
231

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The OMiSCID 2.0 Middleware: Usage and Experiments in Smart Environments

Rémi Barraquand∗, Dominique Vaufreydaz†∗, Rémi Emonet∗, Amaury Nègre∗, Patrick Reignier‡∗
∗PRIMA Team - INRIA/LIG/CNRS - 655, avenue de l’Europe - 38334 Saint Ismier Cedex

see http://www-prima.inrialpes.fr/
†Université Pierre-Mendès-France - BP 47 - 38040 Grenoble Cedex 9
‡Université Joseph Fourier - BP 53 - 38041 Grenoble Cedex 9

{Remi.Barraquand,Dominique.Vaufreydaz,Remi.Emonet,Amaury.Negre,Patrick.Reignier,omiscid-info}@inria.fr

Abstract—OMiSCID 2.0 is a lightweight middleware for
ubiquitous computing and ambient intelligence. Its main
objective is to bring Service Oriented Architectures to all
developers. After reviewing related works, we demonstrate
how OMiSCID 2.0, compared to other available solutions,
integrates easily in classical workflows without adding any
constraints on the development process. A basic overview of
our middleware is given along with brief technical descriptions
demonstrating its User Friendly Application Programming
Interface. This application programming interface makes it
straightforward to expose, look for or send information
between software components over the network. We illustrate
the usage of OMiSCID 2.0, the new version of our lightweight
middleware, through case-studies that have been experienced
in international research projects. Particularly, we demonstrate
its advantages in both development and research projects,
illustrating its radical cut down effect in development time,
improving software reuse and easing redeployment notably in
the context of Wizard of Oz experiments conducted in smart
environments.

Keywords-Service Oriented Architecture; Ubiquitous
Computing; Middleware; Wizard Of Oz; Smart Environments.

I. INTRODUCTION

Today’s vision of ubiquitous computing is only half way
achieved. The multiplication of low cost devices along with
the miniaturization of high performance computing units
technically allow the design of environment widespread
by cameras, motion detectors, automatic light controls,
pressure sensors or microphones. Those devices, thanks to
wireless networks, can communicate together with mobile
and personal equipments such as cellular phones, photo
frames or even personal assistants. On the other hand, the
quiet and peaceful aspect of this vision where computing
units can understand each others in order to collaborate is
yet a research problem.

Build upon this network of devices, ambient intelligence
tries to address the problem of making devices refer to
users in an appropriate way by making them aware of their
activity: current task, availability, focus of attention, etc. In
this context, smart environments or intelligent environments
refer to environments that are spread with sensors and
actuators which sense users’ activities and respond according
to them.

In this attempt, activity understanding remains a complex
and challenging problem relying on the ability to constantly
aggregate information from an ever changing medium of
devices and media. A medium of information, which is in
constant evolution due to the fact that media and devices,
come and go, break and evolve. Mobility in this context
is no longer an option. In order to guaranty the best user
experience, services provided to the user should be available
everywhere and at any-time. The intelligent part –the one
that guarantees the best mapping between perceptions and
actions, must, in some way, be carried along with the user
in its daily activities and could, for instance, find itself
embedded in a mobile phone. While the user will carry
his mobile phone, the later will have to dynamically adapt
to the current environment, connecting to available sensors
and actuators, scanning for and exchanging with available
services.

Ambient intelligence, thus, relies on a large number
of different fields of expertise and brings along many
challenges. Among these challenges, one that plays a
central role is the handling of dynamicity in software
architectures. This paper addresses the use of the OMiSCID
[2] middleware that fits in between the network of
devices and ambient intelligence. It aims to ease the
design of agile Service Oriented Architecture (SOA)
and to solve constraints of pervasive computing and
intelligent environments. OMiSCID manages services in
the environment, by providing cross-platform/cross-language
tools for easy description, discovery and communication
between software components.

In the next section, we introduce the needs for such a
middleware and we present our approach, focusing on key
functionalities and concepts. Benefits of using OMiSCID
are shown with some refactoring and reusability examples.
Finally, the use of OMiSCID is illustrated by the design of
a Wizard of Oz experiment.

II. UBIQUITOUS COMPUTING REQUIREMENTS

The overall goal of the PRIMA research group is
the elaboration of a scientific foundation for interactive
environments. An interactive environment requires the
capabilities of perception, action and communication. An

232

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

environment is said to be perceptive if it is capable of
maintaining a model of its occupants and their activities.
Such a model may include the identity of individuals,
an estimation of their position, their recent trajectory,
as well as recognition of the activities of individuals
and groups. An environment becomes active when it is
capable of action. Actions may include presentation of
information. They may also include the capability to
manage visual and acoustic communications, as well as the
capability to transport documents and material. Controlling
an environment that is perceptive and active requires a
capability to interact. This capability may rely on speech
recognition, gesture or object manipulation interpretation,
observation of people interactions. Among those challenges
is the one of developing and integrating these three
capabilities.

For instance, in order to build ambient intelligence
applications, many software services, developed by
specialists using multiple techniques and languages, must
dynamically interconnect to furnish users with the best
comfort as possible. In the context of international research
projects, such as DARPA or EU funded projects, the
problem get even more complex as the differences among
research groups involved are important. Differences include
habits and historical/technical backgrounds. In order to help
non software-architect researchers to interact and better
collaborate, we need a simple and usable solution that
addresses a common problem: how to find, to interconnect
and to monitor services within the context of cross-language,
cross-platform and distributed applications?

To solve this problem, one can envision many different
approaches. The first one is to agree, a priori, about a
specific programming convention, e.g., languages, platforms,
technologies and so on. This solution can be adopted in
small groups and must be driven by underlying technologies.
This, however, has many drawbacks. For instance, it may
oblige people to learn a new language or a new framework.
Additionally, the agreement achieved between scientists and
developer involved is subject to change, depending on the
evolution of technologies but also on the evolution of the
team members. An alternative scenario is to list all the
software components and try to find a common way to
interconnect them, no matter the platforms/languages used
or any other constraints that might appear.

The alternative scenario is often approached by the
implementation of a middleware, aiming to abstract lower
software components. Bellow we list properties that such a
middleware should have, at least in ubiquitous computing
and ambient intelligence, our research area:

• Attractiveness: To be attractive, a middleware must
be available in several programming languages (C++
for video/audio processing, Java for lighter processing,
enterprise integration or user interfaces development,
scripting language for rapid prototyping) on multiple

operating systems (Windows, Linux, MacOSX/iOS,
Android).

• Extensibility: To be accepted, the integration of a
middleware in existing programs must be timeless,
costless and effortless. Adding new functionalities must
be as simple as possible.

• Networking: Networking capabilities must support, a
various, always stretching, range of protocols like peer
to peer connections (IP address/port) or more complex
interconnection protocols using service description and
discovery for instance. Ad-hoc networks should also
be supported. The middleware must also support the
exchange of various data types between the software
components, from simple text message or formatted
data structure to huge data like audio/video flows.

• maintainability and sustainability. Maintainability
includes readability of the source code, a friendly
and user oriented API, predictability of the software
behaviors and monitoring of running processes over
the network. Sustainability is the potential for the long-
term maintenance and reuse of software components.
Sustainability is strongly correlated to maintainability.

Two widely used solutions are OSGi and Web Services.
They are compared in Table I. OSGi [3] is the first
typical solutions to provide most of the requirements listed
formerly. It permits construction of Java applications locally
by recruiting components. Using iPOJO [4], it is possible
to declaratively describe services and requirements using
annotations for instance in order to avoid writing dedicated
code. Using specific adapters, like in R-OSGi [5] it is
also possible to search for non local services. Exposing an
OSGi service to multiple protocols (like UPnP [6], Web
Services, etc.) can be easily achieved using the ROSE (also
named Chameleon) [7] ecosystem over an OSGi platform.
H-OMEGA [8] proposes also an alternative using UPnP
for device discovery and a centralized server for code
management. Nevertheless, it is difficult to combine all the
evolutions of OSGi. Additionally, even if it is possible to
use JNI for C/C++ application, OSGi is dedicated to Java.

Web Services [9] are also a widely used solution
for distributed applications. They permit to use web
technologies in order to construct distributed applications.
Services are described with the Web Services Description
Language (WSDL) and can be discovered using WS-
Discovery. As presented in Table I, Web Services are not
designed to handle huge data flows. Moreover, even if there
are several alternatives to WSDL, like the Business Process
Execution Language for Web Services (BPEL4WS) [10] or
the Web Ontology Language for Services (OWL-S) [11],
they all provide service descriptions that are not easy to
handle for a non specialist.

Finally, the last possible solution is to use a specialized
middleware, usually dedicated to a specific task and/or
environment. We can illustrate this solution by focusing on

233

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Smart Flow II [12]. This middleware is very efficient in
managing the data flow from many multimedia sources at
the same time on several computers. But its force is also its
weakness: it is difficult to configure and to manage other
type of data.

From the previous sections, we can see that none of the
reviewed solutions fulfils all the identified requirements.
This assumption motivated our effort to develop the
OMiSCID middleware. In the following sections, we will
present the underlying concept and philosophy behind the
OMiSCID middleware solution.

III. OMISCID BASICS

OMiSCID stands for Opensource Middleware for
Service Communication Inspection and Discovery [2].
It was designed to answer the problem of integration
and capitalization of heterogeneous code inside smart
environments. OMiSCID is distributed under a MIT-like
license (free for both commercial and non-commercial
applications), fully open source and available on our
forge [13].

A. Concepts

The OMiSCID middleware is built around 3 main
concepts: services, connectors and variables. They are
detailed in the following sections.

1) Services: A service is a piece of software that exposes,
in a transparent and light way, functionalities for a specific
task. Functionalities are thus visible and available for any
other services over the network without any implementation
constraint. A service exports its functionalities and its state
through its connectors and variables. At least, a service
contains:

• name. This variable must represent the main function of
the service. It should be human readable like Camera;

• class. This variable allows to logically organize services
in categories, for instance VideoProcessing;

• id. This unique id over the network is automatically
generated by OMiSCID. Services can be distinguished
using this id.

• hostname. Computer name where the service is
running;

• owner. Owner is the login which starts the service on
hostname;

• control port. The control port is a connector used to
control and manage the service.

Aggregating all these information, we obtain a service
description that can be used to search and interconnect
services. Services in OMiSCID are self-described, as
opposed to domain specific standards like Bluetooth
profiles [14] or UPnP standard device categories [6] for
instance. As stated by David Svensson Fors et al. [15],
standards need to be exhaustive which is not that easy, even
for small applications like controlling a printer.

Granularity of what is a service is dependent of
the developer’s choice. Nevertheless, one must choose
granularity smallest as possible in order to increase
reusability and maintainability. Monolithic services are not
desirable: high level services will not likely be reusable in
other contexts. On the opposite, tiny services, i.e., services
providing too basic functionalities, are also a very bad choice
as they increase communication schema and debugging cost.

Among dozens of services we developed, we can cite
four examples to illustrate our granularity choice: the light
controller service which is controls the light in a room,
the video service that streams data from a camera over the
network, the speech activity detection service that estimates
whether the sound from a microphone service contains
speech, and the 3D tracker service that inputs video streams
from video processing services in order to compute the 3D
positions of people in a room (see Section VI-A).

2) Connectors: Connectors are communication ports that
can be instantiated by any service to exchange data with
other services. Services can have several connectors to
logically separate data according to their origin. Each
connector is independent from the others. It is identified by
a name, a human readable description and a set of sockets
where it can be reached.

Connectors can send data over TCP or UDP. In this
last case, OMiSCID guaranties (re)ordering of messages.
In case of message lost, each peer is notified. Connectors
can send data (input type), receive data (output) or both
(input/output).

3) Variables: Variables describe the service and its state.
A service can expose as many variables as needed. Variables
are defined by these attributes:

• Name. Name of the variable (254 characters max);
• Description. A human description of the variable;
• Type. Type is given as a text attribute. It can be used

to parse variable value;
• Access type. It is possible to define constant variable. In

case of a constant variable, value of the variable cannot
be changed after starting the service. Variables can
also be read only: modification requests coming from
another service will then be automatically rejected;

• Value. This attribute contains the value of the variable.
Any service can register to another one to receive

notifications when the value of one or several variables
changes.

B. Communications

Messages are atomic elements of all communications in
OMiSCID. They are sent using a connector to a specific
peer or to all listening services at once. The receiver
will be notified that a new message is ready when it is
fully available. Each message is provided with contextual
information such as the service and connector it comes from.

234

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: COMPARISON OF WIDELY USED SOLUTIONS

Description cross-language cross-platform Messages Huge data flows Service discovery over the network

OSGi approach No (Java) Yes Yes Possible Using R-OSGi for instance

Web Services Yes Yes Yes Not designed for Using WS-Discovery

Even if OMiSCID is not limited to these, there are 2 kinds
of workflows that are usually mixed:

• A peer to peer approach. After receiving a message
from a service and processing it, a response message
is sent back to it. Input/output connectors are used in
this case;

• A data flow approach. After receiving a message on
an input connector and processing it, a message with
the result is broadcasted on another output connector
in order to continue the processing chain.

Message can be sent as raw binary chunk or as text, which
allows lot of flexibility for developers. Binary messages
are often used to stream real time data such as video or
audio. Text communication can be enhanced by using XML,
YAML [16] or JSON [17] format and allows for more
advanced operation and extensions (see Section IV-C).

C. Service discovery in dynamic context

Also known as service discovery, the ability to browse,
find and dynamically bind running services, is one of the
most important features of SOA, particularly in ubiquitous
computing environments. It is not uncommon to filter
services based on their current state, description or provided
functionalities. Filters can be used in two different ways:

• An ask-and-wait approach asking for the list of services
that match a certain criterion. This procedure will wait
until at least one service match or that a timeout is
reached rising an exception.

• An ask-and-listen approach notifying the application by
the means of callback or listener whenever a service
that matches the criteria appears or disappears.

OMiSCID provides the basic logical combination of
predefined search criteria (variable value/name, connector
properties, etc.). They are implemented as functor (function
object). For instance, to search a Camera service with an
output connector named data flow or a service Encoding not
running on the same computer, one can write the following
(C++) filter:

Or (And (NameIs (” Camera ”) ,
HasConnec tor (” d a t a f low ” , AnInput)) ,

And (NameIs (” Encoding ”) ,
Not (H o s t I s (GetLocalHostName ())))

It is possible to extend filter capabilities providing more
complex search primitives by implementing custom functor
objects. Figure 7 and Section VII-C give clues about
OMiSCID service discovery capabilities.

D. OMiSCID Gui

OMiSCID provides a simple solution to declare, to
discover and to interconnect services. However, in an
ecosystem spread with a multitude of services, it becomes a
requirement, for both the users and the developers, to have
an interface helping the visualization, the monitoring, the
interactions and the control of all the services. Additionally,
the debugging of a service (or a federation of services) in this
wild ecosystem can, without appropriate tools, be a painful
task. Given this facts, we developed a graphical front-end to
OMiSCID: the OMiSCID Gui (see Figures 1 and 2).

OMiSCID Gui is a powerful tool built over the Netbeans
platform and provides the developer with a graphical
interface for multiple management tasks. It inherits many
of the advantages from the Netbeans platform: portability,
modularity, advanced window management, etc. OMiSCID
Gui comes with light core modules and is extensible at
infinite. One of the core modules is a service browser that
displays all the services present within the environment as
well as their connectors and variables. The service browser
also provides an extensible set of contextual operations to be
applied on the selected services. Default operations include
for example monitoring a connector (watching or sending
messages) and monitoring a variable (watching changes or
sending modification requests). Among all the extensions
available and easily installed using the Netbeans Plugin
interface, one can find:

• A simple variable plotter that can dynamically create
and display evolution of (numeric) service variables
(see Figure 2);

• A family of plugins that allow the display of 2D
information such as video stream or custom shapes
representing for instance regions of interest of a 2D/3D
tracker;

• A plugin that displays a graph of the services present
in the environment along with their interconnections;

• A lot of other plugins such as real time audio stream
player, 3D visualization tools, cameras controls, etc.

OMiSCID Gui comes with a public plugins repository
already packed with visualization, controls, debugging
plugins and can be extended by developers. All Netbeans
platform plugin can also be integrated into our platform and
vice versa. Its ease of use makes it a must-have tool for
OMiSCID development, demonstration and service oriented
application development.

235

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2: OMiSCID Gui. Public available plugins like running services properties (top left corner), variable value plotter
(middle bottom), camera view (right bottom), service video controller (top right) are depicted.

IV. BRIEF TECHNICAL DESCRIPTION

One crucial requirement when designing a middleware
for such heterogeneous research area is to make it usable by
most of the people involved.

A. Multiplatform/Cross-Language

OMiSCID was designed with cross-platform/cross-
language capabilities in mind. There are actually 3 supported
implementation of OMiSCID: C++, Java and Python
(PyMiSCID, note that the Python version used to be a simple
wrapper around the C++ one). Moreover, the Java version
can be used from Matlab and any other language running
on the Java virtual machine (JavaFX script, scala, groovy,
JavaScript, etc.) We also provide an OSGi abstraction
layer that exposes OMiSCID with standard OSGi paradigm.
OMiSCID was developed over a set of guidelines rather
than over strict specifications. All the implementations
are fully written in the target language, thus ensuring

speed, reliability, close integration with data structures and
programming paradigm.

All versions are fully cross-platform and works on Linux,
Windows and OS X both 32 bits and 64 bits. The C++
version uses an abstraction layer that provides common
system objects like sockets, threads, mutexes, etc. The Java
version has been successfully used on portable devices like
a PDA and on the Android platform. All implementations
can interoperate with each other on any supported platforms.

B. User Friendly API

In order to simplify interpersonal communications
between OMiSCID users, we developed a common User
Friendly API. It was defined to be easy to learn, easy to
use and portable in several languages. Indeed, concepts,
methods and parameters follow the same API in C++, Java
and Python. However, each implementation takes advantage
of the language specificities and design patterns. The API

236

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: OMiSCID Gui session while monitoring and
debugging multi-camera tracking system. Basic OMiSCID
Gui functionalities are visible: monitoring of running
services properties (top left corner), camera and tracking
views (top right, available public plugins), video service
controller in order to control 2 video services (right bottom)
and the add-in manager to show active plugins (left bottom).

provides simple callback/listener mechanisms. Thus, one can
be notified of many different events: a new connection from
a service, a disconnection, a new message, a remote variable
changed, etc.

The final User Friendly API is designed to be non-
invasive. The OMiSCID code, inside a service, must be
short, understandable and disjoined of the core source code.
For instance, the following is a short example written in C++
that shows how to create a service with an output connector,
how to register it over the network and finally how to send
data to everyone connected to it:

i n c l u d e <Omiscid . h>
u s i n g namespace Omiscid ;

/ / C r e a t e a s e r v i c e named camera
S e r v i c e ∗ pServ = S e r v i c e F a c t o r y . C r e a t e (” Camera ”) ;
/ / Add a o u t p u t c o n n e c t o r t o i t
pServ−>AddConnector (” d a t a f low ” ,

” images s t r e a m ” , AnOutput) ;
/ / R e g i s t e r and s t a r t t h e s e r v i c e
pServ−>S t a r t () ;
/ / . . .
/ / Send a v i d e o b u f f e r t o a l l c l i e n t v i a
/ / t h e ” v i d e o f low ” c o n n e c t o r
pServ−>S e n d T o A l l C l i e n t s (” v i d e o f low ” , B u f f e r) ;

C. New functionalities in OMiSCID 2.0

The current version of the OMiSCID middleware is 2.0.
This version brings new requested functionalities: object
serialization and remote procedure call.

Indeed, the philosophy of OMiSCID is to exchange
information between services using either binary or textual

messages without any standard on the format of those
messages. However it has been requested by developers
to provide a simpler way to encode and decode textual
messages. Thus, OMiSCID 2.0 provides a simple way
to marshal and unmarshal any object to a JSON [17]
representation. This allows easy communication between
services without paying attention to the parsing and
serialization of messages. The second improvement is the
ability for a service to expose some of its functionalities by
the means of remote callable methods. Such distant calls
can be done either in a synchronous or in an asynchronous
manner. Again these extensions are cross-platforms, cross-
languages and benefit of specific improvement or features
depending on the implementing language.

D. Performances

With the intention to provide our community with
insight about OMiSCID performances, we conducted several
experiments. Each one of these experiments were done on
a cluster of computers called Grid5000 [18]. The choice of
using a cluster is motivated by the fact that computers are on
an isolated network, without any kind of perturbation (e.g.,
network maintenance, backup in progress, etc.). Moreover,
it insure that each operating systems is newly installed,
thus without side-effects of having old libraries or an
unstable/tweaked system. The last criteria that motivate this
choice is that experiments performed on Grid5000 are easily
reproducible.

To evaluate the OMiSCID discovery process, we set up
dedicated tests performing registering and searching tasks.
Regarding the registering operation, at first sight, it is not a
costless operation. Indeed we must generate and validate,
for each newly created service, a unique service id (see
Section III-A1) over the network. Our experiment shows
that registering 100 services from 3 different computers
takes less than 1 second. Regarding the searching task,
also referred as lookup task, even if it is a linear process
for OMiSCID (search time is linear in terms of number
of running services to query), searching involves network
communication and thus may takes time. Our experiments
reveal that finding a service among more than 400 others,
distributed over 4 computers and using a simple variable
value takes less than 20 ms long in average. Obviously,
performing more specific searches, using for instance user-
defined search filter (processing video stream to select a
camera for instance) will eventually take more time.

Another performance measurement we performed was
the latency introduced by OMiSCID message splitting
mechanism (see Section III-B). Those tests were performed
between two computers. We compared results using NTTCP
—a Linux program that measures the transfer-rate between
two computers, and using OMiSCID. Each test was run
1000 times using messages ranging from 512 bytes to 2
megabytes. The result show that the latency introduced by

237

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OMiSCID for message handling is around 4ms in average
comparing to usual TCP/IP connections.

The reader might refer to [19] for other tests on
performance and scalability.

V. CASES STUDY

For the past few years, we have used OMiSCID
middleware in different research projects [20], [21], [19],
[22]. In [19], OMiSCID is used to redesign a complete 3D
Tracking system as well as an automatic cameraman. The
redesign reduces the number of software components and
has the advantage to provide shared and reusable services.
For instance, both architectures use the same video grabbing
services. This service provides real time streaming of camera
images. This stream is simultaneously accessible by multiple
services such as visualization services and image processing
ones: movement detector, person detector, posture estimator.

OMiSCID middleware allows robustness for service
discovery, reliable communication, connection and
disconnection but also ease the federation of services.
In [22], [21], OMiSCID is used for the implementation
of a smart agent. The perception of the agent is provided
by services dynamically discovered in the environment
allowing the agent to construct a situation model [23] of
the current situation. The agent is yet another service and,
according to its perception, it is able to perform actions in
the environment by sending orders to actuator services. In
[22] the knowledge of the agent is distributed and can be
stored on remote database using a combination of OSGi
and OMiSCID. Each service developed is a reusable piece
of software, which, by extension, ensures a decrease of
development time along the years.

In the following sections, we will introduce a 3D video
tracker —an OMiSCID redesigned example, some examples
illustrating reusability (e.g., a network of Multi-modal
Towers and Human Simon Game). The last illustration,
present a Wizard of Oz experiment conducted in our lab
which show various usage and benefits of using OMiSCID.

VI. SHOWCASE: REFACTORING, REUSABILITY AND
MONITORING

A. Refactoring, the 3D Video Tracker case

To interact with people in smart environment, it is
important to be able to detect people as well as to maintain
an estimation of their current state e.g., position, speed,
posture, etc. We have developed a video tracking system
adapted to dynamic and complex environment. The 3D
tracking was initially an improvement over an existing
2D tracker. It was running multiple 2D trackers and, by
merging the different outputs, was able to compute a
pseudo 3D estimation. This tracker had initially a monolithic
architecture for performance reason: image acquisition and
tracking process were done within a single process.

A full 3D tracker must estimate directly the targets in 3D
using information from several cameras. Evolution from 2D
to 3D tracking required a change in the architecture as the
complexity became too high to run on a single processor.
For instance, the number of camera increasing from one to
four and sometimes many more cameras. For robustness,
reusability and maintainability reasons it is mandatory to
split image acquisition and processing software part.

The chosen architecture is shown in Figure 3. This
architecture introduces a new concept: service factory.
Services factories are services (following the factory method
pattern) that are designed to start but also instantiate, on
demand, a (parametric) service. Factories can be seen as
daemon services, ready to launch other service(s) as to fulfil
applications needs. Such scheme eases the deployment of
distributed applications. In this example, a Video Service
Processing Factory can create a Video Service Processing
(VSP) with special pipeline treatments over images from a
camera.

The architecture is thus modular and distributed in order to
reduce computation time and to avoid costly images transfer
over the network:

• A video service is in charge of grabbing images from
each camera;

• A video service processor (VSP) factory is attached to
each video service. Its role is to initialize one or more
VSP in charge of image processing tasks;

• The main tracker program is in charge of targets
tracking; it automatically detects all VSP Factories,
requests for VSP creation and connects to them.

This refactoring, performed for the 3D tracker, allows us
to create lots of software components that are reused later
in many other perceptive applications.

Demonstrations of the 3D tracker system are available on
the PRIMA channel (see the Tracker, Human Simon Game
and more videos on the PRIMA channel [24]).

B. Reusability, the Multimodal-Tower Network case

In the context of the CASPER project (Communication,
Activity Analysis and Ambient Assistance for Senior
PERsons), a project for maintaining elderly people at
home, we developed a multi-modal localization system.
This system (see Figure 4) associates on each tower an
omnidirectional camera with an array of microphones.
Tracking is done combining visual tracker of bodies and
acoustic tracker of people when they speak.

Building such application is facilitated by the reusability
of already available services: microphone service for audio
recording, speech activity detection service, video service for
images acquisition, VSP factory (see previous section) for
video processing. Only one service was built in this case, the
localization service. This service can dynamically register,
using filters (see Section III-C), to all data coming from all

238

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Camera

Video Service

VSP Factory

vsp

Computer 1

Computer 2

3D Tracker

Camera

Video Service

VSP Factory

vsp

Camera

Video Service

VSP Factory

vsp

Figure 3: Video tracker architecture. For each camera, a
Video Service is in charge of grabbing images and sends
them to a Video Service Processor (VSP). This Video
Service Processor is instantiated on demand by a VSP
Factory. The 3D tracker service automatically finds all VSP
Factories, asks them to create VSP and connects to them as
to handle targets management.

towers in the room. Then, after an auto-calibration phase, it
can track speaking targets in the room.

As it is usually the case, reusability increases
maintainability. Using services in many different contexts
is a good way to deeply test them in adverse conditions,
with new client services. For instance, in the realisation
of this system, we highlighted different issues in certain
existing services that were not evident to spot before their
integration in this particular setting. It is not worth to say
that, correcting problems in a service is a benefit for all
applications using it.

C. Reusability, the Human Simon Game case

Validating performances of a 3D video tracking system
is usually done using well known databases containing
annotated recordings providing ground truth labels. The
results of the evaluated system are then compared to
the ground truth using different kinds of metrics and
thresholds in order to provide a score. Such approach are
very convenient to validate a tracking system regarding
the state-of-the-art (for publication purpose for example).
However, generally, the tests are performed off-line and
the thresholdings often lead to imprecise measurements.
Additionally, test-databases are usually designed to evaluate
very specific characteristics and are conditioned as well
by very specific environmental conditions. As a result,
the outcomes obtained by testing your system over such
databases are not necessary representative of the real
performance of your system. They might not highlight the
particular benefits your system is bringing compared to other
existing solution. Robustness to environmental artefacts,
such as change in light exposure or random ambient noise
for instance, is often omitted. In an attempt to provide an
online alternative for the validation of our 3D video tracking

Figure 4: Multimodal tower equipped with an
omnidirectional camera and a set of microphones.
Multiple towers may be disseminated in the environment
and constitute a sensory-network used to follow and infer
activity of elderly people at home. One can see the tower
itself, a view from one panoramic camera (top right) and the
auto-calibration algorithm configuring the relative position
of 3 towers.

Figure 5: Human Simon Game. Players follow projected
instructions on the wall. They play against each other. They
must run and squat in cells to activate them. As in usual
simon game, the activation sequence is longer each turn10.

239

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system, we designed an experimental-game showing, in real
time, the performance (speed performance, number of false
detections, resistance to occlusions, etc.) of our solution in
adverse conditions (rapid moves, occlusions, bad lightning
condition, etc.).

In order to achieve this goal, we designed a Human Simon
Game (see video on the PRIMA channel [24]) based on
the famous game for child: one need to remember an audio
sequence associated to blinking color buttons. In our case,
as seen on Figure 5, we decided to virtually cut the room
space in 9 cells, each representing a ”blinking button” of the
Simon game. Cells can be activated by one or two players
squatting and standing back up in it. The game is similar to
the usual Simon Game but is adapted for two players: each
player has a color and must validate an always increasing
sequence of cells by moving and squatting over the virtual
3x3 grid.

In our case, setting up this validation system was an easy
task. The 3D video tracker, the posture estimator (for squats),
the steerable projector (projecting the game interface on a
wall in front of the players) were all existing services that
we reused. The only software component developed was the
core algorithm of the actual game.

VII. FULL CASE STUDY: WIZARD OF OZ EXPERIMENT

In the field of human-computer interaction, a Wizard of
Oz (WOz) experiment is a research experiment, in which
subjects are confronted with a computer system that subjects
believe to be autonomous, but that is actually being operated
or partially operated by some hidden experimenter(s): the
wizard(s). The goal of such experiments is to study the
usability, acceptability and efficiency of a proposed system,
functionality or interface —often hypothetic or unfinished—
by evaluating the interaction of the subjects with it rather
than focusing on the quality of the proposed solution. The
advantages of performing a WOz experiment versus actually
evaluating the real system or interface are that it saves time
and money. Indeed the WOz experiment is a quick and
cheap way of (in)validating a set of proposed functionalities
without investing resources in a system that might be, first,
reconsidered regarding the feedbacks collected from the user
experience, and second, just impossible to design due to
the absence of required technologies to build it, or the lack
of budget and/or time. In the WOz, certain functionalities
can be implemented while reconsidering the other. For
instance, if we consider the case of smart environments —
environment equipped with sensors and actuators designed
to provide assistance to user in daily tasks and activities,
it can be very annoying and sometimes not an option, to
dispose of a perfectly working environment if the only
functionality wanted to be evaluated is, for instance, how
users manage to undo an action performed in the background
by this environment —switching the TV off, turning the
music back on, opening the shutter or raising up/down

the volume of some other devices. A more time-efficient
and money-efficient option would be to focus the resources
on the functionalities of interest and manage to fake the
other functionality by, for instance, remote controlling the
environment by one or more experimenter. In a WOz
experiment, the missing functionalities are emulated by
an experimenter hidden from the subjects performing the
evaluation. In most settings, subjects are located in a room
along with the system to evaluate while the wizard operates
in another room. Both rooms can be separated by a beam
splitter allowing the wizard to observe and react accordingly
to the subject(s) actions.

A. Requirements

Even if performing a Wizard of Oz (WOz) remains in
many ways more advantageous, depending the context of
the experiment, setting up such experiment requires an
important preparation. Importantly, additional constraints
appear if the settings have to be mobile, i.e., to be carried
in different places. The wizard must have access to a
multitude of information in order to control the system as
well as possible. Without the presence of a beam splitter, the
environment must be equipped with cameras, microphones
and speakers to record and stream the scene in real time.
Among those devices, the wizards (there might be more
than one), also need the proper controllers to remotely
manipulate the system. Such a setting requires an extensive
use of wireless or wired communication between software
components: controllers and controlees. In addition, the
coupling between software components has to be able to
change and to be easy to achieve. Allowing for instance
to deploy debuggers, loggers or visualization tools at
runtime. The more reusable the perceptual/actuator software
components are, the cheapest and fastest the experiments
will be.

B. Experimental Settings

On an ongoing research project [25], we sought to
evaluate the behavior of subjects immersed in a ubiquitous
environment while asked to teach a smart agent how to
control the space. Among few, the objectives were to validate
hypothesis about human-machine interaction as well as to
collect constructive outcomes that will help future design of
ambient systems.

Four kinds of actor are to be considered in this
experiment: the subjects, the smart agent, the environment
and the wizards. The subjects by group of 2 or 3, are asked
to teach the agent to control the environment in order to
organize a small meeting. A classic example would be for
the subjects to teach the agent to switch on a light when
people are entering the room, and, to switch it back off
when everybody is leaving.

The agent is embodied by a personal mobile phone with
wireless capabilities, on which we deployed a learning

240

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Camera
Camera

Cameras

Microphones

Steerable
Camera
ProjectorX10

X10
X10

X10

X10

Figure 6: PRIMA’s Smartroom. The smartroom is equipped
with perceptive equipments (cameras and microphones),
and with actuators (mobile steerable camera/projector pair,
X10 power controllers). It has been designed to permit
immersive user studies with activity recognition (perception
and situation modelling) and system feedbacks.

software and a simple user interface. This interface allows
collecting real-time feedbacks from the subjects (good, bad)
during the session. Alternatively the agent can be embodied
by other devices such as, for instance, a robot. In this
case, more perceptual components are available for the
experimenters and the interaction between the subjects and
the agent is different (e.g., the rewards are more natural to
provide). The agent, as any other service, connects through
the wireless network to a situation modeller service that
provides a situation model [21] of the current situation.
When requested by the subjects, the agent performs an action
in the environment by sending orders to actuator services
present in the environment. Subjects can, whenever they
agree or disagree, give a positive or negative reward to the
agent. With such a settings, the agent learns to control the
environment, senses and acts using dynamically discovered
services, and finally, learns from the feedback provided by
the subjects the correct association between situations and
actions.

The environment is an office (Figure 6) spread with
many actuators and sensors. OMiSCID allows each of them
to be accessible and controllable by services all-over the
network (Figure 7). Among the sensors we find: cameras,
microphones, a thermometer and a weather station. All the
actuators are controllable by OMiSCID connectors and their

states can be queried by those connectors or are exposed
through variables. Among the actuators, we list: a steerable
video projector, some x10 controllers, loud speakers and
even windows shutter.

For this experiment, we needed two wizards. The first
wizard was in charge of simulating certain actuators in the
environment such as pressure detectors under the chairs
and sofas. Indeed, it was told to the subjects that each
chair was mounted with pressure detector to detect when
someone sits. Because we had no such device installed in our
environmental facility, we emulated those actuators using a
user interface plugged into OMiSCID Gui. The simulating
interface was seen as yet another service that can be used by
the situation modeler to build up a better situation model.
The second wizard was controlling the overall experiment
using a master interface. This interface allowed writing real-
time observations through an annotator service, as well as
taking control over all the services in the environment. Such
a master control for instance let the wizard speed up the
experiment by helping the agent to guess better actions
(when subjects got exhausted).

C. OMiSCID At Glance

For this experiment we deployed more that 20 services
spread on 5 computers running different operating systems
(Linux, Windows and MacOSX). Figure 7 presents some
of the devices present in the environment as well as
the interconnection of services. Due to the complexity of
the schema some services have been removed. We next
review some of the advantages of using OMiSCID in this
experiment:

1) Multi-platform: 5 computers have been used during
the experiments, two of them by the wizards. One of the
wizards was using MacOS, on which we deployed the master
control. Due to driver issue the sound recording system was
using a Microsoft powered computer. The video streaming
as well as all the other services (archiver, x10, etc) were
running on Linux hosts.

2) Multi-language: To design the services, we have
used different languages. C++ was used for performance
reasons such as for the video and sound processing/capture
services. Python is a really powerful language for the rapid
prototyping of application. We used Python to quickly
develop the x10 or the PanTilt controllers. Java has been
used to develop some of the OMiSCID Gui module but also
to access the different online web services exposed in the
environment such as the weather service. JavaFX was used
to develop the wizard control’s interface. Its script language
makes it easy to use for inexpensive user interface design.

3) Service Discovery: The simple but powerful service
discovery system provided by OMiSCID has been used to
dynamically connect services together. The best examples
are the situation modeler and the archiver. Using a service
repository, they were able to filter services that were present

241

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Video
Service

Camera

Video
Service

Camera

Situation
Modeller

Mobile Phone

Agent

Hard Drive

Archiver

Steerable
Projector

Content
Controller

Pan/Tilt
Controller

Light Light

...

X10
Controller

Presence
Provider

Pressure
ProviderWizard

Interface

OMiSCID
GUI

Annotator

Global
Controller

OMiSCID
GUI

Wizard
Interface

Music
Controller

Speaker

Microphone
Service

Microphone

Temperature
Controller

Weather

Weather
Provider

Temperature
Provider

Termometer
shutter

Shutter
Controller

heat

Figure 7: Graph of services for our Wizard of Oz experiment. Services used were mostly created for other experimentations
(video services, microphone service, music controller, etc.) and were directly reused and interconnected with specific
orchestrating services for this experiment (annotator, global controller).

in the environment in order to connect to them. For instance
the situation modeler was looking for all services having
connector or variable exposing state information. Using that
state information, it was able to provide a situation model
on an output connector. The archiver was responsible to
backup any information transmitted between services on
a hard drive. The archiver was continuously looking for
all services having output connector. Thus it was easy for
instance to deploy or shutdown services on the fly during
the experiment.

4) Communication: Communication between services
was achieved using different format. For video and sound
services, data were raw binary information tagged with time
stamps. Web services such as the weather provider were
communicating information using XML on their connector.
The PanTilt controller exposed its commands by the means
of remote callable methods, and presented its internal state
using readable variable.

5) OMiSCID Gui: OMiSCID Gui was used by the wizard
for different purpose. Firstly, the streamed sound and video

were played by the embedded player. Indeed, we have
developed OMiSCID Gui modules to play video and listen to
audio stream in real-time. Those modules have been used to
get a feedback of what was happening into the experimental
facility disposed into another building. Secondly, OMiSCID
Gui was used to control the archiver and other services.

6) Reusability: Each of the service used in this
experiment is a reusable piece of software that can be carried
and deployed easily. For a wizard of Oz experiment, only
the hardware and the equipments (cameras, microphones)
have to be transported and reinstalled. Everything else is
deployable instantly and can adapt to the configuration:
number of computers, operating systems, number and nature
of devices, etc.

VIII. CONCLUSION

OMiSCID is an efficient and lightweight solution for
the rapid prototyping of Service Oriented Architectures and
applications in the context of ubiquitous computing and
ambient intelligence. The solution provides a user-friendly

242

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

API to declare, to describe, to discover and to interconnect
services as well as to manage their communications.

To be attractive, OMiSCID offers to researchers
several facilities for ubiquitous computing with its multi-
platform, cross-language capabilities and interoperability.
The underlying concepts as well as the API are user friendly
and directed toward usability, extensibility, reusability and
maintainability. In contrast to existing solutions, the API is
non-invasive which keeps the developed solution portable to
other paradigm if mandatory. OMiSCID can also be mixed
or extend other middleware solutions as we did with the
OSGi platform. Using OMiSCID for service discovery, one
can built an ubiquitous application interconnecting dozens
of services. All networking aspects are handle by the
middleware as this solution does not rely on the number of
computers, operating systems or network configuration. One
can concentrate about core services that will orchestrate the
full application. As transfer-rate performances are not altered
by OMiSCID usage, it is possible to transfer data from a
simple integer to huge video streams. Target applications
are thus not limited by OMiSCID.

Along with this middleware, OMiSCID Gui provides
developers with an extensible, portable and modular
platform that ease development and debugging, and
improve maintainability of OMiSCID demonstrations and
applications.

OMiSCID has successfully been used in several academic
research projects and more recently in a wizard of Oz
experiment. Such an experiment requires an important
amount of resources and preparations, particularly when
realized in smart environments. We have presented
how OMiSCID and OMiSCID Gui can greatly reduce
development time, maximizing reusability of existing
software, and eases redeployment.

IX. ACKNOWLEDGEMENT

For their past work on OMiSCID and/or experimentations
depicted in this article, the authors would like to thank (in
anti-chronological order) Wafa Benkaouar, Matthieu Langet,
Jean-Pascal Mercier, Julien Letessier and Sébastien Pesnel.

REFERENCES

[1] R. Barraquand, D. Vaufreydaz, R. Emonet, and J. Mercier,
“UBICOMM 2010 paper Case Study of the OMiSCID
Middleware: Wizard of Oz Experiment in Smart
Environments,” in The Fourth International Conference
on Mobile Ubiquitous Computing, Systems, Services and
Technologies, Florence, Italy, 2010.

[2] R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier,
“O3miscid: an object oriented opensource middleware for
service connection, introspection and discovery,” in 1st IEEE
International Workshop on Services Integration in Pervasive
Environments, Lyon (France), jun 2006.

[3] “OSGi Alliance,” accessed 17-January-2012. [Online].
Available: http://www.osgi.org/

[4] C. Escoffier, R. S. Hall, and P. Lalanda, “ipojo: an extensible
service-oriented component framework,” Services Computing,
IEEE International Conference on, vol. 0, pp. 474–481, 2007.

[5] D. Wang, L. Huang, J. Wu, and X. Xu, “Dynamic software
upgrading for distributed system based on r-osgi,” in CSSE
’08: Proceedings of the 2008 International Conference on
Computer Science and Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 227–231.

[6] “Referenced specifications UPnP forum,” accessed
17-January-2012. [Online]. Available: http://upnp.org/
sdcps-and-certification/standards/referenced-specifications/

[7] “OW2 chameleon,” accessed 17-January-2012. [Online].
Available: http://wiki.chameleon.ow2.org/xwiki/bin/view/
Main/Rose

[8] C. Escoffier, J. Bardin, J. Bourcier, and P. Lalanda,
“Developing User-Centric Applications with H-Omega,”
in Mobile Wireless Middleware, Operating Systems, and
Applications - Workshops. Springer Berlin Heidelberg, April
2009, pp. 118–123.

[9] M. Papazoglou, Web Services: Principles and Technology.
Prentice Hall, September 2007.

[10] R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-oriented
composition in bpel4ws.” in WWW (Alternate Paper Tracks),
2003.

[11] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein,
D. Mcdermott, D. Mcguinness, B. Parsia, T. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. Sycara, “Bringing
semantics to web services: The owl-s approach,” in SWSWPC
2004, ser. LNCS, J. Cardoso and A. Sheth, Eds., vol. 3387.
Springer, 2004, pp. 26–42.

[12] A. Fillinger, L. Diduch, I. Hamchi, M. Hoarau, S. Degre, and
V. Stanford, “The nist data flow system ii: A standardized
interface for distributed multimedia applications,” in World of
Wireless, Mobile and Multimedia Networks, 2008. WoWMoM
2008. 2008 International Symposium on a, 23-26 2008, pp.
1 –3.

[13] “OMiSCID Forge,” accessed 17-January-2012. [Online].
Available: http://omiscid.gforge.inria.fr/

[14] “The official bluetooth SIG member website |
specification: Adopted documents,” accessed 17-January-
2012. [Online]. Available: https://www.bluetooth.org/
Technical/Specifications/adopted.htm

[15] D. Svensson Fors, B. Magnusson, S. Gesteg\aard Robertz,
G. Hedin, and E. Nilsson-Nyman, “Ad-hoc composition
of pervasive services in the PalCom architecture,” in
Proceedings of the 2009 international conference on
Pervasive services, ser. ICPS ’09. London, United Kingdom:
ACM, 2009, p. 83–92, ACM ID: 1568213.

[16] “YAML on Wikipedia,” accessed 17-January-2012. [Online].
Available: http://en.wikipedia.org/wiki/YAML

[17] “JSON Website,” accessed 17-January-2012. [Online].
Available: http://www.json.org/

243

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jégou,
S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet, “Grid’5000: a large scale,
reconfigurable, controlable and monitorable Grid platform,” in
6th IEEE/ACM International Workshop on Grid Computing -
GRID 2005, Seattle, USA, 11 2005.

[19] R. Emonet, “Semantic description of services and service
factories for ambient intelligence,” Ph.D. dissertation,
Grenoble INP, sep 2009.

[20] J. L. Crowley, D. Hall, and R. Emonet, “Autonomic computer
vision systems,” in Advanced Concepts for Intelligent Vision
Systems, ICIVS 2007, J. Blanc-Talon, Ed. IEEE, Eurasip,,
Aug 2007.

[21] R. Barraquand and J. L. Crowley, “Learning polite behavior
with situation models,” in HRI ’08: Proceedings of the
3rd ACM/IEEE international conference on Human robot
interaction. New York, NY, USA: ACM, 2008, pp. 209–
216.

[22] S. Zaidenberg, P. Reignier, and J. L. Crowley, “An architecture
for ubiquitous applications,” Ubiquitous Computing and
Communication Journal (UBiCC), vol. 4, no. 2, jan 2009.

[23] J. L. Crowley, P. Reignier, and R. Barraquand, “Situation
models: A tool for observing and understanding activity,” in
in Workshop People Detection and Tracking, held in IEEE
International Conference on Robotics and Automation, Kobe,
Japan, 2009.

[24] “PRIMA Channel on Youtube,” accessed 17-January-
2012. [Online]. Available: http://www.youtube.com/user/
PrimaChannel

[25] R. Barraquand, P. Reignier, and N. Mandran, “The Sorceress
of Oz,” in Workshop for Pervasive Intelligibility, part of the
Pervasice Conference, San Francisco, USA, 2011.

