results,
which increases the danger for data to become inconsistent.
To ensure consistency a validation must take place between
(i) the phase a component (application) reads and modifies
data locally and (ii) the phase the modifications are eventually
written – merged with the database. Any transaction that is
allowed to make an unverified change to data must specify
a compensation transaction for restoring consistency if the
process needs to be semantically undone later. For transactions
that cannot specify a compensation it is therefore prohibited
to make unverified changes.

Replication mechanisms that intend to increase the avail-
ability of data must scale and ensure that consistency of the
different replicas is at least achieved eventually. An Eager
replication [2] mechanism does not scale for highly repli-
cated systems whereas lazy replication does, at the price that
modifications of a transaction are not synchronised within the
boundary of that transaction. Combining eager replication with
a “master-slave” dissemination protocol scales and replicas
can be made to converge within the transaction boundary [2].
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But, in general, designing a highly replicated system requires
a trade-off between the costs for consistency and scalability
and thus availability [3], [4]. For some data, a mechanism
for eventual convergence of replicas is sufficient, however,
other data might require a much stronger consistency, possibly
serializability. Some applications possibly require real-time
behaviour, others may live with moderate availability. Recent
research [3] shows that adaptive concurrency control based
on a classification of data, leads to a better cost benefit ratio
than one concurrency control to fit all needs. Thus, these
considerations lead to a spectrum of different concurrency
control protocols starting with no consistency at all and ending
up with serializability.

The above review identifies the following characteristics of
transactions that lead to complex transaction management:

1) Composition (dynamic): heterogeneous and autonomous
software components represented as services are loosely
coupled to create new composite applications. Due to
the composition, transactional dependencies among the
components arise.

2) Long-living nature: whereas the actual operations to read
data and write modifications to the database are short
lived1, the overlying application (e.g., workflow) has a
long-living nature. The result is a discrepancy between
the time and the extent to which the physical operations
(reads and writes) need ACID and the time the governing
long-living application does. Isolation and consistency
apply to both the read and the write phase of the
application. However, compensation defeats durability.

3) Replication: nodes are physically distributed and repli-
cation must ensure that replicas converge depending on
the data’s semantics.

4) Disconnection: mobility requires disconnected transac-
tion processing because of physical unavailability of the
network connection. Also, to facilitate loose coupling,
increased local autonomy is helpful to ease composition
and due to an asynchronous message exchange, the set
of proposed modifications to data is prepared offline
for a later transacted sequence of operations on sepa-
rate database connections. Notice, the long-living nature
requires disconnected processing of data too, because
keeping locks for the entire duration of the governing
application would significantly reduce the concurrency.

In this paper, the focus is not on replication. We focus on
composite, long-living, and disconnected transactions based
on our first considerations published in [1]. We have removed
much of the terminological overhead, and clearly demarcate
concepts. One part specifically focuses on the transactional
composition of transactions in a formalised manner using
Boolean algebra (see Section III-B). We also added a section
(see Section III-D) that deals with the classification of data
based on the data’s concurrency control (CC) properties and

1Molina et al. [5] state that to precisely classify a transaction as either
short or long living is complicated. They define a transaction as long living
if to lock data for the transaction’s duration leads to an undesired decreased
concurrency or even thrashing.

a different CC mechanism is applied to each class. The
classification has been inspired by [3], [6]. We present a simple
reference architecture (Section II), where we also introduce
our idea of a “Disconnected Component”. In Section IV, we
present some existing transaction models and mechanisms as
part of the related work, before Section V concludes this paper
and outlines our future work.

II. ARCHITECTURE

We start by introducing a simple reference architecture (see
Figure 1) that consists of three levels: database, middleware,
and application level.

Database systems reside at the database level and they might
be highly distributed as well as replicated. Also heteroge-
neous database federations, so called Multi-Database Systems
(MDBS) [7], can exist. In an abstract view, the entire database
level must be represented as one MDBS. Moreover, since
mobile applications are also part of our architecture and mobile
applications can use the mobile platform’s database to increase
their local autonomy to cope with frequent disconnections, the
database can be logically also considered as a “Mobile MDBS”
according to [8].

The middleware provides data access and owing to the
assumed disconnected and asynchronous nature, data is read,
copied, modified and synchronised back in a sequence of
different independent transactions. A component (see Section
II-A) starts a transaction (or a number of transactions) to
read the data, disconnects, and locally modifies the data. After
the modifications have been performed locally, the component
sends just the changes back and based on these changes the
middleware executes transactions to write the modifications.
The middleware is allowed to use locks for reading and writing
data from or to the database. Transactions in middleware
and database layers are short-lived and locking is feasible,
while retaining locks for the entire duration of the governing
application is not practical.

The middleware plays a key role in this architecture. On
the one hand it provides data access, on the other hand it
has the role of a coordinator. Long running and hierarchically
structured transactions involving many distributed, loosely
coupled, heterogeneous, and autonomous systems require co-
ordination. Also, interactions with external applications require
transactional consistency. However, the middleware cannot
enforce consistency of external systems. Often components
are hosted by the middleware and composed together to build
new applications as in SOC.

Application level refers to any component that implements
concrete business logic. Components may also ship with their
own, possibly replicated, database to increase their autonomy
(see the “Composition Autonomy Pattern” in [9], for example).
Mobile components are part of our reference architecture too.
From a transactional point of view we do not believe that
mobile components differ from stationary ones because both
types of components have to cope with disconnection. For the
remainder of this paper, we refer to a disconnected component
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as a software component or just a component if the context is
obvious.

The outer surrounding box in Figure 1 represents a trans-
actional integration of components across the different levels.

A. Disconnected Component

An application consists of several software components that
are either locally or remotely accessed. A component starts a
number of transactions whereas the set of transactions to read
the data is different from the set of transactions to eventually
write the modifications. A component is defined to be either
in its read, disconnected and working, or write phase, which
is similar to Meyer’s “Command Query Separation” pattern
[10]. Figure 2 illustrates the idea.

To ensure consistency, the transition from disconnected
and working to write requires validation. This validation is
performed by a transaction manager but a component must
ensure that the set of changes is passed to the transaction
manager indicating at least the values or version read, and the
new values of data. Technically, this means a component needs
some book keeping functionality as defined in the Service Data
Object (SDO) framework [11], for instance.

Components are allowed to call other component(s) to read
data or to pass their modifications. Components used within
a phase are said to be within this phase. Inside a component,
the execution of flat transactions or calls to other components
is not arbitrary and the implementation reflects an order in
which execution takes place. We require a component to define
this order if not defined elsewhere, e.g., by a workflow. Using
another component is also represented as a transaction because
these calls are transactional too. Their state is made persistent
by writing the messages a component sends and receives to
non-volatile memory. This concept is also known as persistent
queuing. If each component specifies an order of execution, a
composition order is the union of all the components’ orders.
If the read and write phases are separate, each component has
to define two separate orders, one for the read and one for the
write phase.

The Sagas [12] model discusses the notion of compensation
to semantically undo the effects of long running transactions.
Compensation has been introduced to cope with the
requirement for weak isolation that arises if several
transactions form a long living process but each of the sub-
transactions is allowed to commit. Under this circumstance
other transactions may read pending results. In case the
transaction aborts, already committed sub-transactions
need to be undone, which is only possible by executing a
compensation, e.g., to cancel a flight is the compensation of
booking a flight. If a sub-transaction is not compensatable,
it is not allowed to unilaterally commit. The sub-transaction
needs to pre-commit (promise) and wait for the global
commit. If the global outcome is abort, the sub-transaction
needs to rollback (there is no compensation). Compensation
is discussed in Section III and here it is sufficient to introduce
a compensation handler that points to another component that
can implement the compensation.

DEFINITION II.1: (Disconnected Component):
A disconnected component is defined as a quintuplet dc :=

(T r, Tw, Or, Ow, dc−1) with
1) a set of transactions T r to read data,
2) a set of transactions Tw to write modifications,
3) a partial order for reading: Or = (V r, Ee) with V r ⊆

T r and the set of edges Er is defined as ∀tn, to ∈ V r :
tn → to ⇔ e ∈ Ew with e = (tn, to). Transactions
that do not belong to the subset V r are said to be free
transactions and hence can be executed in any order.

4) another partial order for writing: Ow be another partial
order Ow = (V w, Ew) with V w ≡ Tw and the set of
edges Ew is defined as ∀tn, to ∈ V w : tn → to ⇔ e ∈
Ew with e = (tn, to). Transactions that do not belong to
the subset V w are said to be free transactions and hence
can be executed in any order.

5) a compensation handler of dc.

If dc executes transactions T r, it is in its read phase and if
it executes transactions Tw it is in its write phase. Between
these phases dc is in its disconnected and working phase. The
write phase is not required for components that only read data.

The next section introduces the disconnected transaction
model and provides a detailed definition for a transaction.
A recursive model for transactional composition is the sub-
ject of this section too. The composition of disconnected
components is eventually a composition of transactions. The
resulting transactional dependency between two components
is important and we provide a general applicable notion for
them (see Section III-B).

III. TRANSACTION MODEL

The transaction model presented in this section is structured
as follows: first, a general definition for a disconnected flat
transaction is provided. The next part focuses on the compo-
sition of flat transactions and how to formalise the resulting
transactional dependencies based on a Boolean expression.
Based on such an expression, the third part discusses how to
derive the execution structure of a composite transaction. The
fourth part discusses different concurrency control protocols
with a focus on optimistic and semantics based concurrency
control (CC) mechanisms and defines different data classes
according to the discussed CC mechanisms. This is the “Data
View” of this model and its purpose is to demarcate data based
on CC properties.

A. Disconnected, Flat Transaction

Our transaction model starts with the smallest unit: a flat
transaction, the key building block. The following definition
is based on the definition by Weikum and Vossen ([4],p.46)
for a flat transaction.
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Fig. 1: Architecture

Fig. 2: Structure and composition of a dc. Dashed arrows show the data flow between the phases (shown by their related sets
of transactions T r, Tw) and upwards in the composition.
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DEFINITION III.1: (Disconnected Flat Transaction I):
1) Let t be a flat transaction that is defined as a pair t =

(op,<) where op is a finite set of steps of the form r(x)
or w(x) and < ⊆ op× op is a partial order.

2) A transaction is either in its reading (p1), disconnected
and working (p2), validating (p3), or writing (p4) phase.
The write phase is not required for read only transac-
tions.

Section “Architecture” states that a software component uses
different transactions to read and write data. This, however,
requires a validation to ensure consistency. These phases have
been introduced to avoid locking and support disconnection.
They are similar to what is known as Optimistic Concur-
rency Control (OCC) [13], [14]. The only formally motivated
difference is the explicit disconnected and working phase
(p2). Usually, in the original OCC model, the actual work
is done within the read phase. “The body of the user-written
transaction is in fact the read phase [...]” [13]. Since we do
not believe that Kung’s reduction represents the actual phases
of a disconnected transaction, these phases are made more
explicit in our model. Later (see Section III-D) we introduce
data classes and apply a certain CC mechanism. In this
section also the phases, especially validation, are thoroughly
discussed.

The next step is to provide a general notion for the com-
position of flat transactions. The idea is to consider a set of
flat transactions and define their composition by a Boolean
expression and based on this expression to derive an execution
structure. The last step is to transform the model into a
recursive model. With this recursive model in hand we have a
general notion for the transactional composition or integration
of software components too.

B. Composition of Transactions and Transactional Dependen-
cies

In complex transaction processing scenarios, such as dis-
tributed or workflow transactions, the “Degree of Transaction
Autonomy” [15] can be expressed by transactional dependen-
cies.

One well known example is a distributed commit where, for
example, two transactions have to either bilaterally commit or
abort. This creates a transactional dependency between the
transactions so that their autonomy is weak (becomes part
of interpretation). In another situation, however, it might be
possible that a transaction is allowed to commit even if other
dependent transactions abort and the autonomy of this first
transaction is high because it is independent of the others’
outcome.

Consider, for example, a transactional workflow like the
booking of a journey with several acceptable outcomes. The
workflow consists of the booking of a hotel, a flight, and the
booking of either a train or a car for a trip at the destination.
So the satisfaction is that the booking of the hotel and the
flight must succeed, whereas for the booking of the train or

the car the allowed outcome is either the first or the second.
Thus, it is required that only the first two transactions commit,
whereas for the later ones only one is allowed to commit. In
an auction, for example, where a user wants to purchase three
items, it could be acceptable to buy just one, two, or all of
them. Both examples show that applications can have different
acceptable outcomes, a so called satisfaction.

Transactional dependencies have been investigated in the
domain of nested and advanced transaction processing [7],
[16], [17] where a parent, for example, depends on the commit
or abort of its children – a property known as “vitality of a
child”. The opposite is known as “dependency of a child”;
that is, a child depends on the commit of its parent. Notice,
vitality and dependency affect the A of ACID.

The next section analyses transactional dependencies de-
fined by a Boolean expression. We believe this is a useful
reduction that makes transactional dependencies computable,
and offers an execution structure.

1) Satisfaction of a Transaction: To represent transac-
tional dependencies it is sufficient to define a satisfactory
(acceptable) outcome for a set of transactions. For exam-
ple, one satisfaction sf for T = {t1, t2, t3} could be
sf1 = (c(t1), c(t2), c(t3)) another sf2(c(t1), a(t2), a(t3))
with c:=commit and a:=abort. Now, if after an execution of
T (assumed, for example, a parallel one) one of the possible
outcomes matches with the pre-defined outcomes sf1 or sf2,
T can be committed. If not, T needs to be aborted and all
(committed) t ∈ T must be rolled back or compensated if
committed already.

Another way of representing a satisfactory outcome uses
Boolean expressions and interpret true as commit and false
as abort. For example, the satisfactory outcome sf for T =
{t1, t2, t3} could be sf = (t1∧t2∨t3). For T = {t4, t5, t6, t7}
the satisfactory outcome could be sf = (t1 ∨ (t2 ∧ (t3 ∨ t4))).
Boolean expressions can express a nested behaviour, which
is a key requirement to model transactional dependencies.
Another benefit of Boolean expressions is that they can be
verified. Boolean expressions would at least allow to compute
the “Satisfiability” (SAT) or “Validity” of the expression
itself. This information makes it easier to reason about the
correctness of transactional dependencies.

DEFINITION III.2 (Satisfaction of transactions):
1) Let Tk = {t1, . . . , tn} be a finite set of t where Tk ⊆ T

is a subset of the superset T of all transactions.
2) The set of satisfactory outcomes defining all ac-

ceptable outcomes for T is defined as: SF (T ) =
{sf1(T1), . . . , sfj(Tk)} with sf(Tk) = expr.

3) Let
expr := (expr) op (expr)
expr := c(t) | a(t)
op := ∧ | ∨ | ⊕ | pl | pr

4) v : TRUE 7→ c(t) and v : FALSE 7→ a(t) with c(t)
being the commit and a(t) the abort of a transaction.

5) Let OUT (T ) = {out(t1), . . . , out(ti)} be the set of the
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atomic transactions’ outcomes after transaction process-
ing with out(t) ∈ {c(t), a(t)}.

6) Let σ : (OUT (T ), sf(T )) 7→ s(T ), with state s(T ) =
c(T ) or a(T ), commit or abort of a set of transactions
T . Each out(ti) is mapped to the according occurrence
in each expr. Validation function σ validates each expr.

Concerning the number of allowed operators op compared
to the number of Boolean operators, the number of allowed
operators is limited to “AND” ∧, “OR” ∨, “XOR” ⊕, and the
two projections pl, pr. See Table I for a complete overview.

1) Operator ∧: The logical “AND” is a common case and
only if both transactions commit, the result is committed.

2) Operator ∨: The logical “OR” represents the situation
where it is sufficient if at least one of the transactions
commits.

3) Operator ⊕: The logical XOR where exactly one trans-
action is allowed to commit.

4) Operators pl, pr are projections and discussed as well as
defined (see Definition III.3) below.

Other Boolean operators are less reasonable with respect to
transactional dependencies. Implication, for example, would
mean that the abort of two transactions, i.e., f → f = t
validates to true even if the transactional system’s state has
not changed. Generally, operators validating abort and abort
(false and false) to true are less reasonable. Except the “XOR”,
operators that validate commit and commit to false are less
reasonable for the same reason. Generally, the semantics of the
logic is that the abort of a transaction is not a correct result,
even though it is consistent. Although the “XOR” operator is
an exception, it is required because in some scenarios only
one of two transactions is allowed to commit (book either the
train or rent a car; buy either this item or the other).

The “NOT” operator is not listed in Table I. To define the
satisfaction of a transaction as not commit (=abort) means
the processing of the transactions is not intended at all. For
example, the expression expr = t1 ∧¬t2 states that a commit
of t1 and an abort of t2 is satisfying. This expression is
equivalent to expr = t1 because to start the execution of
t2 with the goal to let t2 abort is not correct. To model a
transaction with the intention to let the transaction abort is not
reasonable. Even in a situation, for example, to test a system
with the intention to throw an exception, the general semantics
of a transaction requires the transaction to commit to throw the
exception. The ambiguity with this operator is that for a single
transaction t, the possible outcome is indeed expr = t⊕ ¬t.

To resolve this ambiguity and to comply with the correctness
semantics of a transaction, the “NOT” operator is not allowed
in expressions, but in case an expression needs to be optimised
for validation and therefore transformed into a conjunctive
or disjunctive normal form the “NOT” operator might be
required. For instance, expression a ⊕ b can be transformed
into the disjunctive normal form a⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b)

The function v maps true (T ) to the commit of a transaction
and false (F ) to abort.

TABLE I: Operators for transactional dependencies.

# ti tj ∧ ∨ ⊕ pl pr
1 c c c c a c c
2 c a a c c c a
3 a c a c c a c
4 a a a a a a a

To perform a validation OUT (Tk) represents the set of
outcomes of atomic transactions Tk. Based on these outcomes,
the outcomes of composed transactions Tk are computable.
Regarding σ it is important that the state after validation
is actually pending since the final outcome might not be
determinable yet as it possibly depends on the validation of
other dependent Tl.

The projections pl and pr represent a transactional depen-
dency where the outcome (result) of one transaction (operand)
supersedes the other. For pl the left argument supersedes the
right, for pr the right supersedes the left (see Table I).

Special cases of transactional dependencies have been inves-
tigated already and are known as “vitality” or “dependency” of
a transaction. A transaction is said to be vital if its abort leads
the parent transaction to abort too. Non-vital if the child’s abort
does not affect the parent. A transaction is said to depend on
the parent, if the parent’s abort leads the child to abort too. If
not, the transaction is said to be independent.

DEFINITION III.3 (Projection operators): Let the left argu-
ment of a projection be the parent and the right argument
be the child. Then, according to the notions of vitality and
dependency let projection pl be a combination of non-vital and
dependent and let pr be a combination of vital and dependent.

Projection pl is non-vital because even if the child (right
operand) aborts the outcome is still commit. It is dependent
because if the parent (left operand) aborts the global outcome
is abort and the child must be rolled back. The interpretation
of pr is accordingly.

It is also possible to define an interpretation for the other
operators according to the notions of vitality and dependency.
Table II shows the possible combinations of vitality and
dependency and how they map to the operators. Notice that
only mixed outcomes are shown in the table as vitality and
dependency relate to mixed outcomes only. The only exception
–again– is the “XOR” operator because the behaviour is
different in case both transactions commit, as discussed above,
and vitality as well as dependency are not directly applicable to
the “XOR” operator. Notice, our model subsumes the notions
of vitality and dependency.

Strictness (see Table II), which is given if one of the
concepts is dependent or vital, describes the autonomy of a
transaction and a strict operator represents a weak autonomy
whereas a non-strict operator represents autonomy. Although
vitality and dependency are not applicable to “XOR”, it is
strict because the transactions are abort dependent. If both
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can commit, both have to abort.
Concerning the validation of an expression, the projection

operators have an interesting property. For example, consider
the expression expr = t1 pl (t2 ∨ (t3 ∧ t4)). If expr is
reduced to expr = expr1 pl expr2 where expr1 = t1 and
expr2 = (t2 ∨ (t3 ∧ t4)) it can be shown that in each possible
distinct permutation of true and false, the outcome of expr1
supersedes expr2 (see Table I). Thus, there is a dominant part
and projection operators (both operators show this behaviour)
should be validated first and the remaining non-dominant part
needs not to be considered for validation.

Based on the observations so far, the precedence, associa-
tivity, and commutativity can be defined as in Definition III.4.

DEFINITION III.4 (Precedence, Associativity, and Commuta-
tivity): The operator precedence is defined from high to low
as follows: projections pl and pr, conjunction ∧, disjunction
∨, and XOR ⊕. The associativity convention is that operators
associate to the right.

LEMMA 1: The projections pl and pr are not commutative.

Proof: By contradiction. Suppose the projections pl and
pr are commutative. Given an expression expri pl exprj and
let expri validate to true and exprj to false, hence the global
result is commit (true). Due to commutativity the global result
is commit too, if exprj commits and expri aborts. As shown
in Table I this is not true and the result is abort in case expri
aborts and exprj commits. Since the proof for expri pr exprj
is equivalent, the projections are not commutative.

Regarding projections and validation, an expression can be
reduced and nondominant parts can be skipped for validation.
Figure 3 shows two example syntax trees. In the first example
the expression expr = (t1 ∨ t2) ∧ (t3 ⊕ (t4 pl (t5 pr t6)))
is reduced to expr′ = (t1 ∨ t2) ∧ (t3 ⊕ t4). Part (t5 pr t6)
is nondominant and does not affect the global outcome.
Similarly, the expression expr = (t1∨t2) pr (t3⊕(t4∧t5∧t6))
is reducible to expr′ = (t3 ⊕ (t4 ∧ t5 ∧ t6)).

DEFINITION III.5 (Reducibility of Projections): In a projec-
tion the argument that is not projected is called non-dominant.
For expri pl exprj the non-dominant part is expri, for
expri pr exprj it is exprj .

LEMMA 2: For validation, an expression expr can be reduced
by all nondominant expressions

Proof: By contradiction. Given an expression
expri pl exprj 6= expri. From Table I it follows directly that
this is not possible.

∧

∨

t1 t2

⊕

t3 pl

t4 pr

t5 t6

(a)

∧

∨

t1 t2

⊕

t3 t4

(b)

pr

∨

t1 t2

⊕

t3 ∧

t4 ∧

t5 t6

(c)

⊕

t3 ∧

t4 ∧

t5 t6

(d)

Fig. 3: (a) Complete and (b) reduced syntax tree of expr =
(t1 ∨ t2) ∧ (t3 ⊕ (t4 pl (t5 pr t6))). (c) Complete and (d)
reduced syntax tree of expr = (t1∨ t2) pr (t3⊕ (t4∧ t5∧ t6))

So far, a representation for transactional dependencies using
a reduced Boolean algebra has been introduced as well as
the required validation rules. The next step is to define the
“Execution Structure” with respect to atomicity.

C. Execution Structure - Atomicity

Operators link transactions and define their transactional de-
pendency, but to ensure atomicity as defined by a satisfaction
expression requires some additional measures. For example,
what is additionally required if two transactions state a strong
dependency indicated by the ∧ operator? What is required
if two transactions are linked by a projection operator? The
idea here is to derive the “Execution Structure” from the sf
function.

For example, given the expression sf = t1 ∧ t2 requires an
atomic commitment, a 2PC for instance, because both have
to commit or abort. Usually, either t1 or t2 plays the role of
the 2PC coordinator or an additional instance fulfils this role.
But, in either case this additional measure of a coordinator is
neither represented by t1 nor by t2. The operator, the ∧ in
this example, indicates the measure that needs to be taken,
namely, to ensure that both transactions belong to the same
composite transaction, which only commits if both children do.
Technically, a transaction manager needs to create a context (a
composite or boundary) to coordinate the interaction among
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TABLE II: Operators, Vitality, and Dependency.

op ti tj vitality, dependency strictness
∧ c a a tj is vital for ti strict
∧ a c a tj depends on ti

∨ c a c tj is non-vital for ti non-strict
∨ a c c tj is independent from ti

⊕ c c a - strict
⊕ c a c -
⊕ a c c -
pl c a c tj is non-vital for ti strict
pl a c a tj is dependent from ti

pr c a a tj is vital for ti strict
pr a c c tj is independent from ti

transactions. Transactional context is a rather implementation
related concept to ensure that each transaction is within the
same boundary, i.e., has the same context, e.g., transaction
id or possibly shared data. It is further possible to define
an atomic completion (Atomic Sphere [18]) for a context.
The boundary in turn demarcates a composite of transactions
and may be a sub-transaction in a larger context. This should
become clear if an application involving several transactions
is modelled as a recursive tree.

So, deriving the composite structure means deriving the
atomicity related execution semantics for the operators and
the result is the actual execution structure itself. For example,
sf = t1 ∧ t2 technically (which measures need to be taken
to ensure atomicity) means TA = (t1, t2) where TA is a
composite requiring an atomic outcome.

Before providing a definition for the derivation, the idea for
the definition is motivated first.

One motivation for a demarcation of sub-transactions is as
follows: Let us assume that an application is not divided into
sub-transactions and represented as one transaction instead.
Then the entire transaction needs to be processed as one
unit of work, which increases the blocking time (in case
locking schema concurrency control protocols are used) of
resources due to the fact that more things need to be processed
within one atomic step. In case OCC is used resources are
not blocked, however, the problem is still the aforementioned
discrepancy between the time the transaction lasts and the
probability of conflicts (the longer the transaction lasts, the
higher the conflict probability). If sub-transactions could be
demarcated though, these units could be processed individually
and interleaved with others to increase the concurrency. The
price in turn is that to individually process sub-transactions
leads to a weakened atomicity because some sub-transactions
possibly have committed before the entire global transaction
has terminated. In case the global transaction aborts, already
committed sub-transactions need to be compensated. This is
only possible if compensations for the already committed
sub-transactions exist2. Compensation can be interpreted as
a necessity to conform to reality like the cancellation of a

2Depending on the isolation (open or closed, see next section) a child’s
result might be visible to all transactions or just the parent. In the latter case
the commit of the parent publishes its children’s results.

booked flight. Here, we are only interested in motivating our
idea, which is based on the notion of compensation, so just
the basics are discussed. For further details on compensation,
see Garcia Molina [12] and Leymann [19].

A sub-transaction (ST) is allowed to unilaterally commit
if: (i) a compensation for ST exists. If the component is a
composite, a compensation for each member must exist; (ii)
in case some members have no compensation, these members
must be free of effects (e.g., read-only transactions are free of
effects). If neither (i) nor (ii) holds, then a unilateral commit
is not possible as long as the global outcome has not been
determined. The outcome is determined if the satisfaction
has been validated, but as long as the outcome has not been
determined, the ST is in state “pre–commit” – a promise to
eventually commit. An abort is always final and in case the
global outcome is abort (satisfaction is false), each committed
or pre-committed ST must compensate or abort and release
its state (“State Release”). In case the global outcome is
commit, each ST can retain its state (“State Retention”), also
the aborted ones.

Applying the idea of “State Retention” and “State Release”
to the operators, it follows that only the non-strict operator (see
Table II) retains its state independent of the global outcome.
The reason is the “OR” explicitly represents a transactional
dependency where one of the transactions is allowed to abort
although the global outcome is commit. This in turn means that
transactions linked with the non-strict operator do not require
to belong to the same directly higher ordered transaction
(composite). Notice that due to the recursive nature they
might be part of some higher ordered transaction (composite).
Regarding strict operators, a situation is given where one of the
sub-transactions commits even though the outcome is abort.
Therefore, the committed transaction has to release its state
and strict operators always require the same directly higher
ordered transaction (composite) for their linked transactions.

First we define a composite transaction as follows:

DEFINITION III.6: (Composite Transaction) Let Ti ∈
{ta, TA} be either a flat transaction ta or a composite

transaction TA where TA :=
m⋃
i=1

Ti.
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Notice, this is a re-definition of t and T . From now on,
ta represents a flat transaction as defined in Definition III.1.
Since T might be either a flat transaction or a composite, the
model is recursive.

Next, we define the derivation of a composite as follows:

DEFINITION III.7 (Derivation of the execution structure):
Given an expression Ti op Tj with op ∈ {∧,⊕, pl, pr} it
follows that Ti, Tj are part of a higher (parent) TA with
Ti, Tj ∈ TA. TA is called a derived composite transaction.

EXAMPLE III.1: Given the following expression:
sf = ((ta1 ∧ ta2) ∨ ta3 ∨ (ta4 ∧ ta5) ∨ ta6 ∨ (ta7 ∧ ta8))⊕
(ta9 ∧ (ta10 prl ta11)).
Applying the rule from Definition III.7 the following structure
is derived:
Due to the ⊕:

TA = {TA1, TA2} (1)

Applying the rules on TA1:

TA1,1 = {ta11, ta10}, TA1,2 = {TA1, ta9} (2)
TA1 = TA1,2

Applying the rules on TA2:

TA2,1 = {ta8, ta7}, TA2,2 = {ta6} (3)
TA2,3 = {ta5, ta4}, TA2,4 = {ta3}

TA2,5 = {ta2, ta1}
TA2 = {TA2,1, ta6, TA2,3, ta3, TA2,5}

It is important to understand that none of the TA actually
exists during the time the sf has been defined. A TA is
a derived composite to ensure the atomic outcome of its
components, its nature is purely technical, and it is created
at the time the expression is validated.

Notice, in Example III.1 we can just write T instead of
ta and leave the actual type (TA or ta) open because of the
recursive nature.

The next step is to consider the situation in which a Ti exists
more than once within the same sf . As said, the difference
between a derived composite TA and a T is that TA is
a transactional context, whereas a T exists with respect to
a functional requirement. Assume, for example, given the
following expression sf = (T1 ∧ T2) ∨ (T1 ∧ T3). After the
derivation of the composite structure we have TA1 = {T1, T2}
and T2 = {T1, T3}. This means even if T1 actually exists only
once, the derived execution structure states it belongs to two
different composites. This could be problematic, namely in
case T3 aborts T1 has to abort too, and since T1 belongs also
to TA1, TA2 has to abort too. Thus, T2 is not independent of
T3 and both composites need to be aggregated.

Another reason is that a satisfaction sf may have the
structure sf = sf1∨sf2 . . .∨sfi to model different acceptable

outcomes – a key requirement especially when dealing with
compensation. For example, expr = (T1 ∧ T2)∨ (T1 ∧ T−11 ∧
T2 ∧ T−12 ) where T−1i represents a compensation of Ti. Due
to the rule in Definition III.7 each ∨ operator leads to the
creation of its own boundary, which means there are eventually
different representations for the same sf . There are different
execution paths –this is why a satisfaction is required– but
there is one execution structure only.

DEFINITION III.8 (Union of derived composites): Whenever
two derived composites TA interleave, TAi ∩ TAj 6= ∅, they
have to be joined. Formally, the transitive closure is defined

as TA′+ =
o⋃

n>0
where TA′n = TA′n−1 ∪ {(Ti, Tk) | ∃ Tj :

(Ti, Tj) ∈ TAn−1 ∧ (Tj , Tk) ∈ TAn−1}, i 6= j 6= k.

EXAMPLE III.2: Given the following expression:
sf = T1∧T2∨(T3∨T4)∧(T5∨T6∨(T7∧T8⊕T9∧T10 prl T1)).
Applying the rule from Definition III.7 and III.8 the following
structure is derived:

TA1 = {T3, T4, T5, T6, T7, T8, T9, T10, T1}, (1)
TA2 = {T1, T2}

TA1 ∩ TA2 = T1 ⇒ TAx = {T1, . . . , T10} (2)

As shown, the entire expression requires one derived compos-
ite TAx to control the execution.

EXAMPLE III.3: Given the following expression:
sf = (T1∧T2∨T3)∨ (T4∧T5∨T6)∨ (T1∧T7). Applying the
rule from Definition III.8 recursively the following structure
is derived:

TA1 = {T1, T7} (1)
TA2 = {TA2,1, TA2,2} (2)

TA2,1 = {T6}, T2,2 = {T4, T5}
TA3 = {TA3,1, TA3,2} (3)

TA3,1 = {T3}, T3,2 = {T1, T2}
TA1 ∩ TA3 = T1 ⇒ TAx = {T1, T2, T3, T7} (4)

As shown, the entire expression requires two derived compos-
ites TA1 and TAx to control the execution.

Example III.3 defines the allowed outcomes and based on
the sf , an execution structure is derived. The result are two
derived composites TA1 and TAx, which means, that there
are two independent composites. Assumed, the sf stands for a
workflow, a representation of the workflow itself is missing. To
represent this, a root composite TAR needs to be created. So
the actual execution structure of sf is: TAR := (TA1, TAx).
Notice, a root composite is only required if there are more than
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one derived composites after the last step of the recursion. We
come back to the root composite briefly.

The next step is to provide a definition for an atomic
completion protocol of a derived composite TA according to
the “Open Nested Transaction Model” [20].

DEFINITION III.9 (Atomic completion): Each member T of
a derived composite TA (except the root) has to retain its state
in case the outcome of TA is commit. In case the outcome
of TA is abort, T has to release its state by either rolling
back if T is in state pre-commit or by compensation if T has
locally committed already. T is only allowed to unilaterally
and locally commit if it has a compensation T−1. A transaction
retains its state by a local commit, which is only required if
no T−1 exists. TA′ is aborted if all T have released its state
in the opposite order.

The reason why the root has been excluded in Definition
III.9 is that the root is only required if there are more than
two derived TA left after the last step of recursively applying
the rules. This can happen only if independent TA exist, which
in turn means even in case one TA aborts the other may still
commit and retain its state. TAR serves a different need and
technically it just reflects the results of all TA and hence all
T .

An execution order of transactions has not been considered
yet. The reason is that an execution order for transactions is
usually given by the application’s implementation. Sometimes
the order is applied externally to an application, for example,
a workflow model could define the execution order. For our
model it is just important that the order is accessible by the
transaction manager to perform compensation if required. The
order has been defined in Definition II.1.

Summarising this section, based on a sf for a set of transac-
tions it is possible to derive an execution structure. The result
are derived composite transactions that are technically required
to ensure an atomic outcome (compensation is semantically
equivalent to an atomic outcome) as defined by the sf .

The next section focuses on Data Classes and concurrency
control related aspects. Whereas transactional dependencies
affect the atomicity, consistency and isolation are subject of
the next section.

D. Data Classes

As said in the Introduction already, disconnected data
processing requires a non blocking mechanism that is able
to ensure a strong consistency where the state of the data
modified by a transaction has not changed during the execu-
tion – the so called isolation property –. Locking over the
entire lifetime of the governing application is an inadequate
solution. The problem with locking lies specifically in the
long duration and the longer the transaction lasts, the longer
the data is locked, and the less is the concurrency because
other transactions cannot obtain any locks for this data.

Additionally, the longer the transaction lasts the higher is
the probability that the transaction might fail. A proper time
out setting must be considered as complicated because the
database is left unaware about the intended duration of the
application including the user interaction. Notice, even when
using locking separately for the transaction(s) reading data and
the one(s) writing modifications, inconsistencies might still
arise because the transaction(s) to read and the transaction(s)
to eventually write the modifications are logically independent.
Another reason why locking is inadequate is for applications
running on mobile devices. In mobile computing, network
fragmentation and the resulting disconnection is considered
as “being normal”.

OCC is a solution for this issue. However, the problem with
OCC is the discrepancy between the time a transaction lasts
and the probability of of others wanting to modify the data.
This is specifically crucial for update intensive entities –so
called “Hot Spot Fields”.

To provide consistency for fields that are subjected to this
asynchronicity, one solution is to exploit the semantics of fields
where the conflict probability is high3. Hot spot fields are
usually numeric and operations performed on these fields are
thus arithmetic and usually commutative. Also, constraints on
such fields are common too. For example, the current stock of
an item or the number of available seats in a flight is limited.
O’Neil [21] discusses the use of an “Escrow” data type for
such fields. For “Escrow” fields, transactions can request a
kind of a guarantee at their start time to successfully perform
their modifications at the end. The guarantee can even depend
on a constraint. If a guarantee has been granted, the transaction
can continue processing in a disconnected mode and with
the escrowed guarantee in hand, the transaction can commit
successfully, assuming there are no other conflicts with non-
Escrow fields. Concurrency on these fields is increased with
such an approach because locks are required only for the time
the guarantee request is processed (a consistent view on the
“Escrow” field is indispensable during this time). Hence, even
if O’Neil’s concept is pessimistic because actions are taken at
the beginning of a transaction it fits well into a disconnected
architecture.

Laux and Lessner [6] discuss a similar idea, however,
instead of requiring guarantees at the beginning of the trans-
action their approach is optimistic (i.e., no measures at the
beginning of the transaction) and performs a validation before
writing. If the validation fails for a field, “Reconciliation”
is possible if a “Dependency Function” for the conflicting
entity is known and if the transaction wants reconciliation
for the conflicting operations. “Reconciliation” describes the
process of replaying an entire transaction or just the conflicting
operation with the actual state of the database. To replay is
only possible if the transaction or the conflicting operation is
independent of further user input. This type of independence

3To precisely define such a probability requires statistical measures and
usually a Poisson Distribution for conflicting transactions is postulated. See
Kraska et al. [3] for a model for probability based consistency in replicated
database systems.
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is similar to the notion of “Logical Access Invariance” [22],
[23].

A “Dependency Function” has the new value, the value
read, and the current value of a field as possible input
parameters and calculates a semantically correct state despite
a conflict. For numeric fields, where operations are additions,
subtractions, and multiplications, this function is a “Linear
Dependency Function” (see [6] for further details).

The drawback of [6] compared to [21] is that in case of a
constraint violation, the transaction has to abort possibly after
a lot of work has been done. This is especially disadvantageous
if the conflict rate is high on that field. Indeed, this reflects the
optimistic behaviour and is therefore intended, but guarantees
like O’Neil’s mechanism would be preferable despite their
pessimistic nature especially if the conflict rate on this field is
high.

Another difference is that Laux and Lessner’s approach
has been designed for architectures where a “change-set” of
proposed data is delivered by the client. The modifications
are then passed to stored procedures or SQL transactions are
generated and executed according to the changes. Change-
sets, for example as used in Service Data Objects (see [11]),
comply with the current nature of computing architectures
where communication is asynchronous, message oriented,
and disconnected. For example, also the work by Thomson
and Abadi [24] is based on the observation that transaction
processing has shifted away from a synchronous to an asyn-
chronous mode. Asynchronous thereby means modifications
are prepared offline and just the results of modifications or
the new values are sent back to the database.

An additional difference between these concepts is that
O’Neil foresees a classification based on a data type, but Laux
and Lessner’s approach is on a transaction or even an operation
base.

Both [6], [21] have in common that their mechanism applies
to a certain kind of data only, usually numeric data. Even if
the concept of a dependency function is a formal improvement
compared to O’Neil, because it defines a precise property for
“Escrow” fields (linear dependent in case of numeric types),
it seems rather questionable to find such functions for non-
numeric types. So, a non-blocking solution for all “Non-
Escrow” fields is needed, which ensures strong consistency
(e.g., serializability) already at the beginning of the trans-
action’s read phase, especially if the conflict probability on
those fields is high. One option is to consider once again
the semantics of those fields as well as the way the data is
accessed. We believe that in many situations semantics are
given so that the conflict rate is very low. For example, data
belongs to a certain instance or node, or data is modified using
insert semantics without even requiring an isolation level of
“Repeatable-Read”.

But after all, some data might be just subject to conflicts.
In a very limited way we believe it is possible to use locking,
namely, only if to lock is “logically motivated”. For example,
a salesman with his associated customers could have an owner
role for these customer data and due to the ownership, locking

is justified. Locking in this context should not be considered
as a mechanism to control concurrency (transparent for de-
velopers), it is rather a mechanism to enforce an ownership
of data due to application specific issues (not transparent for
developers).

In case a lot of data requires a strict locking, our model is
not adequate. For example, frequent calculations over a set of
data with an isolation level of repeatable read.

According to these previous considerations and according
to [6], [21] the following properties are distinguishable (we
will use the following abbreviations in Table III):
• properties of the data: does a constraint (cons) exist, is

the type numeric (num)?
• the operations’ semantics: are operations on this field

commutative (com), is a dependency function known
(dep)?

• is user input independence (in) given?
Notice, a transaction is independent from the user input if

a replay does not require any further user input. That is, the
user’s intention is to execute the transaction despite an existing
conflict with the same input. In case a complete transaction is
about to be replayed, this property must hold for each of the
transaction’s operations. In case a single operation is replayed
only, this property must hold for the specific operation only.

Based on these properties five classes are defined (see
Table III for an overview) where each class has a certain CC
mechanism.

The second class “Reconcilable with constraint RC” intro-
duces a conflict probability P (X) and a threshold th. This
is motivated by the consideration that to request a guarantee
for an “Escrow” field leads to some overhead, which is only
required if P (X) is too high for validation to succeed. In
case P (X) is low, reconciliation should be used to reduce
this overhead and to better comply with an optimistic nature.
A definition for P (X) is part of future work.

Eventually, Definition III.10 re-defines Definition III.1 and
considers the different data classes.

DEFINITION III.10: (Disconnected, Flat Transaction II)
1) Let R,RC,NRE,NRO,NRL be data classes as de-

fined in Table III
2) Let ta be a flat transaction that is defined as a triplet

ta = (op,<, u) where op is a finite set of steps of the
form r(x) or w(x), x ∈ {R,RC,NRE,NRO,NRL}.
And < ⊆ op × op is a partial order, and u denotes the
user input.

3) A transaction is either in its reading (p1), disconnected
and working (p2), validating (p3), or writing (p4) phase.

Definition III.10 makes the semantics of a write operation
not explicit. The reason is that we aim for a classification
based on data.

The issue with the last definition is that ta now technically
becomes a composite transaction of the form TA with children
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taR, taRC , taNRE , taNRO, taNRL since to use a different CC
mechanism means to divide a transaction into a maximum of
five separate transactions (taR, . . . , taNRL). The operator of
the satisfaction sf must be the ∧ operator. In case data of
only one data class is modified the additional composite can
be omitted.

For the remainder, we continue to refer to the composite
with children taR, . . . , taNRL as ta and other composites as
TA.

E. Consistency

To ensure serializability for lengthy or disconnected pro-
cessing validation is required. In locking scheme concurrency
control, Rigorous 2PL [4], [5], [25] ensures serializability but
since locking is not an option for classes R,RC,NRE, and
NRO an equivalent mechanism guaranteeing serializability
is required. Therefore, for R,RC, and NRO an optimistic
validation [14] needs to be performed to test whether a
set of modifications (write-set) of a transaction intersects
with a write-set or read-set of other concurrently executed
transactions. In case the write-set of a validating transaction
intersects with the read- or write-set of a concurrent trans-
action, one of the pairwise conflicting transactions has to
be aborted. Such a validation ensures conflict serializability
(CSR) [4]4. Reformulated the aforementioned means: if the
write-set WSeti (data modified by a transaction i) intersects
with the write-set WSj or read-set RSj (data read by a
transaction) of another transaction, a conflict is present and
one of the pairwise conflicting transactions should be backed
out. Hence, to avoid intersections between two transactions
ensures CSR. Following this observation a validation must
ensure: WSi ∩RSj = ∅ ∧WSi ∩WSj = ∅.

Classes R and RC, however, have an interesting property
and in case validation fails, reconciliation resolves the conflict
and ensures semantic correctness. An algorithm for reconcili-
ation is described in [6].

Transactions modifying escrow data NRE have to request
guarantees during their read phase. Validation as discussed
above is not required because the guarantee ensures consis-
tency already. So, during the validation phase it just has to
be ensured that a guarantee has been granted during the read
phase. For further details it is referred to [21]. For class NRL
it is referred to [25].

Before defining a validation schema, it is important to
briefly discuss the interleaving of phases. During the validation
of one transaction, a consistent view on the data is required.
If during the validation the data changes, validation might be
wrong and as a result inconsistencies would arise. Notice,
if validations succeeds the data will be written. Therefore,
it is usually not allowed that writing and validating data

4CSR means, two operations opi of tai and opj of taj conflict on the
same data item if one of them is a write operation. If there is any cycle
in the conflict graph, serializability is no longer possible. Bear in mind that
serializability testing is NP complete [4].

runs concurrently. So a transaction entering its validation
phase requires exclusive access to its WS. An algorithm for
validation is sketched out below (Figure 4). Notice, this is just
a possible algorithm and one variation is to let a transaction
wait and not abort in case of an intersection. A brief discussion
about OCC and validation is provided in Section IV-A6.

Let
1) dc be a disconnected component
2) Ti be the set of transactions to read the data and Tj to

write the data.
3) RSi ⊆ R ∪RC ∪NRO be the set of data that is read

by Ti
4) WSj ⊆ R ∪RC ∪NRO be the set of modifications.

If Tj enters the validation it has to perform the following
test:

∀Tk | Tk is in its validation or write phase:
if(RSi ∩WSk = ∅ ∧WSj ∩WSk = ∅)
abort dc

else
∀Tk | Tk has committed already:

if(RSi ∩WSk = ∅∧
WSj∩ WSk = ∅ ∧ no constraint violation)

write
else if(RSi ∩WSk = ∅∧

WSj ∩WSk 6= ∅ ∧ no constraint violation ∧
WSj ⊆ R ∪RC)

reconcile
else
abort

end if
end for
end if

end for

Fig. 4: Algorithm for validation

Owing to the recursive nature of our model, consistency of a
composite TA is only successful if all children pass validation.

F. Isolation

Since transactions are composed together and the model
allows for partial commits of a T if a compensation exists,
other transactions may read a state that is invalidated by a
compensation later. Such a situation can lead to a cascading
behaviour of compensation or even worse, inconsistencies can
result. In advanced transaction management, the concepts of
closeness and its opposite openness describe the visibility of
results. If a transaction’s result is passed to its parent only
a “Closed Nested Transaction” [26] is given, if also siblings,
or even all unrelated transactions are allowed to read results,
if the global outcome has not been determined yet an “Open
Nested Transaction” [20], [27] is given. Both the open and
closed transaction model have been subject of considerable
research (see Section IV).
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TABLE III: Data classes (“Reconciliation” refers to [6], “Escrow” to [21].)

Class Condition recommended CC mechanism
1 Reconcilable R dep ∧ in ∧ com ∧ ¬cons ∧ num Reconciliation
2 Reconcilable with constraint RC dep ∧ in ∧ com ∧ cons ∧ num P (X) < th : Reconciliation,

P (X) ≥ th : Escrow
Non-reconcilable NR (¬dep ∨ ¬in)

3 Non-reconcilable Escrow NRE (¬dep∨¬in)∧com∨cons∧num Escrow
4 Non-reconcilable OCC NRO (¬dep∨¬in)∧(¬num∨¬com)∨

cons
OCC

5 Non-reconcilable Lock NRL all NR where a lock is semanti-
cally required (justified)

Strict 2PL

The focus in the following paragraphs is on the relation-
ship between the data classes and openness and closeness,
respectively. We believe it would be beneficial to exploit
the information given by a data class and to determine to
use either a closed or an open isolation for a transaction.
Usually, this is up to the application developer and may
lead to unexpected inconsistencies. With this information in
hand, however, a transaction manager could provide support
accordingly. Another focus is to incorporate the results of [1]
into this work.

For R and RC data, it is possible to use an open isolation.
The state of data at read time does not affect the commit, thus,
neither rollback nor a compensation affects the commit. Hence,
for data classes R and RC isolation is not a real concern
and transactions operating on R or RC data only, can release
their results immediately and choose an open isolation. The
compensation for reconciliation is defined by the inverse of its
dependency function.

For escrow data NRE, it is irrelevant for other transactions
if a transaction rolls back or compensates. To roll back means
to recall the granted guarantee and the worst thing that could
happen is that another transaction is not able to get a guarantee
because this recalled guarantee denied a guarantee to another
transaction. An inverse operation is also determinable for
escrow data. Hence, transactions operating on NRE data only
can release their results immediately and use an open isolation.

For NRO data, the situation is difficult and the isolation
depends on the use case. Moreover, the conflict rate of an
entity may be different depending on the time or location. And
of course, if no compensation is definable a closed model is
required.

For NRL data, where locking is justified due to functional
requirements, a closed model should be used. Locking in this
model is justified to prevent other transactions from reading
until the transaction has terminated. So, pending results should
also be protected. Assumed NRL data is pivotal for incon-
sistencies or cascading compensation, the requirements based
justification to use locks is rather questionable. Recall, the
motivation for locks in the above discussion was to support
an owner role.

The next step is to incorporate the findings of [1] concerning
openness and closeness into this work.

In [1], a closed nested transaction is used for all transactions
that are executed against the database layer. Hence also for
data of class R, RC, and NRE (depending on the use

case for NRO possibly too), which is according to the last
deliberations not required and a mixed isolation could be
applied instead. For example, a transactions executes one
transaction tNRE to write the booking of a flight where entity
A represents the available seats and is classified as NRE.
And, another tNRO to add the actual booking reflected by an
entity B classified as NRO. Mixed isolation thereby means
that tNRE can unilaterally commit and in case of an abort
needs to run a compensation. Transaction tNRO, however,
needs to await the global outcome to finally commit.

For the composition of software components, [1] suggests
an open model. This complies with standards like the Business
Activity protocol [28] designed for workflow support and
specifically based on the ideas of the open nested transaction
model. The composition of software components to construct
new applications requires flexible transactional support and
must cope with a long living nature and hence the compen-
sation of transactions. This model adopts a utilisation of the
open model at the application level. In case a disconnected
component defines an open isolation but processes NRL data
(or NRO with a high potential for conflicts), the transaction
manager is able to take action and could either set the isolation
to close automatically or just inform the developer about the
potential risk.

Eventually, we adopt the findings of [1] with the exception
to allow for a mixed isolation for composite transactions whose
children run against the database layer.

IV. LITERATURE REVIEW AND RELATED WORK

Due to the amount of work that has been carried out in
transaction management, a rather large amount of existing
work relates to ours.

A. Literature Review

1) Nested Transaction Models: The “Nested Transaction
Model” [26] was an influential extension of the flat transaction
model and a transaction is modelled as a set of recursively
defined sub-transactions resulting in a tree of transactions,
where leafs are flat transactions representing data operations.
In the nested model a child transaction is only allowed to
start when the parent has started and a parent in turn can only
terminate if all its children have terminated. If a child fails the
parent can initiate alternatives, a so called contingency sub-
transaction. However, if the parent transaction aborts all its



455

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

children are obligated to also abort. This in turn requires to
rollback already committed results.

An extension to the nested transaction model was developed
by Weikum and Schenk [27] who introduced the “Open Nested
Transaction Model” that allowed, in contrast to Moss’s model,
other concurrent sub-transactions to read pending results. In
Moss’s model only a parent is allowed to read the result of
its children, however, in the open version other concurrent
sub-transactions are also allowed to read committed results.
The results of a child transaction are only durable after the
commit of the parent. To prevent inconsistencies only those
sub-transactions that commute with the committed ones are
allowed to read their results. Read transactions commute for
instance.

From an implementation point of view, the nested trans-
action model can be emulated by savepoints, furthermore the
model is a generalisation of savepoints (see [25], Chapter 4.7).
Gray and Reuter also discuss the distinction between nested
and distributed transactions and one difference is the nested
structure is determined by the functional decomposition of
the application, hence how the application views a “Sphere
of Control” [18]. The structure of a distributed transaction is
determined by the distribution of the data. For example, if a
transaction must join two tables each stored at a different node,
then of course, the transaction must access both nodes and
can be modelled and executed as a nested transaction, but the
dependencies are different. In the open variant nested model
a transaction can commit and abort independently, whereas a
commit or abort in the distributed model always depends on
each other and only one outcome is possible.

The closed and open nested transaction model can be seen
as the seminal work concerning Advanced, Workflow, or
Business Transaction Models (see [7], [16], [17]).

An important transaction model that provides a formal
correctness criteria for compensation is the Sagas model [12].
A Saga is a transaction that consists of a set of ACID sub-
transactions, however with a predefined execution order, and
further a set of corresponding compensating sub-transactions
must be defined. Notice a compensation transaction is manda-
tory for each sub-transaction. A Saga completes successfully if
either each sub-transaction has committed or the correspond-
ing compensation sub-transaction commits. Generally, a Saga
transaction differs from a Chained Transaction [25], where
already committed results cannot be undone, but especially this
is important to fit the requirements for long-lived transactions.
Moreover, a compensation transaction allows for a relaxation
of full isolation, also atomicity, and increases inter-transaction
concurrency. Locks can be released as soon as a (sub-
)transaction commits, even if the parent is still active because
the rollback is performed by a separate compensation transac-
tion which does not affect the serializability. And, since each
transaction in the Sagas model must define a compensation
transaction, also the cascading of errors can be handled, at least
theoretically. An extension of the Sagas model is the “Nested
Sagas” model [29] that provides mechanisms to structure steps
involved within a long running transaction into hierarchical

transaction structures. However, one drawback of each model
that heavily applies compensation is the requirement for a
compensation operation and as soon as non compensatable
transactions exist, compensation is not feasible.

In this section, some important aspects of nested trans-
actions and the compensation have been briefly explained.
From a historical view, nested transaction models and the so
called “Advanced Transaction Models” (ATM) [16] were the
foundation for a new generation of transaction models, so-
called workflow transaction models [30]. Advanced Transac-
tion Model are sometimes claimed to be less general and more
application specific compared to the ACID model. Workflow
transaction models do not meet this criticism to the same
extent.

Compared to a nested transaction where usually only leaf
nodes represent data operations, within a workflow transaction
model each node can modify data. A more general definition
is: the flat transaction model has evolved vertically to transac-
tion trees, whereas workflows or generally long-computations
represent also a horizontally evolution. Both workflow trans-
action models and ATM have been rarely implemented in the
database layer, rather they have been applied in transaction
coordination protocols at the middleware level.

2) ConTracts: Another important transaction model for
long-computations is the ConTracts model, introduced by [31]
and revised in [32]. This is a conceptual framework for the
reliable execution of long-lived computations in a distributed
environment. The core module of the ConTracts model is
the ConTract script that describes a long-lived computation
similar to a workflow model. The steps involved within this
computation are not single statements but represent programs,
methods, or applications, which can be invoked through a
call interface. In the ConTracts model, the application is
responsible for what happens inside a step, and the ConTract
script is responsible for keeping the control flow alive between
the involved steps, i.e., applications. Similar to the Saga model,
each step must define its compensation step to relax isolation,
reduce blocking time and thereby increase parallelism. In
addition, each step must define an pre- and post-condition (the
ConTracts model calls pre- and post-condition entry- and exit-
invariant. So, the scope of an in-variant is the step. However,
we believe that these invariants are actually conditions as the
scope of an invariant should be the governing application. That
is, an invariant needs to be true over the entire computation).
The pre-condition must hold (validate to true) before the step
can be invoked. For instance, an pre-condition can check if the
data required by the step is locked. So while compensation
facilitates non-blocking, the pre-condition can ensure non-
blocking. Beside the pre-condition an post-condition must also
validate to true before control can pass to the next step.
The concept of post-conditions allows other steps executed
in the future to step back, thus an post-condition can be part
of another pre-condition. The ConTracts model provides its
own definitions of transactional properties and recovery, and
to avoid the shortcomings of the atomicity property a two-
layered recovery mechanism has been introduced. Recovery
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and Serializability are derived from the classic serializability
and strictness and the notion of “Prefix Reducibility” [4].
The difference, however, is, since ConTracts are not isolated,
the model introduces conditions that define the structural
dependencies among the different steps. Such a definition
however is not as straightforward as for conflicts between write
operations within a schedule. Not only the data an operation
accesses must be considered, but the semantics of the whole
step must be considered to determine any conflict with other
activities.

Regarding recovery, the model distinguishes between recov-
ery at the step and at the script level. Recovery at the script
level is important to keep the overall computation consistent,
which means, after a failure of a step occurs other steps active
during this time need to be recovered, too; this so called
forward recovery is compensation.

One strength of the ConTract model is its precise definitions
for compensation. The general problem of compensation is
that if compensation of a step is required no other concurrent
transaction should violate the compensation itself. This leads
to the definition of “indirect compensatability”, “indirect com-
pensation chain”, and “absolute compensatability”. Indirect
compensatability defines that within an ordered execution of
two steps s1 and s2 with their corresponding compensation
steps cs1 and cs2 the compensation must follow the same
order to maintain the consistency. The indirect compensation
chain then consists of “all steps for which the indirect com-
pensation relation holds.”. Absolute compensatability defines
a compensation step that is independent of any other com-
pensation step, thus, even an arbitrary execution leads to a
compensated result. The ConTracts model makes no further
statements how far a running workflow must be rolled back.
Based on the definitions provided within the model a complete
roll back is foreseen. The partial rollback of workflows is
particularly addressed in Leymann’s concept of “spheres of
joint compensation” [19].

Leymann’s work [19] basically is built upon the concept
of spheres of control, Sagas, and the ConTract model. The
novelty of his concept is to explicitly enable a partial rollback
of an active workflow and not to rollback the entire workflow,
or more generally: the entire affected tree of transactions. This
reflects more the real situation of long-lived computations in
which not all work must be undone.

The idea is to define a sphere as: “any collection of activities
(steps) of a process is called Sphere of Joint Compensation
(sphere) if either all activities have run syntactically successful
or a all activities must have compensated” [19]. The compen-
sation itself is modelled by adding a compensation activity to
each sphere and activity.

The compensation itself is basically performed by the
execution of all compensation steps of each activity in reverse
order. A composed activity, that is an activity consisting of
other activities, can request a shallow or a deep compensation
and in the latter case all associated compensation operations of
the composed activities have to be executed too. If a shallow
compensation is requested only the compensation associated

with the root activity is executed. An integral compensation
only performs the compensation associated with the sphere
and running the compensation of each encompassed activity
is referred to as discrete compensation. Leymann also provides
compensation modes that define how compensation can impact
the neighbourhood of the activity or sphere, the so called
“Proliferation Property”. When an activity must be compen-
sated the proliferation property defines if the compensation
of the whole sphere must be executed, too. This, in turn,
must validate the integral property and either the sphere’s
compensation must be executed only, or the compensation of
each activity. Since spheres can overlap, the model provides a
definition of how to treat cascading compensation. Generally,
this compensation model can be seen as very complete beside
the general drawbacks of compensation discussed in the next
section, and its concepts have been considered by the Business
Process Execution Language (BPEL) and Business Process
Modelling Notation (BPMN) standard.

3) Concurrency Control for Transactional Processes: The
theoretical framework by Schuldt et al. [33] to reason about
concurrency control and recovery in transaction processes is
an attempt to unify the theory of concurrency control and
recovery for transactional business processes (processes) or
workflows. Schuldt et al. argue that the challenge we face is
to design a single correctness criterion for both concurrency
control and recovery that also copes with the added structure
found in processes. They further observed that the flow of
control introduced by processes is one of the basic semantic
elements, and that a correct execution must obey the already
existing ordering constraints among their different operations
and alternative executions. These constraints determine how
activities of the process can be interleaved during execution.
They further state that the different atomicity properties among
the involved systems can not always fit the strong requirements
of models applying compensation, e.g. ConTracts, where each
operation requires its inverse because it is not guaranteed to
find an inverse.

Similar to other models, they extend the notion of atomicity
by considering also alternatives or a partial rollback of already
executed steps within the process. In practice, tasks are often
executed in parallel to increase the time to market, and
regarding concurrency control without considering recovery
an ordering of these tasks is sufficient, however if recovery is
taken into account, and for one of the steps no compensation
exists, the situation becomes different. Their example is a
production and a corresponding test within a manufacture
where the production usually has no inverse function (at least
no acceptable one). Thus, the production is only allowed to
start if the test terminated successfully because a concurrent
execution can lead, in the case of compensating the test, to an
invalid production if both are executed concurrently.

The general point they address is more how to maintain
correctness if no compensation is given. What follows in their
paper is a theoretical model for correct process schedulers
basically oriented on the Flex Model [34], [35]. The Flex
model introduces, beside the notion of a compensatable sub-
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transaction, a “retriable” sub-transaction that can be retried and
eventually succeeds if retried a sufficient number of times,
and a “pivot” sub-transaction that is neither retriable nor
compensatable. Concerning the details of the framework and
its definition for correct schedules, a more general explanation
is provided here. At the database level the serializability of
operations can be expressed by their conflict relationship, and
similar a conflict relationship is defined between activities,
however, at the process level. But, since the internals of an
operation are usually not exposed by an activity the whole
activity needs to be classified to define its conflict relationship
to other activities. Based on the classes of retriable, com-
pensatable and pivot sub-transactions, activities are classified
and a commutativity, a compensation and a effect-free activity
rule can be expressed. These rules in turn can be exploited
by a process task scheduler to produce a correct process
schedule. Summarising, their framework is based on the Flex
transaction model and provides the theoretical foundation to
ensure and reason about the correctness of process schedules
by considering both, concurrency control and recovery within
one model.

4) Web Services and Transactions: A model for the dis-
tributed management of concurrent Web service transactions
is introduced in [36]. Alrifai et al. claim that in the “open and
dynamic Web service environment, business transactions enter
and exit the system independently and under relaxed isolation
transactional dependencies can emerge among independent
business processes which must be taken into account when
compensation is required in order to avoid inconsistency
problems.” Within a closed environment inconsistencies can
be controlled more easily because the dependent transactions
are known. Their work combines an optimistic decentralised
variant of the SGT (Serialization Graph Testing) protocol
that applies an Edge Chasing algorithm to detect potential
global waiting cycles with a transaction scheduling algorithm
that selects the service provider based on their scheduling
offers. The architecture foresees a multi-layered architecture
consisting of a process, a Web service and a resource level
and applies the Multilevel Nested Transaction Model [4], [27]
where each leaf has the same distance to the root. Conflicts
at the resource level are detected by a separate resource-level
concurrency control module, at the service level a service-level
concurrency control module is responsible to detect conflicts.
Conflicts are usually defined by conflict relations expressed as
a transactional dependency graph in their model and global
consistency is ensured if each local system guarantees local
consistency as in distributed database systems (see commit-
order and rigorous scheduling [4]). They apply a 2PC as
atomic commitment protocol.

Their model extends the OASIS Web-Service standards WS-
Coordination [37], WS-Atomic Transaction [38], and WS-
Business Activity [39] (see section IV-A5). However, their
Multilevel Nested Transaction Model only allows commutative
concurrent sub-transactions to read pending results. To define
the commutativity of transactions each transaction type is
divided into atomic steps with compatibility sets according

to its semantics. Transaction types that are incompatible and
are not allowed to interleave at all. Farrag and Özsu [40]
already refined this method by allowing some interleaving
for incompatible types and assuming fewer restrictions for
compatibility. The problem is that finding the compatibility
sets for each transaction step is a O(n2) problem. Alrifai
et al. apply a conflict matrix that defines the conflict sets
of a transaction and hence their approach must deal with a
quadratic complexity too, even their conflict predicates do not
solve the problem because their purpose is only to enable a
conflict detection across autonomous and independent systems.

5) Web Service Transaction Standards: This section briefly
explains and mentions some specification for protocols that
allow for distributed transaction processing in a XML Web
service (WS) architecture. The reason for such a brief ex-
planation is that the specifications are based on the ideas of
the nested and long running transactions, which have been
discussed already (see section IV-A1).

The so called “WS Transactions specifications” are the “WS
Coordination” [37], the “WS Atomic Transaction” [38], and
the “WS Business Activity” [39] specification. In terms of a
WS architecture, they relate to the Quality of Service (QoS)
layer and all these specifications are built on top of the Simple
Object Access Protocol (SOAP) and Web Service Description
Language (WSDL) standards.

The core element is the WS-Coordination (WS-CO) frame-
work that is an “extensible framework for providing protocols
that coordinate the actions of distributed transactions” [37].
The framework allows for a mechanism to register partners
and to allow for a generic control of their interaction. If a
transactional conversation is required an additional framework
that provides a specific atomic commitment protocol, a so
called completion protocol, must be plugged into the WS-
CO framework. The WS Atomic Transaction or the WS
Business Activity framework are such frameworks that provide
completion protocols.

The WS Atomic Transaction (WS-AT) framework provides
two completion protocols namely a volatile 2PC and a durable
2PC. Whereas the first one is intended for services that operate
on volatile, i.e., non persistent data, the second one is, as the
name suggests, for services operating on persistent data. Both
protocols can be used within the same transaction. However,
in such a case the volatile services must complete before
the durable ones. Beside the extensions required to comply
with the WS specification family, the WS-AT specification
addresses the well-known 2PC as introduced by “The Open
Group” [41] and allows for distributed “all-or-nothing” trans-
actions.

In contrast to the all-or-nothing principle of WS-AT, WS
Business Activity (WS-BA) allows for hierarchical nested
scopes possibly requiring compensation, relaxed isolation,
autonomous participants, or abort autonomy for instance. Gen-
erally, WS-BA is a specification for the management of nested
transaction and a so called “mixed outcome” of a transaction is
possible; for example some transactions terminate committed,
some aborted, and others compensated.
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In summary, the WS transaction specifications, especially
the WS-BA is an example for a technology that is able to
cope with nested and complex transactions and for more
details on WS-CO, WS-AT or the WS-BA it is referred to
the specifications.

6) Optimistic Concurrency Control: In the early eighties,
Kung [13] introduced OCC, which has not gained as much
consideration as CC protocol in commercial database systems
as locking has. The PyrrhoDB [42] is one database we are
aware of that implements OCC as CC mechanism.

Härder [14] sees the challenge in merging the workspace of
a transaction with the actual state of the database. “Their es-
sential problem consists of merging these copies during COM-
MIT processing thereby regaining a transaction-consistent
database image”. This asynchronism is especially challenging
“when these copies do not match with the units of transfer
(pages)” [14] and when different copies of the database have
to be kept consistent. Notice, Härder’s critique about the
merging of copies seems obsolete and outdated as Multi-
Version Concurrency Control protocols as widely used by
Oracle or PostgreSQL, for example, are subject to the same
problem of merging copies.

Härder goes even further and states that even if OCC has
been defined for applications where conflicts are unlikely,
“locking also behaves quite well in such a particular environ-
ment (no wait or deadlock conflicts), there seems to be little
reason to introduce a specialised control mechanism”. Härder
refers to an empirical comparison that shows that with OCC
the abort rate of transactions is higher compared to locking.
This is due to the property that in locking a transaction waits
rather than restarts. In this case the restart of a transaction
must be considered as being equivalent to an abort. In other
words, as stated by Härder, to wait increases the probability
for success. It is worthwhile to discuss this issue in a little bit
more detail here. One particular problem with OCC is that
it is not possible to get any guarantees in advance. “First
come, first served” is the result of the optimistic behaviour.
By contrast, in locking a sophisticated locking schema can
guarantee a transaction that updates will succeed if constraints
are not violated, and in the absence of physical errors. Hence,
if the update rate on a field is high, the abort rate of locking
is less than with OCC, but for the price that a transaction has
to wait. In this sense waiting is not wasting.

Franaszek et al. [23] come up with the idea to investigate
“the potential reduction in the required concurrency level via
the use of what might be viewed as the pre-fetch property of
transactions which run but do not commit.” These transactions
are said to run in a “virtual execution mode”. Particularly
this means a transaction is executed twice. The first execution
is to determine the required data, calculate the access paths,
and load the data into the cache. The second execution is
to actually commit the transaction with all the data in cache
already and a lock pre-climbing that requests all locks in
one atomic step, which is feasible since the entire data set is
known already. So, the idea of Franaszek’s et al.’s mechanism
is not to restart a transaction even though it is known that the

transaction will fail at commit time and to benefit during the
second execution from the information gathered at the first
run instead. One of the most important considerations thereby
is the notion of “Access Invariance” that is a transaction
will “with high probability perform the same operations on
the same subset of objects without regard to the implied
serial order of execution.” This assumption is adequate as
it would mean the correctness notion of serializability would
be inadequate else. The authors emphasise that there can be
indeed conflicts between transactions or constraints that might
permit transactions from commit, but neither of them does
affect the access invariance in general.

Despite the rather sceptical note by Härder as well as
by Mohan [43] and the fact that OCC has not been imple-
mented by many commercial database vendors as a basic
CC mechanism, OCC fits well into a disconnected computing
architecture where consistency preserving mechanisms are
required as part of a Middleware solutions (see [44]) Laux et
al. [45] thoroughly analyse Row Version Verification (RVV) as
an implementation of OCC if the database does not support
“optimistic locking” per se and their patterns to implement
RVV for some common databases and data access technologies
at the MW layer fits well into a disconnected architecture.

B. Related Work

As presented in the last section, there are many transaction
models that consider a nested and recursive transaction struc-
ture. The ACTA framework [46], [47] provides an independent
language to describe these complex transaction models by
demarcating aspects of atomicity and isolation. Its drawback is
the large terminology and the missing execution semantics. Its
nature is purely descriptive. Eventually, beside the aforemen-
tioned transaction models and their well understood concepts,
the ACTA framework also inspired our work. However, we be-
lieve that to use Boolean expressions to describe transactional
dependencies is easier to comprehend and reduces the large
terminology, which can be found in ACTA. And, a satisfaction
expressions is computable.

The second key piece of this work, the classification of
data, is inspired by [3] and [6]. Kraska et al. use statistical
measures to determine a conflict probability and adapt the
CC mechanism accordingly. Since their work focuses on
the Cloud, replication plays an important role too in their
model. By contrast, this work does not consider replication.
As described in Section III-D, the data classes are according
to Laux and Lessner’s work on Reconciliation [6] and ONeil’s
work [21] on the Escrow data type. Furthermore, we are
specifically interested in the question how the classficiation of
data can be exploited also concerning the isolation property.

Many domains, for example, object orientation, SOC,
or Mobile Computing are confronted with disconnected
situations if an increased local autonomy is required. The
assumption in this work, that there is actually no difference,
and all software components should just run in a disconnected
mode with separate read and write phase. This is inspired
by work on OCC [13], [14], [22], [23], [45] and to divide a
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component into such phases is also similar to the Command
Query Pattern [10], however, in a larger scale.

V. CONCLUSION, CONTRIBUTION AND FUTURE WORK

The contribution of this work is an expression language
for transactional dependencies if transactions are composed
together. An expression is based on Boolean algebra and
can be used by a transaction manager to coordinate the
transactional composition because the execution semantics is
derivable.

Moreover, since we believe that an application of a CC
mechanism should consider the semantics of data and oper-
ations to better trade-off the consistency needs and incurring
costs, and not follow the one CC mechanism fits all needs
paradigm, we have introduced five different data classes using
a certain CC mechanism. In this context we have also analysed
the implications for isolation in a nested transaction. Moreover,
our classification complies with an optimistic attitude, which
in turn complies with the needs of current disconnected and
asynchronous computing architectures.

To impose a phase structure on disconnected components
and analyse the implications on transaction management is
another contribution.

Our goal in the long term is to allow for even better trade-
offs similar to [3]. In our vision applications should express
their transactional requirements like the required level of con-
sistency, processing time, and costs. Due to the composition
this also requires a model that copes with the composition of
requirements, raising the needs for metrics. The classification
of data and a language to express transactional dependen-
cies are first steps. For the future, we also envision to run
transactions in different lanes according to their semantics
and requirements. Such an allocation and division could help
to easier verify and trade-off scalability and consistency de-
mands.

Simulation results that justify a classification of data are
probably the most missing piece in this work. Currently, a
prototypical transaction simulation and reasoning framework
is still under development.
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[31] Helmut Wächter and Andreas Reuter. The ConTract Model. In Database
Transaction Models for Advanced Applications, pages 219–263. Morgan
Kaufmann, 1992.



460

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] Andreas Reuter and Kerstin Schneider and Friedemann Schwenkreis.
ConTracts Revisited. In Sushil Jajodia and Larry Kerschberg, editors,
Advanced Transaction Models and Architectures. 1997.

[33] Heiko Schuldt and Gustavo Alonso and Hans-Jörg Schek. Concurrency
Control and Recovery in Transactional Process Management. In Pro-
ceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 31 - June 2, 1999, Philadelphia,
Pennsylvania, pages 316–326. ACM Press, 1999.

[34] Sharad Mehrotra and Rajeev Rastogi and Henry F. Korth and Abraham
Silberschatz. A Transaction Model for Multidatabase Systems. In
ICDCS, pages 56–63, 1992.

[35] Ahmed K. Elmagarmid and Yungho Leu and Witold Litwin and Marek
Rusinkiewicz. A Multidatabase Transaction Model for InterBase. In
Dennis McLeod and Ron Sacks-Davis and Hans-Jörg Schek, editors,
16th International Conference on Very Large Data Bases, August 13-
16, 1990, Brisbane, Queensland, Australia, Proceedings, pages 507–518.
Morgan Kaufmann, 1990.

[36] Mohammad Alrifai and Peter Dolog and Wolf-Tilo Balke and Wolfgang
Nejdl. Distributed Management of Concurrent Web Service Transac-
tions. IEEE T. Services Computing, 2(4):289–302, 2009.

[37] Oasis. Web Services Coordination (WS-Coordination), 2009.
[38] Oasis. OASIS Web Services Atomic Transaction Version 1.2, 2009.
[39] Oasis. OASIS Web Services Business Activity Version 1.2, 2009.
[40] Abdel Aziz Farrag and M. Tamer Özsu. Using semantic knowledge
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