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Abstract—Software component repositories have adopted semi-

structured data models for representing syntactic and semantic 

features of handled assets. Such models imply key challenges to 

search engines, which are related to the design of indexing 

techniques that ought to be efficient in terms of storage space 

requirements. In such a context, by applying clustering 

techniques before indexing component repositories, this paper 

proposes an approach for reducing the number of assets in the 

repository, and consequently, the size of index files. Based on 

an illustrative repository, outcomes indicate a significant 

optimization in the number of assets to be indexed, and, as a 

consequence, produces significant gains in storage 

requirements. Besides, it has been assessed in terms of two 

different clustering evaluation methods, evincing that the 

proposed approach can be considered a good clustering 

algorithm because produces compact and well-separated 
clusters. 

Keywords - Component repositories; clustering techniques; 

indexing. 

I.  INTRODUCTION 

By enabling different software developers to share 

software assets, software component repositories have the 

potential to improve software reuse level. However, reuse of 

software assets is in general a hard task, particularly when 

search and selection must be conducted over large-scale asset 

collections. Therefore, in repository systems, it is important 

the development of search engines that can help searching, 

selecting and retrieving required software assets. 

According to Orso et al. [1], the aim of a repository 

system is not to store software assets only, but also metadata 

describing them. Such metadata provides information 
employed by search engines for indexing stored assets. In 

such a direction, as endorsed by Vitharana [2], component 

description models can adopt high level concepts for 

describing component metadata, making possible to express 

syntactic and semantic features, and so, facilitating 

developers to search, select and retrieve assets. In practice, 

currently available component description models have 

adopted approaches based on semi-structured data, more 

specifically XML, allowing structural relationships among 

elements to aggregate semantic to textual values. As 

examples, it can be mentioned RAS [3] and X-ARM [4]. 
However, indexing techniques based on textual 

restrictions are not efficient for semi-structured data. Such 

techniques are unable of indexing structural relationships 
among terms, compromising query precision with false-

positives. Thus, the adoption of semi-structured data implies 

challenges related to the design of indexing techniques that 

ought to be efficient in terms of storage space requirements, 

processing time and precision level of queries, which can be 

constrained by textual and structural restrictions. 

Several proposals can be found in the literature for 

dealing with such problems. Despite their relevant 

contributions, existing techniques do not meet storage space 

and query processing time requirements [5], and also query 

precision level [6]. In such a scenario, the proposal presented 
by Brito et al. [7] represents a noticeable indexing technique 

based on semi-structured data, which can be considered 

precise and efficient in terms of query processing time, but 

suffers from problems related to storage space requirements. 

Such problems occur because generated index files are 

bigger than the input database. Thus, in the context of large-

scale software component repositories, it is still a 

challenging open issue to design indexing techniques that 

minimize the storage space requirements without excessively 

impacting on query processing time and precision.  

In such a context, based on the adoption of clustering 
techniques, this paper proposes an approach for reducing the 

number of assets in the repository, and consequently, 

optimizing the storage space requirements. It is an extended 

and improved version of [8]. The clustering heuristic 

proposed is based on the classical hierarchical algorithm and 

K-means [9]. Taking into account a large-scale component 

repository, the proposed approach identifies clusters (groups) 

of similar software assets and generates new representative 

assets, which in turn must be handled by the indexing 

technique supported by the search engine of the repository. 

Each representative asset has a simplified description, also 

based on semi-structured data, which makes reference to all 
original assets that belong to its cluster of similar assets. In 

order to do that, the paper also proposes a similarity metric 

that has the aim of indicating the set of assets that belongs to 

the same cluster. The bigger the similarity among assets in 

the repository, the lesser is the number of identified clusters, 

and as a result, the lesser is the number of representative 

assets that must be indexed by the search engine, enabling to 

save storage space. In order to validate the proposed 

approach, a random database composed of 14.000 assets has 
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been generated and results indicate that there is a significant 

optimization in terms of the number of assets to be indexed. 

The remainder of this paper is structured as follows. 

Section II describes related techniques, evincing the original 

initiative of applying clustering techniques in the context of 

indexing software component repositories. The adopted 
component description model, called X-ARM, is briefly 

presented in Section III, identifying the main types of assets 

and their relationships. Then, Section IV presents the 

proposed clustering approach for reducing the number of 

assets to be indexed, and so, optimizing storage space 

requirements. After that, some outcomes observed in a 

preliminary evaluation performance are presented in Section 

V. In conclusion, Section VI presents some final remarks and 

delineates future work. 

II. RELATED TECHNIQUES 

Taking into account that the problem of data clustering is 

NP-hard, several heuristics have already been proposed. Xu 
and Wunsch [10] present an interesting review of the 

research field.  In [11], Feng shows that clustering 

algorithms, in particular, hierarchical algorithms and K-

means [9], are equivalent to optimization algorithms of a 

fitness function. 

Clustering techniques have been used in several software 

engineering domains. For example, Mancoridis et al. [12] 

applied clustering in the domain of software maintenance, by 

introducing the concept of software modularization as a 

clustering problem for which search is applicable. A tool 

called Bunch [13] is proposed allowing the application of 
several clustering heuristics to perform search based 

software modularization. Chiricota et al. [14] investigates the 

application of clustering techniques in the domain of reverse 

engineering, in particular, adopting such techniques to 

recover the structure of software systems. Wu et al. [15] 
compares several clustering approaches proposed in the 

context of software evolution. In [16], Li et al. proposes the 

adoption of clustering techniques for encapsulating software 

requirements. Cohen et al. [17] showed how search based 

clustering algorithms could be applied to improve garbage 

collection in Java programs. 

Although clustering techniques are applied in several 

problems of software engineering, for the best knowledge of 

the authors, these techniques have never been adopted in the 
context of indexing software components repositories. 

Therefore, it seems an original contribution to apply such 

techniques when indexing component repositories.   

III. THE X-ARM MODEL 

In order to express syntactic and semantic features of 

software components, Frakes [18] suggests the adoption of 

component description models, which provide a set of 

information that allows search systems to index and classify 

all types of related assets. In such a direction, this paper 

explores the X-ARM description model, which adopts a 

XML-based semi-structured data model, expressing not only 

syntactic information but also semantic properties [4]. 

Besides, X-ARM enables describing several types of 

software assets, which can be produced in component-based 

development processes, proving the required semantic for 

representing their relationships. 

As illustrated in Fig. 1, X-ARM allows describing 
component and interface specifications, as well as 

component implementations.  The component and interface 

specifications can be described in a way that is independent 

or dependent of component model. On the one hand, 

independent specifications do not take into account any 

feature or property of component models, such as CCM, 

JavaBeans, EJB and Web Services. On the other hand, 

dependent specifications ought to consider features and 

properties related to the adopted component models.  

In X-ARM, both dependent and independent interface 

specifications are described as a set of operations. Each 

operation has a name, a set of input or output parameters and 
a return value. In component-based development processes, 

dependent interface specifications must be in conformance 

with their independent counterparts. So, in Fig. 1, it can be 

observed that dependent interface specifications must 

reference to their respective independent interface 

specifications.  
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Component 

Specification

Dependent 
Component 
Specification

Component 
Implementation

Independent 
Interface 

Specification

Dependent 
Interface 

Specification

required provided

Operation

1

1
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1 ..*

1 ..* 1 ..*
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*

provided

1 ..*
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Figure 1. Relationships between artifacts. 

Dependent and independent component specifications 

can make reference to a set of provided and required 

interface specifications. However, it must be noticed that 

independent component specifications can refer to 

independent interface specifications only. Similarly, 

dependent component specifications can refer to dependent 

interface specifications only. In component-based 
development processes, dependent component specifications 

must be in conformance with their respective independent 

counterparts. Therefore, note that dependent component 

specifications must make reference to their respective 

independent component specifications. 

In summary, dependent interface and component 

specifications must be in conformance with their respective 

independent specifications. Besides, for each independent 
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specification, several dependent specifications can be 

described, each one in conformance with a given software 

component model. 

In a similar way, in component-based development 

processes, component implementations must be in 

conformance with their respective dependent component 
specifications. So, in Fig. 1, note that component 

implementations must refer to their correspondent dependent 

component specifications.  Besides, for each dependent 

component specification, several component 

implementations can be realized. 

As an example of the description of an asset in X-ARM, 

Fig. 2 illustrates a fragment of a dependent component 

specification. In Fig. 2, all lines are numbered and many 

details have been suppressed for didactic purposes. Line 1 

represents the asset header, in which can be found the asset 

identifier (id). Lines 2 to 4 make reference to the 

independent component specification, from which the 
described asset must be in conformance with. Then, lines 5 

to 14 refer to all dependent interface specifications, which 

are provided by the described dependent component 

specification. Although note illustrated in Fig. 2, required 

interfaces can also be specified in a similar way. 

01 <asset name=“dependentCompSpec-X”

id=“compose.dependentCompSpec-X-1.0-beta”>

02     <model-dependency>

03         <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04     </model-dependency>

05     <component-specification>

06         <interface>

07             <provided>

08                 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09             </provided>

10             <provided>

11                 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12             </provided>

13         </interface>

14     </component-specification>

15 </asset>

Figure 2. Component specification in X-ARM. 

IV. A CLUSTERING BASED INDEXING APPROACH 

As largely recognized in the literature, the task of 

indexing repositories based on semi-structured data is a 

relevant issue [5][6][7]. One of the major challenges is to 

provide an indexing mechanism that reduces storage space 

requirements, but without excessively impacting on query 

processing time and precision level. 

In such a context, this paper proposes a solution for 

optimizing the storage space required by index files. To do 

that, the proposed approach constructs a clustered repository, 

which is composed of representative assets of the set of 

software assets stored in the original repository. Therefore, 
instead of indexing the original repository, the adopted 

search service ought to index the reduced set of 

representative assets, which make reference to the original 

assets. In order to identify the groups of similar assets, and, 

consequently, to construct the representative assets that 

compose each group, the paper also proposes the adoption of 

data clustering techniques. 
Clustering techniques [9] consist of three basic phases: 

(i) extraction of features that express the behavior of the 

elements to be clustered; (ii) definition of the similarity 

metric in order to compare evaluated elements; and (iii) 

adoption of a clustering algorithm. The phase of extracting 

features consists in defining what information is relevant to 

express the evaluated element and how information is 

quantified. Such information defines an attribute vector and 

thus an element can be represented as a point in the 

multidimensional space. The similarity metric expresses in 

quantitative terms the similarity between elements. In 

general, a function is defined for such a purpose, in which 
the Euclidean distance [9] between two points (elements) is 

one of the more common adopted metrics. Finally, the data 

clustering algorithm is a heuristic that has the aim of 

generating groups of elements, in which each group is 

composed of similar elements, according to the adopted 

similarity metric. 

A. Relevant Features 

The approach proposed herein applies the clustering 

technique taking into account the five types of assets that can 

be stored in the repository, that is: dependent and 

independent component specifications, dependent and 

independent interface specifications and component 

implementations. The clustering technique is applied 

separately for each type of asset. Therefore, each type has a 

distinct attribute vector for representing its features. 

The relevant features of an independent interface 

specification are its defined operations, considering their 
names, input and output parameters and return values. 

Consequently, different independent interface specifications 

are considered similar when they have in common a 

considerable subset of defined operations. 

Taking into account dependent interface specifications, 

the relevant features are the referenced independent interface 

specification together with their operations. Thus, different 

dependent interface specifications are considered similar 

when they refer to the same independent interface 

specification or have in common a considerable subset of 

defined operations. 
In relation to independent component specifications, for 

each one, the relevant feature is the set of provided 

independent interface specifications. So, different 

independent component specifications are considered similar 

when they have in common a considerable subset of 

provided independent interface specifications.  

For a dependent component specification, the relevant 

features are its referenced independent component 

specification, as well as its set of provided dependent 
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interface specifications. Therefore, different dependent 

component specifications are considered similar when they 

refer to the same independent component specification or 

have in common a subset of provided dependent interfaces. 

Finally, for a component implementation, the relevant 

feature is its referenced dependent component specification. 
Hence, different implementations of the same dependent 

component specification are considered similar. 

As an example, Table I presents the attribute vector of 

the asset illustrated before in Fig. 2.  As can be noticed, the 

asset is a dependent component specification. Therefore, the 

attribute vector is composed of its referenced independent 

component specification (lines 2 to 4) and its set of provided 

dependent interface specifications (lines 5 to 14). 

TABLE I.  ATTRIBUTE VECTOR OF THE ASSET X. 

ID compose.dependentCompSpec-X-1.0-beta 

Independent 

Component 

Specification 

compose.independentCompSpec-Z-1.0-stable 

Dependent 

Interface 

Specification 

compose.dependentIntSpec.A-2.0-stable 
compose.dependentIntSpec.B-3.0-stable 

B. Similarity Metric 

The similarity metric is defined based on the asset 
attribute vector. Since the attribute vector differs between 

distinct types of assets, the similarity metric is also different 

for each type of asset. In this approach the similarity between 

two assets is quantified by an integer number, called 

distance. To avoid negative distances, we defined that the 

initial default distance (di) between two assets is 300. The 

similarity criterion is applied and this value may decrease, in 

such a way that assets are considered more similar when the 

final distance (df) between them approximates to zero.   

 For two dependent component specifications a and b, the 

similarity is defined by (1), where k(a,b) = 0 if both assets 
refer to distinct independent component specifications; 

otherwise k(a,b) = 200. Let I be the number of dependent 

interface specifications provided by both assets and U be the 

set of dependent interface specifications provided by at least 

one of them. The term p(a,b) is defined as p(a,b) = I/U. As 

can be noticed, when p(a,b) is 1 both assets provide the same 

set of dependent interface specifications, and thus they are 

more similar. 

 ��(�, �) = �	 − �(�, �) − �(�, �) × 100 (1) 

In the case of two independent component specifications 
a and b, the similarity is given by (2), where p(a,b) is 

calculated as explained before for dependent component 

specifications, but considering the number of independent 

interface specifications provided by both assets. So, let I be 

the number of independent interface specifications provided 

by both assets and U be the set of independent interface 

specifications provided by at least one of them. The term 

p(a,b) is defined as p(a,b) = I/U. Similarly, when p(a,b) is 1 

both assets provide the same set of independent interface 

specifications and thus, they are more similar. 

 ��(�, �) = �	 − �(�, �) × 300 (2) 

Analogously, for two dependent interface specifications a 

and b, the similarity is calculated as expressed in (3), where 

l(a,b) = 0 if both assets refer to distinct independent interface 

specifications; otherwise,  l(a,b) = 200. The term op(a,b) is 

the ratio of common operations of both assets in relation to 

the union of operations of these assets. Two operations are 

considered similar if they have the same name, the same 

return type and a percentage of coincidence in parameters; 

the value of the percentage is defined by the user.  

 ��(�, �) = �	 − �(�, �) −  ��(�, �) × 100 (3) 

Taking into account two independent interface 

specifications a and b, the similarity is calculated by (4), 

where op(a,b) represents the percentage of common 

operations provided by both interfaces, exactly as explained 

before for dependent interface specifications.  

 ��(�, �) = �	 − ��(�, �) × 300 (4) 

Finally, for two component implementations a and b, the 

similarity is given by (5), where q(a,b) = 0 if both assets 

refer to distinct dependent component specifications; 
otherwise q(a,b) = 300. As can be noticed, when q(a,b) is 

300 both assets implement the same dependent component 

specification, and thus they are similar. 

 ��(�, �) = �	 − �(�, �) (5) 

As an example, consider two dependent component 

specifications C and D, whose attribute vectors are given in 

Table II and Table III, respectively. As these assets refer to 

distinct independent component specifications, according to 

(1), k(C,D) = 0. In this example, C and D have a common 

interface and together provide three different interfaces. 
Thus, I = 1, U = 3 and p(C,D) = 1/3. Hence, df (C,D) = di – 

k(C,D) – p(C,D)*100 = 300 – 0 –  0.33*100 = 276,67. 

TABLE II. ATTRIBUTE VECTOR OF THE ASSET C 

ID compose. depCompSpec-C-2.0-beta 

Independent 

Component 

Specification 

compose.indepCompSpec-A-3.0-stable 

Dependent 

Interface 

Specification 

compose.depIntSpec-A-4.0-mature 

compose.depIntSpec-C-4.0-mature 
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TABLE III. ATTRIBUTE VECTOR OF THE ASSET D 

ID compose. depCompSpec-D-3.0-mature 

Independent 

Component 

Specification 

compose.indepCompSpec-C-3.0-stable 

Dependent 

Interface 

Specification 

compose.depIntSpec-B-2.0-beta 

compose.depIntSpec-C-4.0-mature 

C. Clustering Algorithm 

The proposed clustering algorithm has two stages. In the 

first stage, initially, assets are randomly chosen from the 

respective storage unit and stored in the primary memory. It 

is suggested to exhaust the memory capacity with this 

operation. Next, but still in the first stage, the classical 

hierarchical clustering algorithm [9] is applied to these 

assets. In the beginning of the algorithm each asset is 
considered a cluster.  Then, the algorithm groups 

successively the two nearest clusters, until the distance 

between clusters is greater than an established threshold, 

specified by the user. The algorithm considers the similarity 

metric described previously to compute the distance. The 

combined cluster is considered a representative asset of the 

joined clusters. For each type of asset, the representative 

asset includes the relevant features for the similarity metric 

and also references to the joined assets. At the end of the 

iteration, a directory containing all formed representative 

assets (clusters) is stored in secondary memory. 

Fig. 3 illustrates the main steps of the first stage: (a) 
assets are randomly selected from the repository; (b) clusters 

composed of similar assets are constructed by applying the 

hierarchical clustering algorithm; and (c) representative 

assets are created for representing each cluster. 

(a)

Asset

Randomly Selected Asset

Representative Asset

(b) (c)
 

Figure 3. The first stage. 

In the second stage, a K-means based algorithm [9] is 

adopted. In general terms, representative elements are 

considered centroids. However, differently from K-means, 

such centroids are not recalculated in the proposed approach. 

Indeed, each asset, not yet clustered in the first stage, is 

compared with each representative asset. The asset is 

candidate to be included in a cluster when the distance 

between the asset and the respective representative asset is 

lesser than the threshold. Fig. 4 shows the second stage. 

As depicted in Figs. 4a, 4b, and 4c, considering all 

candidate clusters, the asset is included in the cluster that has 
the minor distance and then the representative element of the 

cluster is reconstructed considering the features of the 

included asset. Otherwise, as shown in Figs. 4d, 4e and 4f, if 

the asset is not a candidate to any cluster, the own asset 

becomes a new representative element and so a new cluster.  

To conclude the description of the approach, it remains to 

explain how the relevant features of representative assets are 

determined. A representative asset, resulted from the 

combination of two clusters composed by dependent 

component specifications, includes all provided dependent 

interface specifications of the joined assets and the 

independent component specification they refer. This 
specification is the one that mostly occurs in the assets that 

form the combined cluster; in the case of a draw one 

specification is chosen arbitrarily. 

Asset                Randomly Selected Asset                Representative Asset

(a)

(b)

(c)

(d)

(e)

(f)  
Figure 4. The second stage. 

For a representative asset resulted from the combination 
of two clusters composed by independent component 

specifications, the relevant features are all provided 

independent  interface specifications of the joined assets. 

A representative asset resulted from the combination of 

two clusters composed by dependent interface specifications 

include as relevant features all operations of the joined 

assets, as well as the independent interface that the 

representative asset implements. This interface is the one 

mostly referred by the joined clusters. 
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Taking into account a representative asset resulted from 

the combination of two clusters composed by independent 

interface specification assets, the relevant features are all 

provided operations of the joined assets. 

Finally, for a representative asset resulted from the 

combination of two clusters of component implementations, 
the relevant feature is its referenced dependent component 

specification. This specification is the one mostly frequent in 

the joined assets. 

As an example of the construction of representative 

assets, considers two original assets as shown in Fig. 5 and 

Fig. 6. The representative asset resulted from the 

combination of these assets is described in Fig. 7. As both 

assets are dependent component specifications, observe that 

the representative asset includes all provided dependent 

interface specification (lines 6 to 16 of Fig. 7) and the 

independent component specification that occurs more 

frequently in the original assets. (line 3 of Fig. 7). 

01 <asset name=“depCompSpec-K”

id=“compose.depCompSpec-K-1.0-alfa”>

02      <model-dependency>

03           <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04      </model-dependency>

05      <component-specification>

06           <interface>

07                <provided>

08                     <related-asset name=“depIntSpec-R”

id=“compose.depIntSpec-R-3.0-mature”

relationship-type=“dependentInterface”/>

09                </provided>

10                <provided>

11                     <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

12                </provided>

13           </interface>

14      </component-specification>

15 </asset>
 

Figure 5. Dependent component specification K. 

01 <asset name=“depCompSpec-L”

id=“compose.depCompSpec-L-2.0-pre-alfa”>

02      <model-dependency>

03           <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04      </model-dependency>

05      <component-specification>

06           <interface>

07                <provided>

08                     <related-asset name=“depIntSpec-O”

id=“compose.depIntSpec-O-1.0-alpha”

relationship-type=“dependentInterface”/>

09                </provided>

10                <provided>

11                     <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

12                </provided>

13           </interface>

14      </component-specification>

15 </asset>
 

Figure 6. Dependent component specification L. 

V. RESULTS AND DISCUSSION 

In order to evaluate the proposed distributed clustering 
approach, a set of experiments has been carried out. The 

purpose of such experiments is three-fold. First, it is intended 

to identify the gains in terms of the number of representative 

assets to be indexed when compared with the number of 

original assets. The second purpose is to discover the gain in 

terms of storage space requirements between the clustered 

repository and the original repository. Lastly, such 

experiments have evaluated the quality of the clustering 

approach using well-know metrics.  

01 <asset name=“repDepCompSpec-A1”

id=“compose.repDepCompSpec-A1”>

02      <model-dependency>

03           <related-asset name=“indepCompSpec-O”

id=“compose.indepCompSpec-R-6.0-beta”

relationship-type=“independentComponent”/>

04      </model-dependency>

05      <component-specification>

06           <interface>

07                <provided>

08                     <related-asset name=“depIntSpec-O”

id=“compose.depIntSpec-O-1.0-alpha”

relationship-type=“dependentInterface”/>

09                </provided>

10                <provided>

11                     <related-asset name=“depIntSpec-R”

id=“compose.depIntSpec-R-3.0-mature”

relationship-type=“dependentInterface”/>

12                </provided>

13               <provided>

14                     <related-asset name=“depIntSpec-S”

id=“compose.depIntSpec-S-7.0-alfa”

relationship-type=“dependentInterface”/>

15                </provided>

16           </interface>

17      </component-specification>

18 </asset>
 

Figure 7. Representative dependent component specification. 

In order to perform the experiments, it has been 

developed a customizable script that automatically generates 

a repository that stores the mentioned X-ARM assets. The 

generated repository has 14.000 assets of different types. 

After creating the repository, the proposed approach has 
been applied for grouping the stored assets in clusters, 

generating their respective representative assets. 

A. Gain in Number of Assets 

Fig. 8 presents the number of each type of asset in the 

original repository and the clustered repositories after the 
application of the proposed approach using different 

thresholds, which vary from 100 to 200 in steps of 25. As 

can be noticed, the proposed approach significantly reduces 

the number of assets. As expected, the number of resulting 

representative assets decreases as the threshold increases. 

When the threshold is increased, two assets have more 

chance of being considered similar, and so, more chance of 

being grouped together. Thus, for example, when the 

threshold is increased from 100 to 200, the total number of 

original assets is reduced to 4,287 and 2,518 representative 

assets, respectively. 
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Figure 8. Number of assets. 

For each considered threshold, the gain in number of 

assets has been identified and evaluated. Fig. 9 illustrates the 

gain in terms of the number of assets. For example, when the 

threshold is 150, the number of stored assets in the original 

repository is reduced around 28.5%, dropping from 14,000 
original assets to 3,985 representative assets. As can be 

noticed in Fig. 9, the proposed approach performs a 

significant reduction in the number of stored assets, 

achieving relevant gains between 82% and 69.4%. 

 
Figure 9. Total Gain in number of assets (%). 

However, as shown in Fig. 10, the gains are different for 

each type of asset. Note that, in general, the better gains are 

achieved for component implementations and dependent 

interfaces. Considering component implementations, the 

gains become a little bit more expressive, varying between 

91.1% and 86.1%. For dependent interface specifications, the 

gains are between 88% and 69.8%. In the former case, such 

higher gains can be explained by the considerable amount of 

assets of those types. As can be seen in Fig. 8, the original 

repository has 8,000 component implementations. Thus, this 

type of asset is the prevalent one in the evaluated repository, 

increasing the likelihood of identifying similar assets. 

Furthermore, considering that component implementations 

are considered similar when they refer to the same dependent 

component implementation, it is also possible to correlate 

such a good gain with the existence of different 

implementations of the same component specification, not 
only for different target platforms but also for meeting a 

variety of non-functional requirements, like performance, 

security and cost. Therefore, considering the various 

methods, techniques and algorithms that can be employed to 

meet non-functional requirements, it is obvious that such 

multiple implementations impact on the likelihood of 

identifying similar component implementations. 

 
Figure 10. Gains in number of assets for different types of assets. 

In the case of dependent interface specifications, the 

gains become better due mainly to two reasons. First, in 

software projects, it is not rare to implement different 

versions of software systems for different target platforms. 

So, in component-based software projects, different versions 

imply on several dependent interface specifications for each 

independent interface specification. Considering that 

dependent interface specifications are considered similar 

when they refer to the same independent interface 

specification, it is easy to see that multiple implementations 
impacts on the likelihood of identifying similar dependent 

interface specifications. The second reason is a consequence 

of the high gains in independent interface specifications. For 

instance, consider two dependent interface specifications 

(depInti and depIntj) that refer to two independent interface 

specifications (indepIntx and indepInty), respectively. Now, 

consider that indepIntx and indepInty are clustered as the 

representative asset indepIntc. As a consequence, now, both 

dependent interface specifications depInti and depIntj refer to 

the same representative independent interface specification 

indepIntc. Then, taking into account that dependent interface 
specifications are considered similar when they refer to the 

same independent interface specification, depInti and depIntj 

are clustered and produce the representative asset depIntc. 
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Clearly, a high gain in clustering independent interfaces has 

a significant impact in the gain in clustering dependent 

interfaces.  

In terms of dependent component specifications, the 

gains range from 74.5% to 58.4%. One reason for this gain is 

the expressive number of assets in the repository (3,000 
assets according Fig. 8). Furthermore, the existence of 

different versions of software systems for different target 

platforms implies on several dependent component 

specifications for each independent component specification. 

Considering that dependent component specifications are 

considered similar when they refer to the same independent 

component specification, it is clear to notice that multiple 

implementations impacts on the likelihood of identifying 

similar dependent component specifications.  

In relation to independent component specifications, the 

gains are notably low, varying from 41.5% to 8.9%. Besides, 

as can be noticed in Fig. 10, the gain of 41.5% occurs for the 
higher threshold only. When the threshold is 175 and 125, 

the respective gains decrease to 12.9% and 8.9%. Such gains 

are relatively low and indeed not expected. As mentioned 

before, independent component specifications are considered 

similar when they have in common a considerable subset of 

provided independent interfaces. Thus, it is possible to infer 

that such low gains are a consequence of the difficulty of 

finding two or more independent component specifications 

that share a reasonable subset of independent interfaces. 

As can be noticed, the clustering gains in independent 

interfaces specifications impact positively on the gains in 
dependent interface specifications, but give the impression 

that do not impact on the gains in independent component 

specifications. Furthermore, the clustering gains in 

independent component specifications impact on the gains in 

dependent component specifications, which in turn impact 

on the gains in component implementations. 

B. Gain in Storage Requirements 

As already mentioned, the adoption of semi-structured 

data for representing metadata about software components 

implies challenges related to the design of indexing 

techniques that ought to be efficient in terms of storage space 

requirements. Therefore, it is not enough to be efficient in 

reducing the number of assets, but also in downgrading 

storage space requirements for index files.  

In such a direction, the gain in terms of storage space 

required by index files has been evaluated in the original 

repository, containing 14.000 X-ARM assets of different 
types. After generating the clustered repositories by applying 

the proposed approach for different thresholds, the original 

repository and the clustered repositories have been indexed 

using the indexing technique proposed in [7]. Fig. 11 

presents the storage space required by the original repository 

and the clustered repositories, after applying the indexing 

technique. 

As can be noticed, the proposed approach significantly 

reduces the required storage space. As expected, the required 

storage space decreases as the threshold increases. When the 

threshold increases, the number of representative assets 

reduces, and, as a consequence, the storage space required by 

index files also downgrades. Thus, when the threshold 

increases from 100 to 200, the storage space required by 

index files reduces from 10.9 to 7.3MB. 

 

Figure 11. Storage space requirements for different thresholds. 

For each considered threshold, the gain in storage space 

requirements has been identified and evaluated. Fig. 12 

illustrates the gain in terms of storage space requirements. 

For example, when the threshold is 150, the storage space 

required by index files is reduced around 87.3%, dropping 

from 77 to 9.8 MB. As can be noticed in Fig. 12, the 

proposed approach performs a significant reduction in the 
storage space requirements, achieving relevant gains 

between 85.8% and 90.5%. 

 
Figure 12. Total gain in storage requirements. 

C. Clustering Quality 

Of course, it is not enough to evaluate the gains in terms 

of number of assets and storage space requirements. It is also 

imperative to assess the quality of the clustering approach. In 
such a direction, the clustered repositories have been 

assessed in terms of two different clustering evaluation 

methods: Davies-Bouldin index and Silhouette index.  

The Davies-Bouldin index [19] is a clustering evaluation 

method based on internal criterion. It is a function of the 

ratio of the sum of intra-cluster distances (within-cluster 

scatter) to inter-cluster distances (between-cluster 
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separation), as defined in (6), where n is the number of 

clusters, ci is the representative element of cluster i, σi is the 
average distance of all elements in cluster i to representative 

element ci, and d(ci,cj) is the distance between representative 

elements ci and cj. As widely mentioned in the literature, a 

good clustering algorithm must produce clusters with low 

intra-cluster distances (high intra-cluster similarity) and high 

inter-cluster distances (low inter-cluster similarity). Based on 
that, a good clustering algorithm has a small value of Davies-

Bouldin index, representing compact and well-separated 

clusters [20].  

 

�� = 1
� � max	�� �σ	 + σ�

� !	 , !�"#
$

	%&
 (6) 

As can be seen in Fig. 13, the Davies-Bouldin index of 

the clustered repositories for all evaluated thresholds varies 

between 9.60 and 1.66. Such low values for the threshold 

from 100 to 150 evinces that the proposed approach can be 

considered a good clustering algorithm because has produced 

compact and well-separated clusters. Note that the Davies-

Bouldin index increases as the threshold increases. Such a 

trend is already expected and indicates that lower thresholds 

produce higher intra-cluster similarity and lower inter-cluster 
similarity, and so higher quality clusters. 

The Silhouette index [21] is based on the comparison of 

the tightness and separation of the clustered elements. The 

silhouette for each element is calculated as illustrated in (7), 

where ai is the average intra-cluster dissimilarity of element i 

to all other elements within the same cluster, and bi is the 

lowest average inter-cluster dissimilarity of element i to all 

other elements in another cluster. Note that the silhouette 

value varies between -1 and 1. Based on the silhouette for 

each element, the overall average silhouette for all elements 

can be easily calculated. If the overall average silhouette is 

close to 1, it means that elements are well-clustered and are 
assigned to very appropriate clusters. If the overall average 

silhouette is close to -1, it means that elements are 

misclassified and so poorly clustered. 

 

'(() = �	 − �	)�*+�	 , �	, (7) 

As also illustrated in Fig. 13, the overall average 
silhouette of the clustered repositories for all evaluated 

thresholds varies between 0.62 and 0.84. Such values close 

to 1 are evidences that the proposed approach is a good 

clustering algorithm because elements are well-clustered and 

are assigned to appropriate clusters. Note that the silhouette 

index decreases as the threshold increases. Again, such a 

trend is already expected and indicates that lower thresholds 

produce lower intra-cluster dissimilarity and higher inter-

cluster dissimilarity, and so higher quality clusters. 

 
Figure 13. Quality indexes for different thresholds. 

VI. CONCLUSION 

Based on the preliminary results, it can be clearly 

evinced as benefits the potential of the proposed approach in 

significantly clustering an X-ARM repository and 

consequently reducing storage space requirements. It must 
be highlighted that, the bigger the original repository in 

terms of the number of stored assets, the more expressive the 

likelihood of clustering assets, and so the better the gain in 

terms of storage space requirements. 

Taking into account that the indexing technique proposed 

by Brito et al. [7] adopted for indexing the clustered 

repository, the experiments reveal the reduction in the size of 

the original repository implies in an expressive reduction in 

the size of index files of the clustered repository. Besides, 

considering that the technique proposed by Brito et al. has an 

excellent performance in query processing time, even in 
large-scale index files, it is expected a reasonable gain in 

terms of query processing time due to the expressive 

reduction in the size of index files. Therefore, the proposed 

approach clearly makes possible to map large software 

component repositories into small index files. 

However, as often informally said, there is no free lunch. 

That is, in formal words, such expressive gains in terms of 

storage space requirements and query processing time have 

an impact on the query precision level, since the process of 

clustering assets introduces some degree of information loss 

in representative assets. For the experiments of the previous 

section the query precision level vary from 0.41 for the 
threshold of 100 to 0.31 for the threshold of 200. Such 

results can be considered very attractive because, as 

indicated in experiments presented in [22], highly popular 

and adopted search engines like Google and Altavista have 

achieved inferior precision indexes around 0.29 and 0.27, 

respectively. Moreover, in all thresholds the recall index is 

about 0.67. Again, such results can also be considered 

interesting because, as also indicated in [22], Google and 

Altavista have obtained inferior recall indexes around 0.20 

and 0.18, respectively. 

Although these preliminary results indicate the 
usefulness of the approach, a large number of experiments 

must be performed to better evaluate the heuristics and the 
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similarity metric here introduced. In these experiments we 

must investigate several configurations of the repository 

differing on the amount of assets of each type, as well as the 

possibilities of relations among them. Besides, it is also 

under investigation a comparative analysis contrasting the 

proposed heuristics and other ones available in the literature, 
but applied in different research fields.  
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