
Contextual Injection of Quality Measures into Software Engineering Processes

Gregor Grambow and Roy Oberhauser
Computer Science Dept.

Aalen University, Germany
{gregor.grambow, roy.oberhauser}@htw-aalen.de

Manfred Reichert
Institute for Databases and Information Systems

Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract—Despite improvements in software engineering
processes and tools, concrete preventative and analytical
software quality assurance activities are still typically
manually triggered and determined, resulting in missed or
untimely quality opportunities and increased project overhead.
Quality goals, when defined, lack holistic environmental
support for automated performance measurement and
governance that is tightly integrated in the low-level
operational software engineering processes. This results in
higher quality risks and cost risks. Based on adaptive process
management, an approach is presented that injects
situationally-determined quality measure proposals into the
concrete workflows of software engineers, using contextual
semantic knowledge and multi-agent quality goal tracking and
decision-making. Our evaluation shows the feasibility of the
approach for automatically providing timely quality measure
guidance to software engineers without disrupting their
current activities. This supports process governance while
reducing quality risks and costs during software development
projects.

Keywords-software quality assurance; process-centered
software engineering; adaptive process management; semantic
technology; agents; Goal-Question-Metric technique

I. INTRODUCTION
This article extends our previous work in [1], which

described aspects of an approach for automated integration
of software quality management and software engineering
process management. Today IT-supported business process
management (BPM) enjoys wide industrial adoption [2] and
can support improved product quality by ensuring that
quality-supporting processes are executed [3]. Process
repetition and predictability lowers the recovery risk for
necessary investments in process modeling, process
management system support, and enterprise application
integration [5]. Interestingly, BPM is also increasingly being
used for product development [4].

In the software engineering (SE) domain, numerous
obstacles inhibit automated SE process management (SEPM)
at the operational level. These include the contextual
dependency of the low-level activities (e.g., coding,
debugging, testing), the high degree of change to the
involved artifacts (e.g., source code files, test
documentations), the informational and environmental
dependencies (e.g., coordination, requirements, reports,
tools), the uniqueness of each developer’s concrete personal

process (e.g., junior vs. senior engineers, information needs),
activity coordination with the overall team process, the
contextual and project influences on the processes (e.g.,
schedule, resource availability), and software quality
assurance (SQA) dependencies (e.g., quality plan, reactive
quality measures, metric dependencies).

Historically software development projects have also
faced difficulties in meeting budget, schedule, functionality,
and quality targets [6][7][8]. A more recent study in 2002 by
the National Institute of Standards and Technology (NIST)
found that most delivered software products are still stricken
by bugs and defects [9]. While some of these difficulties
might be ascribed to a misaligned planning environment in
certain organizations [10], the project pressures and resulting
issues will likely linger due to global competition and other
influences [11]. Other difficulties can be attributed to SE’s
adolescence as a discipline and certain unique product
properties that affect the SE development process, such as
software’s complexity, conformity, changeability, and
invisibility [6]. Additionally, the extent (too little or too
much) and timeliness of SQA significantly impacts overall
project costs [12], making effective and efficient SQA vital.
Yet it remains laborious to manage and apply the appropriate
low-level SQA measures (actions) in a timely fashion during
SE process enactment. In order to achieve software quality
goals, these must be defined and concretely and
contemporaneously measured [13]; yet this is often
challenging for various SE organizations [14]. Especially
small and medium sized companies often struggle to achieve
high quality levels. This often results from the increased
complexity of their growing organizational structures, the
lack of process maturity and capabilities, and the lack of
dedicated quality management personnel.

A. Problem Statement
While SE process models foster development efficiency

[15], they are often defined rather abstractly and thus fail to
provide low-level guidance for the activities actually
executed at the operational level. Furthermore, processes are
often defined rigidly beforehand. However, during their
execution, reality often diverges from the planned process
[16].

Automated guidance for combining SQA with SEPM is
not yet prevalent. Challenges in software development
projects are presented at both the product and process levels
based on the nature of software artifacts and manually driven
processes. Product intangibility hinders effective retrieval of

76

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

timely information about its product quality status.
Additionally, the combination of abstract process definitions
and intertwined, contextually information-dependent lower-
level workflows make targeted process guidance for
developers irrelevant, complex, or financially infeasible.
Thus, artifact issues often cannot be detected promptly and,
even if they are, the contemporary integration of quality
measures into the workflow is not possible. At times, quality
measures come into focus and are applied close to release,
or, when the project is behind schedule, they may be
jettisoned altogether; however, it is generally acknowledged
that their application in earlier development stages saves
time as well as money [12][17]. The proper application of
quality measures is also problematic, since their
effectiveness and efficiency depend on many factors, such as
the applicability of the measure, the project timing, worker
competency, and correct fulfillment [12]. For clarity,
measure in this article is meant in the sense of a specific
action intended to produce some effect - reactive actions are
thus countermeasures.

To illustrate the problem as well as the proposed
solutions, this paper uses a series of simplified practical
scenarios dealing with a fictional company (called ‘the
Company’).

Example 1 (Abstract Process): The Company uses a SE
process model for software development, the V-Model XT
[18]. This process features detailed descriptions of activities,
roles, milestones, and artifacts. Its application is based on
the use of various documents with no automated governance
or support. In the Company, activities for developers are
planned and scheduled on a very coarse-grained level,
leaving the coordination of what is to be done to the
developers and manager. Therefore, the SE process does not
really “touch” the developers, and their actual activities are
difficult to trace. The quality of the source code is not
monitored continuously and static code analysis tools are
only used sparsely by the developers. Deterioration of the
source code quality goes undetected and quality measures
are only taken at the end of projects when there is time left
or when concrete bugs exist.

B. Contribution
Automated support for and governance of the

coordinated integration of SQA in SEPM offers promising
perspectives for addressing shortcomings in current SQA
approaches. In the following, the terms process and
workflow will be used extensively, and are delimited here
against each other in alignment with existing definitions
provided by the Workflow Management Coalition [19] and
Gartner Research [20].

Definition: Business Process Management deals with the
explicit identification, implementation, and governance of
processes as well as their improvement and documentation.
This incorporates different issues such as organizational or
business aspects, or the strategic alignment of the activities.
Workflow Management, in turn, deals with the automation of
business processes. Hence, a workflow is the technical
implementation of a business process or a part of it.

In our previous work, we introduced the CoSEEEK
framework [21], which utilizes various technologies to
provide automated, context-aware assistance for SEPM. In
[22] and [23], we provided a solution to dynamically
generate workflows according to the properties of various
situations to support dynamic workflows extraneous to the
SE process. We are currently also working on the integration
of this dynamic generation with workflows belonging to the
SE process and covering situations where pre-planned
workflows are too rigid. In [24], we introduced an SE
workflow language that provides extended modeling
capabilities for SE workflows and improves the connection
between abstractly defined processes and concretely
executed activities. Finally, in [1] and [25], which provide
the basis for this article, we described aspects of our overall
approach for integrating SQM and SEPM. In particular, this
paper provides a more comprehensive description of this
approach with further extensions, in particular elucidating
the following areas:

- automatic detection and management of source code

related problems in a SE project,
- automatic assignment of quality measures to detected

quality problems,
- automatic strategic prioritization and alignment of

quality measures to project quality goals,
- tailoring of measure (action) proposals to the situation,

and
- automatic integration of quality measures in the

software engineer’s workflow.

The remainder of this paper is organized as follows:
Section II presents background information needed for the
understanding of this paper and elicits fundamental
requirements for our solution approach. Section III describes
our solution approach. Section IV discusses realization
aspects and Section V evaluates our solution. Finally,
Section VI discusses related work and Section VII concludes
the paper.

II. REQUIREMENTS
Requirements have been elicited based on various

sources we found in literature. The identified requirements
cover different areas to enable comprehensive system
support for integrating SQA and SEPM.

Context-awareness. To enable automated decisions on

quality measure assignments, any system support should be
aware of its environment and the context of the current
situation.

Requirement R:Ctx1 (Context integration): To be aware
of problems in the SE project, the system must have a facility
to integrate information on SE process or product problems
from various sources (e.g., external tools measuring the state
of the source code, bug tracking systems).

Requirement R:Ctx2 (Quality opportunity awareness):
To enable automated integration of quality measures at run-
time, the system must be aware of quality opportunities,
meaning time points when a user can cope with a quality

77

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

measure. This requires knowledge about the users' schedule,
meaning the abstract activities that have been scheduled and
estimated for the user.

Process management: To enable the automated

integration of quality measures, the system must be able to
govern the SE process automatically. To foster this in SE,
facilities must be in place to enable the system to match the
workflow specification belonging to the process (or parts of
it) with other facts representing the current situation. That
way, contextual information can be used for SE process
support.

Requirement R:Sepm1 (Vertical workflow connection): It
should be possible to define flexible connections between
different workflows (meaning the vertical connections
between sub-workflows and their super-workflows). In
traditional process management, a simple connection
between sub- and super-workflow is possible. If an activity
of a super-workflow refers to a sub-workflow, it will be only
finished at run-time after completing the corresponding sub-
workflow instance. However, in practice, more complex
connections may be required as illustrated in Figure 1 and
confirmed by processes from other domains like the
automotive industry [26] and enterprise resource planning
[27]. In this example (Figure 1), activities are grouped by
work packages. In the planning phase, for example, the
packages and their corresponding activities are planned. This
means that the activity of planning a package depends on the
completion of the planning of the contained activities. The
same applies for the processing of a package. That way there
are multiple connections between the super and the sub-
workflow, and the completion of a certain activity does not
necessarily depend on the completion of a whole sub-
workflow, but on the completion of one or multiple activities
in one or multiple other workflows.

Figure 1. Sub-workflow Connections.

Requirement R:Sepm2 (Task Granularities): For the
automated detection of quality opportunities, an explicit
connection between abstract assignments, which have been
planned and scheduled, and the related concretely executed
activities is desirable. Traditional BPM features human tasks
only with one single granularity. In fact, human tasks exist
on different levels of abstraction that are often related to each
other (see also [28][29]). Process management lacks
sufficient support for this - just modeling tasks on different
levels of abstraction does not adequately match reality since
tasks usually have different properties. An example of those
tasks is shown in Figure 2.

Example 2 (Task Granularities): Task 1 is an abstract
assignment, which was planned and estimated from the
business side. That task implies Tasks 2 and 3, which are
concretely planned and executed by the developer. Those
tasks, in turn, also imply tasks on a more concrete level like
Tasks 4, 5 and 6, which may have special connections to the
environment, as they require, for example, certain tools.

Figure 2. Task Granularities.

Requirement R:Sepm3 (Workflow adaptation): The
concrete workflows should be adaptable. In particular, their
specification should support automated adaptations during
run-time to enable the system to automatically and
dynamically insert quality activities into workflows where
required and favorable.

Quality Measure Selection. The selection of appropriate

quality measures during SE process execution constitutes
another challenge. Various factors must be taken into
account for effectiveness and efficiency.

Requirement R:Qmsel1 (Quality measure selection):
Applied quality measures should be automatically chosen
during run-time in alignment to project goals in order to
match the defined strategy of the project.

Requirement R:Qmsel2 (Proactive measures): Quality
measures should not only rely on detected problems, but also
consider common quality enhancement. Thus, proactive and
reactive measures should be available.

Requirement R:Qmsel3 (Situational measure tailoring):
Context-sensitive tailoring of proposed measures is desirable
considering different factors of the actual situation, e.g.,
properties of the applying person and application time point.

Requirement R:Qmsel4 (Measure assessment): The
selection of measures should be aware of their effectiveness
to optimally match with specific environments or situations
in different companies. Therefore, continuous monitoring of
the quality of the source code is essential to detect potential
impacts of applied measures on the overall quality. In
particular, a relation between the application of SQA
measures and the evolution of source code quality should be
established to assess the effectiveness of the measures.

III. SOLUTION APPROACH
Considering the aforementioned requirements, the concepts
behind our solution approach are now described in detail. To
automatically integrate quality measures into the SE process,
our approach consists of a process (referred to here as a
procedure to avoid confusion with SEPM) in conjunction
with the architecture of the Context-aware Software

78

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Engineering Environment Event-driven frameworK
(CoSEEEK) [21].

A. Solution Procedure
Our solution procedure involves three fundamental

phases: a detection phase, a processing phase, and a post-
processing phase as shown in Figure 3. These phases as well
as their different steps will be explained in the following
subsections.

Figure 3. Conceptual Procedure.

The Detection Phase continuously enables an awareness
of the current project situation to meet the requirements
relating to context-awareness (cf. Section II.B). For
integrating quality measures, two factors are of particular
interest: the presence of problems (cf. Requirement R:Ctx1) -
recognized via the ‘Problem Detection’ - and the availability
of opportunities for quality measures in the users’ schedule
(cf. Requirement R:Ctx2) - recognized via ‘Quality
Opportunity Detection’. To enable such detection in an
automated fashion, the SE process specification must be
extended (cf. Requirement R:Sepm2). The applied
extensions will be described in Section III.C.

The Processing Phase deals with the selection and
proposal of the quality measures and involves four steps.
Utilizing the GQM technique [30], quality measures
(actions) are initially proposed in alignment with project
goals to satisfy Requirement R:Qmsel1. This phase also adds
proactive measures to the measure proposal process (cf.
Requirement R:Qmsel2). To prepare these measures for their
automated application, ‘Measure Tailoring’ incorporates
information about the applying persons and the possible
points in the users' schedule in which to apply the measure

(cf. Requirement R:Qmsel3). This leads to a selection of
appropriate points (so called Q-Slots) and to an automated
integration of the quality measures into the concrete
workflow of the chosen person. The application of measures
can be also done automatically utilizing extensions made to
the SE process specifications (cf. Requirement R:Sepm3).
These enable the system to be aware of matching extension
points (e.g., in the workflows). These are illustrated in Figure
4 by a small abstract workflow containing the activities ‘A1’
to ‘A5’. ‘A2’ and ‘A4’ have an associated extension point,
meaning that an automated insertion of a new activity is
possible subsequent to these activities.

Figure 4. Extension Points.

Finally, to be able to track the quality of the project
continuously, in the Post-Processing Phase (cf. Figure 3) a
‘Measure Assessment’ is performed via a quality trend
analysis. This analysis supports an awareness and automatic
assessment of the potential utility of the applied measures,
fostering quality (cf. Requirement R:Qmsel4).

Since each project is unique, the applicability and
effectiveness of measures can vary with respect to different
projects. Therefore, the system executes an assessment phase
to rate the applied measures and to incorporate their impact
in the given project.

B. Conceptual Architecture
CoSEEEK provides the necessary infrastructure for

realizing the solution procedure presented in the previous
sub-section. Its conceptual architecture is shown in Figure 5.

Figure 5. CoSEEEK Conceptual Architecture.

SE Tools is a placeholder for all tools used in a SE
project of which CoSEEEK is aware, such as source control
systems or IDEs. Artifacts are those things produced in a SE
project using the SE Tools. This includes source code
artifacts, documents, and models.

Awareness of changes to the state of tools as well as
artifacts is supported by the Event Extraction module. It
utilizes sensors that are typically integrated into the tools or
otherwise monitor the tools. These sensors generate events in
in response to various situations (e.g., 'switch to debug

79

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

perspective' in an IDE). The Data Storage module
encapsulates the storage mechanisms for events and shared
data. Communication is event-based and loosely coupled to
support integration and exchangeability of different modules.

The events generated and collected in the Event
Extraction module are basic and low-level. The Event
Processing module utilizes complex event processing (CEP)
[31] to process these events, providing high-level events with
enriched semantic value. The Rules Processing module uses
rule-based computing to analyze tool data such as static
analysis reports or metrics, and it triggers follow-up actions
as necessary (e.g., quality measures for violated metrics).
These triggered measures are subsequently filtered by the
AGQM (Automated Goal Question Metric) module, which
automates and extends the GQM approach via multi-agent
computing to analyze the project quality state in alignment
with strategic project goals and to propose appropriate
proactive and reactive quality measures.

The Process Management module applies dynamic and
adaptive process management technology to govern the
activities of the involved project participants. This enables
the system to match workflows to real project situations
(instead of rigidly prescribing certain activities and their
orders) and thus provides real situational guidance. This
becomes possible by utilizing the cumulated knowledge
contained in the Context Management module. In that
module, high-level information of all project areas is
collected, as, for example, the skills of users or information
about the quality state of the project. Using semantic
technology, this information can be used to reason about the
project state and contextual influences (causes and effects)
and thus provide automated decisions and workflow
adaptations such as the automated and dynamic integration
of quality measure activities during SE process execution.

C. Context-aware Business Process Management
To support a high degree of automated and context-aware

assistance, a tight coupling of the Context Management and
the Process Management module is required, which will be
referred to as Context-aware Process Management (CPM).
This addresses many of the shortcomings of traditional BPM
(as listed in Requirements R:Sepm1 to R:Sepm3) and
facilitates the comprehensive utilization of the awareness
capabilities in CoSEEEK. Fundamentally, process
management concepts are enhanced with semantic
information. This additional information is stored in the
Context Management module, while the workflows are
managed by the Process Management module. Since Context
Management unifies all project knowledge, it can be also
used as a management layer around the Process
Management module, facilitating context-based process
management. Thus, all process-related actions are addressed
by the Context Management module, which, in turn,
manages the actions of the Process Management module.
Figure 6 illustrates these extensions to process management.

The Process Management module governs the workflows
and their activities. These two concepts are mirrored in the
Context Management module: the activity by the Work Unit
and the workflow by the Work Unit Container. Thus, process

management is separated into two areas that we call vertical
and horizontal process management. Horizontal process
management denotes the governing of the different activities
of one workflow (also denoted as process orchestration)
utilizing well-established workflow patterns like AND,
SPLIT, or LOOP. This is done within the Process
Management module. Vertical process management, in turn,
deals with the management of the dependencies between
different workflows on different levels of abstraction. Since
process management only offers one kind of connection (an
activity depends on a sub-workflow) here, this is handled by
the Context Management module. This allows for the
flexible definition of dependencies. The completion of a
Work Unit can depend upon one or multiple Work Unit
Containers or on one or multiple Work Units contained in
other Work Unit Containers. A mixture of both is possible as
well.

Figure 6. Context-aware Business Process Management.

Work Units are connected to three other concepts,
enabling advanced task management (cf. Requirement
R:Sepm1). The Assignment is used as a coarse-grained top-
level task, which is also estimated and scheduled from the
business side in a project, exemplified in Figure 2 as
"Develop feature X". The Assignment Activity then describes
the tasks that are necessary to accomplish the Assignment,
e.g., "Design Solution" or "Write Developer Tests" (cf.
Figure 2). The most fine-grained level is described by atomic
tasks like "Check out" or "Build Code".

Combining the Context Management and the Process
Management modules enables the automatic adaptation of
running workflows based on the current context. This has
been used to automatically build workflows for issues
extraneous to SE process models, like bug fixing or
refactoring as described in [22].

80

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Quality Opportunity Detection
To enable the automated detection of quality

opportunities, an awareness of the activities that have been
planned and scheduled becomes necessary. These are
captured by the Assignment, which has certain properties to
capture estimated durations. These assignments can be
created, estimated, and scheduled in CoSEEEK or imported
from other tools. This is illustrated by Figure 7.

Figure 7. Quality Opportunity Detection.

The figure shows a simple example schedule containing
the Assignments ‘As1’ – ‘As4’ that are estimated to take
three days each. The scheduled Assignments are then taken
for execution. The figure illustrates the connection of the
Assignment ‘As1’ to four Assignment Activities for
execution, which are ‘Aa1’ – ‘Aa4’. Optionally, the schedule
can be imported from an external tool. That way, the
activities can be estimated and scheduled from the business
side, e.g., utilizing a process management tool like
microTOOL in-Step [32], and then be automatically used for
execution in CoSEEEK.

In our approach, two triggers for a quality opportunity
are implemented. The first one is early assignment
completion. If a user finishes an assignment earlier than
necessary, a quality measure can be assigned to him without
delaying forthcoming activities. The second trigger is the
quality overhead factor. It enables the a-priori specification
of a certain percentage of the project workload that should be
reserved for quality activities. If the user has not yet reached
that amount during process execution, a quality measure may
be applied. This can be combined with a quality function
indicating how much time for quality should be spent in
which project phase. Since it has been shown that it can be
beneficial to adjust the work allocation for quality based on
the stage of a project [12][17], this can improve both the
effectiveness and efficiency of the quality efforts taken.

Example 3 (Quality Opportunity Detection): To
illustrate how automated quality opportunity detection could
work, Figure 8 shows a simple schedule of the Company.
This example, which demonstrates early assignment
completion, assumes that the Company has already adapted
the planning to create more fine-grained assignments not
taking weeks but days. The schedule comprises four users
having five assignments each. Each of these assignments, in
turn, is estimated to take three days. Every user in this
example finishes early on one Assignment, triggering the
creation of a Q-Slot filling the hole in the schedule.

Figure 8. Schedule with Q-Slots.

The concrete detection of the quality opportunities is
done each time an assignment completes. This can be
detected automatically by connecting the Assignments to the
users’ Atomic Tasks (cf. Section III.C). Atomic Tasks, in turn,
are connected to the development environment via the sensor
infrastructure provided by CoSEEEK, generating an
awareness of their status. When all Atomic Tasks of an
Assignment Activity are completed, the Assignment Activity
completes as well. The same applies to the Assignments in
relation to the Assignment Activities. This process is further
described in [25].

E. Problem Detection
Problem detection makes use of the environmental

awareness of CoSEEEK to identify potential problems, e.g.,
in the source code. In this context, external data from tools
needs to be integrated. This information is utilized for
calculating various metrics that can be customized to
measure the quality state of the SE project. Metrics directly
indicating problems in the source code are obtained from
static code analysis tools like PMD [33] and FindBugs [34],
while certain testing problems can be detected with test
coverage tools [35] such as Cobertura [36] or EMMA [37].

However, not only code-related product-level problems
threaten quality, but process-related factors should also be
assessed to ensure quality. These assessments include
functional testing, profiling, and load testing. Since
CoSEEEK is aware of the execution of respective activities,
it can ascertain their absence. Thus, process metrics can also
include these facts. Facts available to CoSEEEK can be
incorporated in metrics, which enables quality awareness
through the presence of measurable, quantifiable
information. To reduce the associated configuration effort, a
set of pre-configured default metrics will be included with
the system.

After detecting any problem, measures (actions) can be
used to counter them. The Rules Processing module is
utilized for triggering the automatic proposal of a measure
when the threshold for a particular metric has been violated.
Metric or violation reports are received and analyzed, and a
list of the violated metrics including assigned quality
measures is created by the module.

Example 4 (Source Code Monitoring): Company policy
includes a nightly built process on a build server that invokes
static code analysis tools to enable continuous measurement.
Thus, a deterioration of the source code quality can be
detected by metrics such as its cyclomatic complexity. If
complexity exceeds a threshold, the code becomes difficult to
maintain and test, and there is a higher probability of
introducing defects.

81

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Measure proposal
At this point in the procedure, problems as well as Q-

Slots have been detected and an initial assignment of quality
measures to metric violations has been done. The generation
of a Q-Slot then triggers a measure selection and proposal
process. The latter is coordinated by the Context
Management module. First, the Context Management
module triggers the AGQM module to prioritize the measures
strategically in alignment to the quality goals of the SE
project. Thereafter, the measures are tailored to the current
situation.

The process of prioritizing measures is very dynamic due
to different goals, presence of various metrics and violations
and different project situations. Therefore, the AGQM
module features a multi agent system (MAS) to prioritize
measures in alignment to the project goals to be able to
accommodate these various factors. The process is based on
an extension to the GQM technique [30]. GQM consists of a
hierarchical structure that starts with the definition of certain
project goals. During configuration, for each goal various
questions are defined. These answers should provide
indicators for the level of goal fulfillment. Each question can
be associated with certain metrics, establishing a connection
from the abstract project goals to concrete facts in the
project. The following example shows the application of the
GQM technique.

Example 5 (GQM Plan): As part of a GQM plan, a goal
‘Maintainability’ could be defined relating to the
maintainability of the produced source code. For this goal,
one question could be ‘How understandable is the code?’
For this question, in turn, different metrics could apply. One
example is the metric ‘Comment Ratio’.

1) GQM Extensions
This subsection shows the basic concept on which the

agents rely. Two main requirements have to be satisfied to
facilitate automatic support for GQM execution. First, a
GQM plan must exist that defines the relations between
goals, questions, and metrics. Second, the metrics have to be
integrated in the system, enabling the automatic extraction of
corresponding values and thus the automatic receipt of
possible deviation information.

Some extensions to the GQM technique became
necessary to support automation. Different abstractions of
key performance indicators (KPIs) were introduced to enable
the automatic calculation of goal deviations. Furthermore,
metrics are encapsulated in KPIs to enable consolidation and
simplified deviation calculation. Since multiple metrics may
be utilized for a single question in GQM, a QKPI (Question
KPI) was created for consolidation of the metric values at the
question level. Similarly, multiple questions may apply to a
single goal, thus a GKPI (Goal KPI) is used for goal
deviation calculations. For each of the KPIs, formulas
specify how metrics are combined. To support automated
multiple goal attainment, each defined goal was assigned one
agent responsible for monitoring and fulfillment of that goal.

The calculation of the different KPIs is conducted by the
Context Management module as part of the quality trend

analysis described in Section I. Figure 9 shows the relation
between the different conceptual elements.

Figure 9. Extended GQM Structure

To prescribe appropriate countermeasures for (potential)
quality deterioration, measures were categorized as follows:
reactive (or analytical) measures, which are directly
associated with concrete metrics or violations, and proactive
(or preventative) measures, which hereby are categorized as
supporting certain quality goals at an abstract level and may
not be readily associated with a concrete problem. Proactive
measures are assigned to GKPIs and can be triggered either
when a GKPI deviation occurs (a supportive role) or in the
absence of reactive measures. This differentiation is
pragmatic since reactive measures can be based on concrete
existing problems and can thus be more fine-grained,
whereas proactive measures support a goal in general.

2) AGQM Process
At the beginning of a project or a phase or iteration, a

quality manager assigns points to each goal (implying its
importance) and chooses a bidding strategy for the agent
managing that goal. These points are used by agents for
negotiating proposed measures. The AGQM process invokes
a proactive as well as reactive selection mechanism that
results in a measure proposal.

Quality goals can be conflicting, and determining the
appropriate balance is project-specific. Thus, a competitive
bidding process among agents is chosen for enabling
proactive measures, whereas a cooperative voting process is
applied for enabling reactive measures. The competitive
bidding allows agents with greater importance to definitively
have opportunities to support their goal with measures, in
contrast to voting where agent majorities might win. That
way, a group of lower-priority goal agents does not hinder a
higher priority goal from ever asserting influence. The
bidding strategies enable agents to win opportunities earlier
or later in an iteration cycle.

The reactive voting process is cooperative since a
potentially large number of concrete reactive measures based
on metric violations become possible for a limited number of
quality opportunity slots (Q-slots), and those measures that
will have the greatest overall quality impact across all goals
are favored. The agents cooperatively vote on the measures
list received from the Rule Processing module. Via the
structure shown in Figure 9, each agent determines for each
measure whether a measure belongs to a metric being related
to the agent’s goal. The points of an agent are then

82

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distributed (currently uniformly) across all measures
associated to its goal. A prioritized list of reactive measures
is output, while the ultimate choice will be applied by
Context Management based on the situation.

The proactive section of the AGQM module utilizes
metrics for calculating the different KPIs, QKPIs, and
GKPIs. If there are any deviations at the goal level of an
agent (GKPI), it may participate in the bidding session (this
favors those goals known to be at risk). Each agent bids and
the highest bid wins, elevating its proactive measure set to a
proposal. In this process, not just the points differentiate
between the goals, but also the strategy chosen by the agents.
The strategies influence how an agent increases or decreases
its bids after winning or losing for the next bidding process.
Choosing a defensive strategy for an agent will increase the
likelihood that a proposal of its associated measures will
occur in later phases of the iteration. This behavior occurs
because in early sessions the agents with more aggressive
strategies will place much higher bids. The defensive agent
can then place winning bids later when the aggressive agents
run out of points.

To define an appropriate proportion between proactive
and reactive measures, a proactive-to-reactive ratio can be
defined. This determines how often reactive vs. proactive
measure sets are provided by the AGQM module. Section V
will evaluate a concrete scenario utilizing this approach. If
no metrics and thus no reactive measures are yet available,
then no question or goal deviation is detectable since there is
no basis for their calculation. In this case, all agents
participate in proactive bidding so that any Q-Slots can be
used for proactive measures.

G. Measure Tailoring
The AGQM module has created a list of prioritized

measures according to project goals. However, the final
selected measure should depend on environmental factors for
the most effective and efficient measure application. These
include properties of the measure itself, properties of the
applying person, and properties of the current situation.

The properties of the measure are defined in the Context
Management module and include, for example, the type of
the measure or the applicable number of users involved (e.g.,
a code review involves multiple persons). One property of
the person that can be of interest is the skill level. The
properties of the current situation are modeled based on the
concepts of the Q-Slot and the Extension Point. The
Extension Point, as part of the semantic enhancements to the
process, is a pre-specified point in the process where the
integration of a quality measure is feasible, as illustrated in
Figure 4. That involves an abstraction level and applicable
measure type since, for example, at the end of a project
phase other measures might be applicable compared to a
time point after directly implementing new functionality. The
Q-Slot captures a time category indicating how much time is
left for a quality measure. Via these properties, a measure
fitting to the current situation can be chosen. This process is
further explained in [25].

H. Measure Application
To enable a high degree of automated guidance, the user

is not only informed about the measure to be applied, but the
measure is also directly integrated into the users’ workflow
(not necessarily visible to the user, but tracked by the
system). Both semantic enhancements to process
management and the capabilities of the adaptive process
management system, which enables the dynamic change of
running workflow instances, are used. Details can be found
in [25].

Example 6 (Measure Selection): To enable automated
support for quality measures, the Company introduced the
facilities for automated problem and quality opportunity
detection. A GQM plan was created with maintainability and
reliability as well as the creation of new functionality as
goals. If developers now finish early on Assignments, the
system can automatically assign them quality measures that
fit the project goals and are appropriate to the personal
situation. As example for this, consider refactoring of
complex code. This measure was triggered as problems in
the source code were detected, for example by applying the
cyclomatic complexity metric. The measure was prioritized
as high since it was judged as important and applicable to
both the maintainability and reliability goals of the project.
Finally, the system can choose the matching person for the
measure based on properties like the skills of the person,
their familiarity with that code section, or the amount of time
they can spend in accomplishing a measure vs. the expected
time needed for the measure.

I. Quality Trend Analysis
The continuous monitoring of the quality of the source

code is essential to be able to detect any impact of applied
quality measures. Therefore, the list of quality measures
from the Rule Processing module is utilized by the Context
Management module. The list not only contains proposed
measures, but also the metric belonging to each measure and
the value of the metric. To enable automated evaluation of
quality trends in conjunction with the GQM technique,
different levels of key performance indicators (KPIs) were
introduced as depicted in Figure 9.

KPIs are composite metrics unifying the values of other
metrics or KPIs to enhance their expressiveness and
significance. Each KPI is based on a formula that prescribes
how the values of the encapsulated metrics are used to
compute the KPI value. KPIs are utilized not only for quality
trend analysis on different levels of abstraction, but also for
automated goal deviation monitoring with respect to the
GQM technique. Therefore, three levels of KPIs were
introduced: on the most concrete level, the KPI unifies one
or more metrics for clarity since different metrics may be
utilized by the system. The QKPI represents a Question of
the GQM technique as a value to facilitate automated
deviation calculation, which is automatically computed from
attributed KPIs and base metrics. The same applies for the
GKPI, which unifies the values of the questions belonging to
one project goal.

Compared to our initial approach described in [1] and
[25], the calculation of the KPIs has been refined and moved

83

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to the Context Management module. Therefore, the KPI
structure and the various calculated KPI values are stored in
the ontology for better information processing and access.
The values can then be incorporated in reasoning procedures
and the data can be easily provided to other external
applications.

The calculations are now done in a uniform way for all
KPIs, applying a weighted average of all values a KPI
aggregates as depicted in Formula (1), where Mi are the
concrete values that are aggregated and Wi are the attributed
weights of the n metrics or KPIs being aggregated. All
received metric values are normalized to a range from 0 to 1.

∑

∑
=

=

=

== ni

i
i

ni

i
ii

W

MW
KPI

1

1
 (1)

J. Measure Assessment
Regarding different companies with different people,

tools, and processes, applied measures may show different
degrees of effectiveness. To reflect that and to improve
future measure proposals, a so-called measure utility is
introduced to indicate the usefulness of the applied measure.
That property is neutrally initialized and updated after each
application of the measure. The delta of the KPI related to
the measure right after its application is compared to the
value prior. Since some measures may not have an
immediate effect, multiple future deltas can be taken into
account. This process is further described in [25].

Example 7 (Measure Assessment): The special
refactoring proposed in Example 6 can now be automatically
assessed for the Company since it has applied continuous
quality measurement. If the refactoring is successful and the
complexity of the code is reduced, this is indicated by a
subsequent measurement showing a lower value for the
cyclomatic complexity metric. This value will then also affect
the value of a KPI related to the maintainability goal defined
by the Company. The KPI value, in turn, will affect the utility
value of the proposed refactoring measure, which will, if
successfully applied, have a higher probability of selection
by Context Management in the future.

IV. REALIZATION
This section provides implementation details for the

components described in Section III and reflects their current
implementation status.

A. Architecture
The technical architecture is depicted in Figure 10,

whereby the modules are deployed as web services. To
support loose coupling of the deployed services in
CoSEEEK, event-driven computing and space-based
computing are leveraged for service interaction [21]. The
communication with the tuple space is technically realized
using the web service framework Apache CXF.

For SE Tools and Artifacts, the actual instances are
dependent on the SE environment and the current

configuration. In the context of this paper, SE Tools includes
static analysis tools like PMD, version control tools like
Subversion, and IDEs (Integrated Development
Environments) like Eclipse. Other relevant tools are, for
example, external project management tools from which
processes can be imported, like microTOOL inStep [32].

The primary Artifacts relevant to the scenario presented
in this paper are source or test code files that are processed
using these tools.

The Event Extraction module utilizes the Hackystat
framework [38]. This framework provides a rich set of
sensors that can be integrated into various SE tools. The
sensors enable the Event Extraction module to automatically
generate events in different situations, as, e.g., checking in a
source code file in Subversion or switching to the debug
perspective in Eclipse.

Most of the extracted events are rather atomic and thus
combined by the Event Processing module to provide more
semantic value. This is done utilizing Esper [39] for CEP.
Esper provides a facility to define patterns that govern how
certain events are combined to derive other higher-level
events, which are then again written to the Data Storage
module as all other events.

The Data Storage module, in turn, is realized via an
implementation of the tuple space paradigm [40] on top of
the XML database eXist [41] for shared XML data, whereas
the Hackystat SensorBase is used for high volume event
data. The specific CoSEEEK tuple space implementation
that uses eXist consists of multiple so-called collections that
structure the stored information. Examples include 'Context
Management' as well as 'Process Management'. Each
CoSEEEK module can write tuple events in these collections
or subscribe to be automatically informed about new events
in a certain collection.

The Rules Processing module automatically processes
static rules to assign certain quality measures to certain
violated metrics utilizing JBoss Drools [42].

The AGQM module, which is in charge of strategic
quality measure prioritization, employs a multi-agent system
(MAS) with different behavior agents. It is implemented
utilizing the FIPA- compliant [43] Jade framework [44].

The Context Management module employs semantic
technology to enable high-level utilization of all project
knowledge. Technology advantages include enhanced
interoperability between different applications, extending
reuse possibilities, and the option for advanced content
consistency checking [45]. It also provides a vocabulary for
the modeled entities including taxonomies and logical
statements about the entities. Ontologies also provide the
capability of reasoning about the contained data and inferring
new facts. As an ontology language, OWL-DL (Web
Ontology Language Description Logic) [46] is used due to
its proliferation and standardization. For simple RDF [47]
based queries to the ontology, SPARQL [48] is used.
Operations that are more complex are executed using the
reasoner Pellet [49]. Programmatic access via DAO objects
to the ontology is provided by the Jena framework [50].
Thus, different semantic concepts can be created and
manipulated as needed.

84

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. CoSEEEK Technical Architecture

The Process Management module builds upon the
AristaFlow BPM Suite [51][52]. AristaFlow provides
process management technology that is notable with respect
to the flexible support of adaptive and dynamic workflows.
New workflow templates can be composed out of existing
application services in a plug-&-play like fashion, and then
serve as schema for the robust and flexible execution of
related workflow instances. In particular, during run-time,
selected workflow instances can be dynamically and
individually adapted in a correct and secure way; e.g., to deal
with exceptional situations or evolving business needs [53].
Examples of workflow instance changes supported by
AristaFlow include the dynamic insertion, deletion, or
movement of single workflow activities or entire workflow
fragments respectively (for a discussion of the adaptation
patterns supported by AristaFlow, see [54]). For integrating
these change functions and other AristaFlow services (e.g.,
for managing user work lists or for defining workflow
templates) with domain- or application-specific process-
aware information systems as in our case, the AristaFlow
Open Application Program Interface (Open API) can be
utilized [55][56]. For example, for dynamically inserting
activities at the workflow instance level, the application
developer can make use of the following system functions
provided by the AristaFlow Open API:

• Querying the activity repository for available activity
templates,

• Marking those activities of the workflow instance
after which the selected activity shall be inserted
(i.e., after completing these activities the newly
added one shall be enabled),

• Retrieving the set of activities selectable as “end”
activities for this insertion,

• Marking the activity (or set of activities) which shall
serve as end activity (activities),

• Performing (tentatively) the insertion based on this
information,

• Checking the AristaFlow report on detected errors
(e.g., missing values for input parameters), and

• Making the instance change persistent.

Note that dynamic workflow instance changes can be

conducted at a high level of abstraction. In particular, all
complexity relating to dynamic workflow instance changes
(e.g., correct transformations of the workflow schema,
correct mapping of activity parameters, state adaptations) are
hidden to a large degree from end users and application
developers respectively [57]. Furthermore, AristaFlow
provides techniques for learning from past experiences and
workflow instance adaptations, respectively, and for
evolving workflow schemes accordingly [58][59][60].

B. Context-aware Business Process Management
As mentioned in Section III, CPM (Context-aware

Process Management) is enabled by correspondingly
modeling the workflows in the ontology. Figure 11 illustrates
this with the 'Develop Solution Increment' workflow of the
OpenUP process [61].

In traditional process management, as mentioned in
Requirement R:Sepm2, some aspects of task management
have not been sufficiently covered. On the one hand, coarse-
grained user assignments that have been planned for the
current iteration or phase are not explicitly included since
they are too abstract. In CoSEEEK, this is done explicitly in
the Context Management module, as illustrated in Figure 11,
by the Assignment 'Develop Feature X'. The latter is
connected to the Work Unit Container that, in turn, contains
all Work Units representing the activities of the workflow. If
human tasks shall be executed via those activities, they are
implicit parts of these activities.

In CPM, modeling it is done more explicitly. Work Units
representing activities are only used for workflow
governance. If they shall imply human activities, they have
to be connected to Assignment Activities. The latter are also
connected to the Assignment, making the connection of the
abstract assignment to the concretely executed activities
more explicit. However, activities like 'Implement Solution',
in turn, consist of a number of smaller tasks. These tasks are
also explicitly modeled in CPM. Figure 11 shows the Atomic
Tasks related to the 'Implement Solution' Assignment
Activity. These tasks can be automatically detected by the
sensors of CoSEEEK’s Event Extraction module. Thus, it is
possible that the system is automatically aware of the
completion of an activity through the detected completion of
all related tasks and thus can automatically finish that
activity and propose the next one. This relieves the user from
the burden of always explicitly informing the system about
activity completion. The same applies to the Assignment,
which can be automatically finished by the completion of all
related Assignment Activities.

85

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Concepts in Process Management and in the Ontology.

The enrichment of process management concepts via the
ontology further enables the aforementioned extended
vertical relations between workflows and the clear separation
between horizontal and vertical process management (cf.
Section III.C). The separation into two areas governed by
two different modules was chosen despite the high
coordination effort it imposes. The main reasons for this are
as follows: mirroring process management components in
the ontology not only enables extended vertical process
management, but also allows for a tighter integration of the
processes in the projects using different task levels for
humans and CoSEEEK’s environmental awareness
capabilities. Since the decision on whether or not a Work
Unit and the respective node can be completed is done in the
Context Management module, the vertical dependencies are
integrated into that procedure as well. Thus, multiple
dependencies are all managed at one point, fostering
contextual integration of process management and
dependency extensibility. A Work Unit cannot complete, for
instance, if related user activities are not completed or if the
Work Unit depends on activities by other users or teams. An
example of new dependencies that can be easily integrated is
that an artifact has to be in a certain state or that an external
tool has signaled a certain event. The horizontal governing of
a process structure stays with process management because
this is a non-trivial task and mature process management
systems such as AristaFlow (cf. Section IV.A) support many
correctness checks and guarantees on process execution. The
extensions to vertical process management made by CPM
are detailed in the following. There exist three possible

connections, all of which can occur multiple times and can
be mixed:
- Depends-on-Work Unit Container: This is the classical

connection between an activity and a contained sub-
workflow. When the Work Unit is activated, the Sub
Work Unit Container is started and the Work Unit must
not complete until the Sub Work Unit Container is
completed. This connection is illustrated in Figure 6 by
the Work Unit ‘B4’ that depends on the Work Unit
Container containing the Work Units ‘C1’ – ‘C4’.

- Depends-on-Work Unit: In this connection, the
completion of the current Work Unit does not depend
on a Work Unit Container, but on the completion of
another Work Unit. When the depending Work Unit is
activated and the Work Unit Container containing the
Work Unit on which the current Work Unit depends has
not been running yet, it is started. This connection is
illustrated by the Work Units ‘A3’ and ‘B4’ in Figure 6.

- Initiates-Work Unit Container: This connection is
asynchronous. The Work Unit does not depend on
anything, but when it becomes activated, the connected
Work Unit Container is started.

C. Procedure
This section gives a short outline about the temporal

coordination of different modules. The whole procedure can
be decomposed into three processes partly dependent on
each other:

- When a report from an analysis tool is received, the
tool-specific format is first transformed into a

86

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

unified one. Thereafter, the report is processed by
the Rule Processing module with triggered
measures output to Data Storage whereby any
subscribers are notified. They retrieve and use the
data, in this case the reactive section of the AGQM
module and the KPI calculation of the Context
Management module.

- When a user finishes an activity, the Q-Slot
detection is started within the Context Management
module. If a Q-Slot is available, the AGQM module
is triggered by the Context Management module to
generate an ordered list of proposed measures. This
list is used by the tailoring process in Context
Management to select a measure that is then
integrated into a workflow by the Process
Management module.

- At certain configured time points, the Context
Management module is triggered to do an
assessment of the applied measures. This relies on
the applied measures and the calculated KPIs.

D. Problem Detection
Problem detection relies on the receipt of information

about CoSEEEK’s environment. This is indicated by events
in the CoSEEEK infrastructure. For reports of external tools,
these events include the location of the reports. Other facts
like the execution of load or functional tests may only be
indicated by events and are continuously monitored. When
reports are received, the Rule Processing module is
triggered. To be able to automatically evaluate metrics and to
assign appropriate measures if thresholds are exceeded, the
module must be aware of the metrics, the measures, the
thresholds, and the tool used to measure the metrics. Thus,
we developed a GUI to more easily define the involved items
as depicted in Figure 12.

Figure 12. Rules GUI.

The rules produced by this GUI have the structure
defined in Listing 1 and allow for the definition of rule
priorities. The latter are used if, for example, two rules with
different thresholds have been defined for the same metric
and only one should be executed if both are triggered. The
rules are then exported, transformed into the DRL format
utilized by JBoss Drools, and loaded by the Rules Processing
service. Any new reports then utilize the new rule set.

Listing 1: Rule example
<rule
 ID="12"
 Tool="PMD"
 Metric="MET:UnnecessaryConstructor"
 Trigger=">=1"
 Measure="M:R:PeerReview"
 Prioritized="2"
/>

Rule processing produces unified XML reports

containing all metrics whose thresholds have been violated
and their associated triggered quality measures.

E. Measure Proposal
The output of a new unified report triggers the Context

Management module to start the measure selection. For the
prioritization of the measures, the AGQM module is
triggered. This subsection gives some details about the
agents utilized in the AGQM module.

The agent structure is defined as depicted in Figure 13.
The AGQM agent is responsible for managing the agent
module. It instantiates the other agents and determines
whether a reactive or proactive measure will be proposed.
For each defined goal, one goal agent is instantiated. In the
proactive section, the goal agents communicate with the so-
called session agent to realize the bidding process. The
session agent takes the role of the “buyer” and thus selects
the proactive measure from the goal agent with the highest
bid. Each goal agent places bids according to its strategy. For
the initial implementation, basic strategies were used. The
three strategies ‘offensive’, ‘balanced’, and ‘defensive’
influence the starting bid of the agents as well as win-or-lose
adaptation based on the last session. The strategy pattern
allows these algorithms to vary. If insufficient points are left
for the intended bid, the agent bids all points he has left. If an
agent has no points left, it cannot place bids anymore until all
agents have no points left, whereupon all points are reset to
their initial value. Each agent has a list of proactive measures
it could offer. Goals that are known to be at risk due to GKPI
deviation are elevated to participation status in the bidding. If
no report containing GKPI violations is received, all agents
participate.

Figure 13. Agent Structure.

The reactive section is realized via the vote agent. Each
time a report is received, the vote agent creates a weighted
list of reactive measures using the report. To elicit the weight
of each measure, the vote agent communicates with the goal
agents. For each measure, a goal agent evaluates whether
that measure is associated to its goal via the aforementioned

87

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connection of measures, metrics, KPIs, and goals. In each
voting process, a goal agent distributes all of its assigned
points (initially allocated at the beginning of the iteration)
uniformly across all measures in the current report that are
associated to its goal. If multiple agents vote on one measure,
the points are aggregated. If no report has been received yet,
the voting process cannot be conducted. In that case, a
proactive session is substituted.

That way the AGQM module creates a new ordered list of
measures that mirror the predefined importance of the
project’s quality goals.

F. Measure Application
This part of the process was discussed in our initial

approach [25]. However, due to technical issues, it has been
extended and refined and this subsection presents how the
integration of new quality measure activities into the user’s
workflow is accomplished. Therefore, new items have to be
inserted both on the Context Management side and the
Process Management side. This is done at first in the Context
Management module. A quality measure is inserted as a new
Assignment comprising certain AssignmentActivities and a
separate WorkUnitContainer with WorkUnits and potential
new ExtensionPoints. These are created from pre-specified
template concepts that are connected to the
MeasureTemplate (that is mentioned in Figure 17). To be
able to insert the quality measure at the specified point, a
new WorkUnit is created and inserted there, which is then
connected to the newly created WorkUnitContainer
belonging to the quality measure. This is illustrated in Figure
14.

Figure 14. Measure Integration.

However, the insertion itself has to be also done within
process management and therefore takes place later. In order
to adapt a running workflow instance in AristaFlow, it has to
be suspended from execution to apply the adaptations. This
cannot be done if an activity in the instance is still active.
However, at the time the quality measure integration is
triggered, the activity that caused the Q-Slot generation is
still active. Therefore, suspension is delayed until the activity
is completed. This procedure is shown in Figure 15.

After the new individuals (WorkUnits, etc.) in the
ontology have been created, a so-called DeferredAction is

created and assigned to the ExtensionPoint where the
measure should be integrated. That action will be
automatically executed when the WorkUnit related to the
ExtensionPoint is finished and will integrate the Activity
containing the measure (named ‘Q’ in Figure 14) in the
workflow instance. After that, a ‘soft suspend’ event is sent
to Process Management, causing AristaFlow to do a soft
suspend on the respective workflow instance. Thus, the
instance will be automatically suspended right after the
currently running activity is finished. This happens when the
related Work Unit finishes via a ‘signal Activity’ event. This,
in turn, causes the final integration of the quality measure
activity in Process Management and is mirrored in Context
Management.

 Figure 15. Measure Integration Procedure.

The order of the activities in the integration procedure
was chosen in a way that the current activity is still running
while the measure integration process starts. This was done
to allow the insertion of a quality measure directly after
every activity even if this is the activity the user currently
processes that caused the creation of a Q-Slot. The soft
suspend immediately suspends the workflow instance after
activity completion and therefore no other activity is started.
Then, the quality measure activity can be integrated and
executed as the next activity if appropriate.

G. Quality Trend Analysis
The quality trend analysis is conducted in the Context

Management module and the values are stored in the
ontology. The concepts are illustrated in Figure 16.

Both Metric and KPI are united under the concept of the
QualityIndicator. All concepts are separated into a template
for the definition and a form containing a concrete value.
When a ViolationList containing multiple Metrics is
received, it is determined which KPI can be calculated via
the KPITemplate and the MetricTemplate. For the computed
values, new KPIs are then created.

To be able to do a uniform calculation, all received
metric values are normalized to values between 0 and 1
where 1 is the best possible value and 0 is the worst possible
one. Therefore, as part of the MetricTemplate, there is a
defined maximum saved. The actual value is divided through
this maximum to derive a value between 0 and 1. It also

88

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defines a limit for the value, e.g., if a maximum of 15 has
been defined as maximum for cyclomatic complexity, this
would be the worst possible value. If the actual values had
exceeded this limit, then 15 would be taken instead. There is
also a property called negative, which indicates whether high
values are negative (bad) or positive (good) indicators.

Figure 16. Quality Trend Analysis.

If a metric value is not available, the calculation will be
done without that value. For some metrics, the absence of a
value is also a negative indicator and thus a standard value
can be defined in the MetricTemplate. If, for example, a
metric had indicated the degree of functional testing
compliance (a measure for the outcome of functional
testing), its absence would indicate that no functional testing
has been done yet. Since that fact should not be overlooked,
a standard value can be defined.

It is also possible to integrate values from external tools
as KPIs. If this is the case, a property 'external' can be used
to indicate this. The KPI calculation is a weighted average
and therefore each KPITemplate stores the weight used for
that KPI.

H. Measure Assessment
In this part of the process, the calculated values of the

KPIs are utilized for recalculating the measure utility factor.
This is done using the changes (deltas) of the KPI values. For
now, up to ten such deltas starting from the time of the
measure application can be used. The concepts in the
ontology realizing this are depicted in Figure 17.

Figure 17. Measure Assessment.

More details on this calculation are provided in [25].
Compared to our initial approach, the ontology structure has

been refined featuring the separation into template concepts
and concrete ones for all involved concepts. Thus, they
conform to the overall structure, implying a strict separation
of the definition of certain items and their concrete values.
That way, additional plausibility checks are also possible like
the check whether a measure is permitted for a certain metric
violation.

I. Modeling Effort
The presented approach implies modeling workflows and

a myriad of extensions to them in the ontology. This leads to
a relatively high modeling effort. That effort can
nevertheless be limited: When the modeling is done utilizing
the SE workflow language we developed in [24], both the
concepts for the Process Management and the Context
Management modules are automatically generated. If
workflows are already in place in a workflow management
system, the basic concepts in the ontology (Work Units and
Work Unit Container) can be automatically generated and
then be annotated manually. This could also limit the effort
required for migrating to CoSEEEK in a company. If a
supported workflow management system is in place there,
only the annotations (e.g., Extension Points) have to be
added manually. CoSEEEK will also include predefined
metric sets and associated measures, standard SE processes,
and GQM plans to facilitate the introduction of the system.
That way small and medium sized companies could easily
benefit from the higher level of automation CoSEEEK
provides.

V. EVALUATION
A scenario was constructed and technical measurements

taken to evaluate the overall feasibility of the approach.

A. Scenario
Due to the large number of configuration factors

involved and the breadth and depth of the approach we
developed, a controlled scenario-based evaluation that
combines real results with synthetic facts was chosen for
initial feasibility testing. As input for code analysis, the
org.eclipse.osee.framework.database package of the open
source Eclipse Open System Engineering Environment was
used.

1) Process
As a software development process, OpenUP [61] was

chosen, a simplified free derivative of the Unified Process
[62]. This process constitutes an iterative process featuring
four project phases. In the Inception phase the scope of the
project is defined, the use cases are outlined, risks are
identified, and candidate architectures are selected. The
Elaboration phase serves for capturing a healthy majority of
system requirements and for addressing known risk factors.
In addition, the system architecture is established and
validated. In the Construction phase the system features are
built based on the selected architecture. In the Transition
phase, the system is deployed to the users. Each phase
contains a number of iterations to complete its goals. Figure
18 shows how the OpenUP process can be used in the given
scenario.

89

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. OpenUP Process with Configured Extension Points

Since the Construction phase is the largest phase in the
project comprising most development activities, it was the
focus of our evaluation. Figure 18 shows the other phases in
a compressed way. The focus here is on the developers'
activities, thus the 'Develop Solution Increment' workflow is
shown in detail in the figure. Overall, 54 ExtensionPoints
(XPs) have been defined for the workflows as depicted in the
figure. The ones that are relevant for the developers'
activities in a Construction iteration are XP8 at the end of the
iteration, XP21 for measures to be applied between two
assignments, and XP45 and XP46 for measures directly
relating to coding or testing regarding certain artifacts.

2) GQM Plan
For the test scenario, a GQM plan was created to enable

the AGQM agent processes shown in Table I. Four goals
have been chosen: maintainability, reliability, performance,
and functionality. This is just a simplified example of what is
possible and can be incorporated and tailored by a quality
manager.

The different metrics and KPIs that are part of the plan
are illustrated in Appendix A. To measure the reliability of
the code, different kinds of metrics have been chosen. On the
one hand, well-known source code metrics like McCabe's
cyclomatic complexity [63] or Nejmeh's npath complexity
[64] have been used. On the other hand, metric suites were
integrated, namely Chidamber and Kemerer's metrics suite
[65] as well as the QMOOD metrics suite [66]. According to
a study conducted in [67], these are good predictors for fault
proneness and thus for reliability. Another factor that could
affect the reliability of source code is whether it is covered
by unit tests. This metric can be provided by tools like
Cobertura [36] or EMMA [37] (see [35] for a comparison).
Since, via sensors, it is possible to detect the execution of
various tools for various activities, other factors can be used
as metrics as well. An example for this is the degree of load
testing that can also be an indicator of (the lack of) code
reliability confidence.

For maintainability, a set of source code metrics have
been selected and grouped to a question concerning the
understandability of the code. To enhance the prediction
quality of the goal, KPI external approaches have also been
integrated: the maintainability index (MI) [68][69][70] is a
formula proven to be a good predictor of maintainability and
can be provided by the tool jhawk [71]. Maintainability can

be also affected by certain problems in the source code called
code smells. These can be detected via the DECOR approach
[72], which is taken into account as well.

TABLE I. EXAMPLE GQM PLAN.

GKPI QKPI KPI Metric
GKPI:REL QKPI:CK MET:WMC

 MET:DIT
 MET:NOC
 MET:CBO
 MET:RFC
 MET:LCOM
 QKPI:QMOOD MET:ANA
 MET:CAM
 MET:CIS
 MET:DAM
 MET:DCC
 MET:MOA
 MET:MFA
 MET:NOM
 QKPI:COMP MET:CYC
 MET:NPA
 QKPI:DD MET:DD
 QKPI:CC MET:CC
 QKPI:DLT MET:DLT

GKPI:MAINT QKPI:UND MET:CR
 KPI:CSV MET:TMM
 MET:UEM
 MET:UEC
 MET:ECB
 MET:TMF
 QKPI:CC MET:CC
 QKPI:CSD MET:DECOR
 QKPI:MI MET:JHAWK

GKPI:FUNC QKPI:UCC MET:UCC
 QKPI:FTCF MET:FTCF

GKPI:PERF QKPI:CTAF MET:CTAF
 QKPI:PRAF MET:PRAF
 QKPI:PTCF MET:PTCF

The implementation of all desired functionality is

covered by the functionality goal. Thus, two metrics have
been chosen to measure that. The use case coverage indicates
how much of the desired functionality is implemented. The
functional testing compliance factor, in turn, indicates how

90

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

many of the functional tests were passed. If no functional
testing has been performed yet, the value of the functional
testing compliance factor will be 0 in the worst case.

The performance goal comprises a metric called the
performance testing compliance factor, which is similar to
the functional testing compliance factor, but deals with
performance tests. The other two metrics are related to the
code optimization activities of code tuning and profiling.

3) Concrete situation
The scenario is targeted for a construction iteration of the

OpenUP process that takes two weeks implying ten
workdays. Ten developers are assumed to be part of the team
and each developer has ten 'Develop Solution Increment'
assignments, which are assumed to take one day each. Each
night reports from code analysis tools are received as part of
the nightly build process. As static analysis tool, PMD [33] is
used; Appendix B shows the results of a report concerning
the selected OSEE module. These results also include the
threshold for each metric defined via the Rule module. For
the concrete iteration, the focus is improving the quality of
the source code, especially maintainability, since the
functionality metrics are not violated, meaning the desired
functionality is largely implemented. Therefore, the goal
agents have been defined as depicted in Table II.

TABLE II. GOAL AGENT CONFIGURATION.

Agent Points Strategy

MAINT 100 Offensive

REL 80 Balanced

PERF 80 Balanced

FUNC 60 Defensive

For this scenario, the three strategies used for the agents

have been defined as shown in Table III. As stated in Section
III.F, they comprise three values: a start bid indicating how
many of the distributed points an agent uses for its first bid
and raise / reduce values indicating how the agent raises
(reduces) its bid in case of loss (win).

TABLE III. AGENT STRATEGIES.

Strategy Start bid Raise Reduce

Offensive 35% 20% 10%

Balanced 30% 15% 13%

Defensive 25% 10% 20%

Each time a Q-Slot occurs, the AGQM module is

triggered to output an ordered list of proposed quality
measures. For the current scenario, a 50:50 ratio between
proactive and reactive measures was defined. Table IV
shows the first ten proposed quality measures generated for a
Q-Slot. Proactive measures are identified by the prefix
“M:P:” and the assigned goal, reactive measures by “M:R:”.
The related metric whose threshold was violated for reactive
measures is also shown.

TABLE IV. PROPOSED QUALITY MEASURES FROM AGQM

Slot Quality Measure Related Metric ID

1 M:P:MAINT:Analyze Reuse
Possibilities m1

2 M:R::Increase Code Coverage MET:CC m2
3 M:R.Refactor Code MET:ECB m3

4 M:P:MAINT:Review Style Guidelines m4

5 M:P:REL:Analyze Error Handling
Implementation m5

6 M:R:MAINT:Refactor Code MET:TMM m6
7 M:P:PERF:Do Profiling m7
8 M:P:MAINT:Analyze Modularity m8

9 M:R:PERF:Do Performance Testing MET:PTCF m9
10 M:R:Refactor Code MET:CYC m10

To determine the impact of the strategies in conjunction

with the distribution of points in the proactive section, Table
V shows the agents’ bids for the slots, in which proactive
measures were proposed. The numbers in parenthesis
indicate the bid an agent would have placed according to its
strategy when insufficient points were available.

TABLE V. AGENTS BIDS.

Slot Winner FUNC REL MAINT PERF

1 MAINT 35 24 24 15

4 MAINT 31 28 28 17

5 REL 28 32 32 19

7 PERF 34 28 37 21

8 MAINT 34(41) 32 32 23

The results correlate with the expected arrangement of

the proposed measures, where maintainability measures
should be favored most, followed by reliability and
performance measures.

For simplicity, in the current scenario, only early activity
completion is assumed to have no defined quality overhead
factor. Thus, the creation of Q-Slots only relies on execution
time deviations of the assignments. These execution time
deviations are shown in Table VI. Positive values indicate
that an activity took less time than estimated, negative values
indicate longer actual execution times, and grey boxes
indicate Assignments after which the measure proposal
process is started for the respective developer. For this
scenario, it was assumed that a quality measure is possible if
at least two hours are available.

With these values, five Q-Slots are possible in the
iteration under consideration for the developers dev1, dev3,
dev5, dev9, and dev10. For each Q-Slot, a measure from the
list provided by the AGQM module has been selected,
proposed, and assessed after application. The chosen
measures, the applying developer, and the chosen
ExtensionPoints are shown in Table VII. The measure utility
has been initialized to ‘1’ for all measures in the scenario.
The table also shows the relating KPI used for assessment
and the newly calculated ‘measure utility’ for the applied

91

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

measures. The calculations of the proactive measures have
not been included here because in that limited scenario the
GKPIs could not reflect an impact of the proactive measures.
For a scenario with more details on measure tailoring and
measure assessment, we refer to [25].

TABLE VI. EXECUTION TIME DEVIATIONS.

Developer Assignment
 1 2 3 4 5 6 7 8 9 10

dev1 1 0 2 0 0 -1 1 1 1 1
dev2 0 1 -1 -1 0 1 0 1 1 1
dev3 1 0 -1 0 1 2 0 0 0 0
dev4 0 1 0 0 -2 2 0 -1 -1 -1
dev5 1 -1 1 0 2 0 0 0 0 0
dev6 -4 1 1 1 0 0 0 -1 -1 -1
dev7 1 0 0 0 -1 -2 1 1 1 1
dev8 0 1 0 1 0 1 0 1 0 0
dev9 0 1 0 0 0 0 2 0 0 0
dev10 1 0 -1 0 0 1 2 0 0 0

TABLE VII. APPLIED MEASURES.

Measure Developer Extension
Point KPI Measure

Utility
m1 dev1 21 GKPI:MAINT 1
m2 dev3 21 QKPI:CC 1.17
m3 dev5 21 KPI:CSV 1.17
m5 dev9 8 GKPI:REL 1
m9 dev10 21 QKPI:PTCF 1.29

While the scenario is not detailed and broad enough to

ensure the applicability for the majority of SE real-world use
cases, it shows the feasibility and potential of the approach
towards addressing automated GQM and SQM. Future work
will include trials of this approach with our industry project
partners where empirical results can be evaluated.

B. Performance Measurements
For evaluating the technology and realization choices,

performance measurements were conducted. Two different
hardware configurations were utilized since the performance
testing was performed by different developers on their own
hardware (notebooks). Configuration A consisted of a
computer with an AMD Turion II Dual-Core Mobile M500
2.2 GHz processor and 4 GB RAM. The software used was
Windows 7 64-bit, Java Runtime Environment 1.6.0_16,
Scala 2.7.7 final, Drools 5.1.0, Apache Ant 1.8.0, Apache
CXF 2.2.4, and eXist 1.4.0. Configuration B consisted of one
computer with an Intel Core i7 Q820 1.73 GHz processor
and 6GB RAM. The software used was Windows 7 64-bit,
the Java Runtime Environment 1.5.0_20, Apache CXF
2.2.4., eXist 1.2.6 (rev. 9165) and Jade 3.7. The tests were
executed in a virtual machine (VMware Player 3.0.1 build-
227600) assigned two processor cores and 4GB RAM.

All performance measurements were conducted five
times consecutively, taking the average of the last three
measurements. The first measurement series deals with the
rule module and uses Configuration A and the second series

covers the AGQM module and uses Configuration B. Other
parts of the concept have been measured in [25].

1) Rules processing
Since the largest, most diverse, and regularly occurring

amount of data to be analyzed by CoSEEEK are likely to be
tool reports, and since the number of thresholds and quality
measures needed to manage these can grow correspondingly,
the scalability and performance of the Rules Processing was
measured.

For the rule sets, both the loading latency and the
execution time were measured for different numbers of rule
sets as depicted in Table VIII. The XML report contained
4000 items generated to violate all of the rule sets that were
defined for the test.

TABLE VIII. RULE PROCESSING PERFORMANCE.

Number of
rules

Loading latency
(sec)

Execution time
(sec)

250 3.2 1.5
500 6.6 3.1
750 9.5 4.4

1000 13.0 5.8
1250 13.7 7.5
1500 16.3 8.6
1750 25.8 12.1

For scalability, the measurements show an almost linear

increase of computation time. The loading performance is
acceptable given that changes in rules, where reloading is
necessary, should not be as frequent as rule execution. Since
typical SE low-level activities are usually multiple minutes
long, the execution time for the worst case measured (12
seconds) is still tolerable, making the approach suitable for
the practical use in SE environments. Note that the rule
engine would typically be run on a server and not on a
notebook.

2) AGQM
For the AGQM module, two measurements were

conducted to determine the impact of the number of goals
(agents) and measures. First, the reactive measure list
creation latency based on voting was measured. Second, the
whole measure proposal process for a Q-Slot was measured.

The latency for vote list creation with varying numbers of
measures and goals is depicted in Table IX. The results show
that the number of measures has a greater impact on the
latency than any increase in the number of goal agents voting
(when measurement inaccuracies regarding the smaller
values are disregarded).

TABLE IX. AVERAGE VOTE LIST CREATION LATENCY (MS) VS.
GOALS AND MEASURES.

Measures 50 100 500 1000
5 Goals 111 194 273 924
10 Goals 113 160 815 1927
15 Goals 110 263 787 2090
50 Goals 92 317 842 2453

100 Goals 91 342 864 3003

92

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A second measurement considered the measure proposal
latency for a slot. It was assumed that for every goal exactly
one proactive measure was defined, thus only the number of
goals was of interest. All agents were given an offensive
strategy and 100 points. For reactive measures, the measure
list for voting was already prepared, from which only the
first position was retrieved for simplification. The results are
shown in Table X.

TABLE X. AVERAGE MEASURE PROPOSAL LATENCY (MS) VS.
GOALS.

 5 Goals 10 Goals 15 Goals 50 Goals 100 Goals
Proactive 47 51 45 65 3211
Reactive 40 325 338 492 665

The reactive part shows the overhead of increasing

agents for retrieving the top measure from the vote list. The
proactive part remains constant for low goal numbers and
then reaches an inflection point with a large number of goal
agents. One possible explanation is extended bidding and
thrashing with thread-based agents - this should be further
investigated.

In summary, the performance of the current
implementation appears to be sufficient for use in SEEs
when the number of goals and measures used are within
expected limitations. Performance could become an issue in
large teams or projects or when large numbers of reactive
measures are triggered. One way to address this would be to
tune the Rules Processing Module to limit the number of
reactive measures for which voting takes place. As to goal
scalability, a large number of goals and goal agents would
also imply a high degree of configuration overhead for a
quality manager, thus likely naturally limiting the number of
goals. Should nevertheless a large number of goals be
desirable, distributing the agents could be considered.

VI. RELATED WORK
This section provides related work concerning our

approach. It is structured into subsections covering the
different topics of GQM support, contextual integration, and
automated process adaptation.

A. GQM support
The combination of GQM with agents has been used for

providing automated support for GQM plan creation
[73][74][75] and for the computation of values for questions
and goals [76][77]. In [75], a goal-driven use case method is
utilized to elicit requirements. A set of agents assists the user
in identifying goals and questions that are then used by
another agent to obtain metrics. The collection of the
measurement data and the creation of the measurement plan
are then executed by two other agents. The ISMS (Intelligent
Software Measurement System) [73][74] follows a similar
approach using different groups of agents for user assistance
and determination of different parts of the GQM plan. In
[76][77], agents are used in the requirements process of the
SW-CMM (Software Capability Maturity Model) model.

The focus is the measurement and analysis of software
processes using agents and fuzzy logic.

The approach presented in [78] aims at automated user
assistance in GQM plan creation and execution but does not
utilize agent technology. A tool was developed which allows
creating GQM plans that use predefined forms as well as
verifying the structural consistency of the plan and the reuse
of its components. Furthermore, the tool supports data
interpretation and analysis through aggregation of collected
data. This approach is extended in [79], which integrates
GQM more tightly with a development process to support
GQM plan creation by an explicit process model.

For better integrating the GQM technique into the project
flow via automation, different approaches were considered.
[80] aims at integrating measurement programs as well as
data collection into explicit process models, while [81]
provides an object- oriented process model whose target is
measurement. [82] proposes the usage of process models for
creating GQM plans. Finally, the tool Prometheus [83] links
executive plans with process models.

An approach extending the GQM technique is presented
in [84]. It adds concepts such as entities, attributes, and units.
cGQM [85] proposes the use of the Hackystat framework for
GQM, applying continuous measurement with short
feedback loops.

Other applications of agent technology include its
utilization for automatic information retrieval [86], process
monitoring [87], and collaboration support [88].

As opposed to the aforementioned approaches,
CoSEEEK’s AGQM process integrates its techniques into
live software engineering environments, actively injecting
SQM countermeasure proposals as guidance for developers.
Agent technology is used differently in that the aim is neither
user assistance in GQM plan creation nor assistance in
interpreting measurement results. It is rather the fully
automatic monitoring of goal fulfillment and the automatic
assignment of quality measures for different types of quality
deviations.

B. Contextual Integration of Process Management
Adapting application services to contextual changes is a

major research area in areas like pervasive computing. A
number of context-aware frameworks have been suggested to
facilitate the implementation of application services that can
somehow adapt their behavior to changing context.
Frameworks like Context Management [89], CASS [90],
SOCAM [91], and CORTEX [92] provide support for
gathering and processing context data similar to our
approach. However, they leave the reaction to context
changes to the application or use hard-to-maintain rule-based
approaches for dealing with respective changes.

Only few approaches like inContext [93] combine
workflows with context-awareness as described in this paper.
Regarding inContext, contextual information plays a central
role similar to our approach; inContext strongly focuses on
the teamwork domain, while our approach delivers a more
generic technology enabling the development of context-
aware, adaptive workflows.

93

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The semantic annotation of process specifications to
enable some method of contextual integration for the latter
was addressed by various approaches. The focus of COBRA
[94] is business process analysis. It presents a core ontology
for business process analysis to provide better and easier
analysis of processes to comply with standards or laws like
the Sarbanes-Oxley act. A semantic business process
repository is presented in [95]. It fosters automation of the
business process lifecycle. It features capabilities for
checking in and out as well as locking and options for simple
querying and complex reasoning.

The approach presented in [96] aims at facilitating
process models across various model representations and
languages. This is achieved by multiple levels of semantic
annotations: a meta-model annotation, a model content
annotation, and a model profile annotation as well as a
process template modeling language. [97] provides a concept
for machine-readable process models to achieve better
integration and automation. It utilizes a combination of Petri
Nets and an ontology, whereas direct mappings of Petri Net
concepts in the ontology are established. The approach
described in [98] proposes an effective method for managing
and evaluating business processes. This is realized via the
combination of semantic and agent technology to monitor
business processes. In contrast to the framework presented in
this paper, these approaches do not consider the active
intervention of a system in the execution of workflows.
CoSEEEK exploits semantic annotation of the processes to a
greater extent, using them to do context-based process
adaptations.

C. Automated Process Adaptation
In the field of business process management, there exist

several approaches supporting automated and dynamic
adaptations of workflows during run-time [99]. As in our
approach, their aim is to reduce error-prone and costly
manual workflow adaptations during run-time and thus to
relieve users from this task. As opposed to the presented
work, the focus of these approaches is on automated
exception handling. For this, the process-aware information
system must be able to automatically detect exceptional
situations, derive the dynamic change necessary to handle
them, identify the workflows to be adapted, correctly apply
the dynamic change to these workflows, and notify
respective users. Existing approaches can be classified
according to the basic method used for automatic exception
detection and workflow adaptation:

Rule-based approaches. ECA-based (Event-Condition-
Action) models are suggested for automatically detecting
exceptional situations and determining the actions (i.e.,
workflow adaptations) required to handle them. In many
ECA approaches, however, adaptations are restricted to
currently enabled and running activities (e.g., to abort, redo,
or skip activity execution) [100]. In contrast, AgentWork
[101] further enables automated adaptations of the yet not
entered regions of a running workflow (e.g., to add or delete
activities). Basic to this is a temporal ECA rule model that
allows specifying process adaptations at an abstract level and
independent from a particular process model. When an ECA

rule fires during run-time, temporal estimates are made to
determine which parts of a running process instance are
affected by the identified exception. These parts are then
adapted immediately (predictive change) or, if this is not
possible due to temporal uncertainty, at the time they are
entered (reactive change).

Goal-based approaches formalize process goals (e.g.,
process outputs) and automatically derive the process model
(i.e., the activities to be performed and their execution order)
based on which these goals can be achieved. Further, if an
exception (e.g., an activity failure) occurs during run-time
that violates the formal goals, the process instance model is
adapted accordingly. In ACT [102] for example, certain
workflow adaptations (e.g., replacing a failed activity by an
alternative one) are automatically performed if an activity
failure leads to a goal violation. EPOS [103] rewrites
software engineering workflows when process goals
themselves change. Both approaches apply planning
techniques to automatically derive and repair workflows in
such cases. However, current planning methods do not cover
all relevant process scenarios like our approach since
important aspects (e.g., treatment of loops, appropriate
handling of data flow) are not adequately considered.

Product-driven approaches interpret complex data
structures representing a product in order to derive related
workflow structures. Corepro, for example, allows product
engineers to define complex data structures and to semi-
automatically derive workflow structures from them [104].
The latter comprise the concrete workflows for engineering a
particular product component (i.e., part) as well as the
required synchronization between them. In particular, ad-hoc
changes of a product structure are automatically compiled
into respective adaptations of the workflow structure (on
condition that certain correctness constraints are met).
Corepro uses object life cycles and their dependencies in
order to represent product components and their relations.
DYNAMITE, in turn, uses graph grammars and graph
reduction rules for defining the way in which a software
engineering workflow may evolve over time [105].
Automatic adaptations are performed depending on the
outcomes of previous activity executions (e.g., a design of a
software module). Recently, more generic approaches
aiming at a tighter integration or process and data have
emerged (see [106][107] for an overview). These are
particularly interesting for enabling artifact-based processes
as in SE. For example, PHILharmonicFlows enables object-
aware processes, which consider object behavior (i.e., the
behavior of single objects and artifacts respectively) as well
as object interactions (i.e., the coordinated processing of a
collection of objects) [27]. Consequently, object-aware
processes are based on two levels of granularity. In
particular, data-driven process execution is enabled as well
as integrated access to processes and data [108].

VII. CONCLUSION
SQA should be aligned to the SE process being used, and

be relevant and applicable at the operation level. The manual
combination of SQA with SEPM requires constant vigilance
and associated labor in order to avoid missing quality

94

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

opportunities, to continuously monitor quality goal states,
and to adapt measure and measure utility to new quality
situations. The application of BPM in SE environments has
been sparse due, among other factors, to a lack of contextual
adaptability.

Automated quality guidance support could assist
developers by providing SQA triggering that is based on
current and factual data, continuously monitoring quality
goal states and trends, and selecting and tailoring measure
selection to that being most appropriate in the current
situation. A set of requirements regarding context-awareness,
process management, and quality measure selection was
established in Section II.

Since the quality data and its analysis is not foreknown
for reactive measures, and since there are limited time and
resources for proactive measures, an automated selection of
activity-based quality measures is beneficial. CoSEEEK’s
context-aware approach situationally adapts SE processes
and ensures that quality opportunities are leveraged with the
most appropriate measures for the current project quality
risks. These are inserted into the appropriate point in the
developer’s workflow while taking developer properties such
as competencies or available time into account. Quality risks
can thus be mitigated and automation support can reduce
inefficiencies.

Metric data from various tools can be integrated,
thresholds can be continuously monitored, and appropriate
measures can be triggered when the thresholds are exceeded.
An automated awareness of schedule and early activity
completion allows quality opportunities to be leveraged, and
an overall quality overhead factor (could vary based on
project phase) shall not to be exceeded. Process specification
is extended to support flexible connections and dependencies
between activities, enabling better context-based adaptations.
GQM was extended for concrete metric-based automation
support by agents. To deal with the expected plethora of
reactive measures in projects, cooperative voting is used for
reactive measure selection. For proactive measures, goals at
risk bid against each other to allow importance and strategy
to determine the point in time when proactive measures
supporting their goals are proposed.

Measure selection is automatically tailored using a
holistic project context comprising information about the
project, tools, people, and their current situation. Measures
are seamlessly integrated into running workflows using
adaptive process management and semantic technology.
Measure assessment adjusts the future use of measures based
on their effectiveness, enabling the system to adjust and
improve its SQA measure proposals.

A scenario-based evaluation exemplified the approach
and showed its feasibility towards addressing automated
GQM and SQM. Performance measurements indicated that
the realization choices showed no significant scalability or
performance issues.

Future work will assess the effectiveness of the approach
via case studies in industrial settings. Concrete case studies
at two companies have already been started and are expected
to yield results soon. Work is also required to address the
appropriate planning, determination, placement, and

frequency of Q-slots in these industrial settings. More
complex agent strategies, in addition to systematic detection
of human expertise situations, will also be researched.

ACKNOWLEDGMENTS
The authors wish to acknowledge Andreas Kleiner,

Stefan Lorenz, and Muhammer Tüfekci for their assistance
with the implementation and evaluation. This work was
sponsored by BMBF (Federal Ministry of Education and
Research) of the Federal Republic of Germany under
Contract No. 17N4809.

REFERENCES
[1] Grambow, G. and Oberhauser, R.: Towards Automated Context-

Aware Selection of Software Quality Measures, Proc. of the 5th Int’l
Conf. on Software Engineering Advances (ICSEA’10). IEEE
Computer Society Press, 2010.

[2] Reijers, H.A. and van der Aalst, W.M.P.: The Effectiveness
of Workflow Management Systems: Predictions and Lessons
Learned. Int’l Journal of Information Management, 56(5), pp. 457-
471, 2005.

[3] Heravizadeh, M.: Quality-aware Business Process Management. PhD
thesis, Queensland University of Technology, Australia, 2009.

[4] Vollmer, K.: The EA View: BPM Has Become Mainstream, Forrester
Research, 2008

[5] Mutschler, B., Reichert, M., and Bumiller, J.: Unleashing the
Effectiveness of Process-oriented Information Systems: Problem
Analysis, Critical Success Factors and Implications. IEEE
Transactions on Systems, Man, and Cybernetics, 38(3), pp. 280-291,
2008.

[6] Brooks, F.P.: No Silver Bullet: Essence and Accidents of Software
Engineering, Information Processing, 1986

[7] Glass, R.L.: Software Runaways: Monumental Software Disasters.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[8] Naur, P. and Randell, B.: Software engineering: Report of a
conference sponsored by the NATO Science Committee. Garmisch,
Germany, Scientific Affairs Division, NATO, 1968..

[9] Jones C.: Get Software Quality Right. In: Dr Dobb's Journal, June 28,
2010

[10] Eveleens, J.K. and Verhoef, C.: Quantifying IT forecast quality. Sci.
Comput. Program. 74(11-12), pp. 934-88, 2009.

[11] Yourdon, E.: Death March, 2nd edition, Pearson Education, 2003
[12] Abdel-Hamid, T.: The economics of software quality assurance: a

simulation-based case study, MIS Quarterly, 12(3), pp. 395-411,
1988.

[13] Kan, S.H.: Metrics and Models in Software Quality Engineering,
Addison-Wesley, 2002

[14] Soini, J., Tenhunen, V., and Tukiainen, M.: Current Practices of
Measuring Quality in Finnish Software Engineering Industry, In
Richardson, I., Runeson, P., and Messnarz, R. (Eds.): Software
Process Improvement, pp. 100-110, Springer, 2006.

[15] Gibson, D., Goldenson, D., and Kost, K.: Performance Results of
CMMI-Based Process Improvement, Technical Report, CMU/SEI-
2006-TR-004, Carnegie Mellon Software Engineering Institute, 2006

[16] McConnell, S.: Nine Deadly Sins of Project Planning, IEEE
Software 18(5), pp. 5-7, 2001

[17] Slaughter, S.A., Harter, D.E., and Krishnan, M.S.: Evaluating the cost
of software quality, Communications of the ACM, 41(8), pp. 67-73,
1998.

[18] Rausch, A., Bartelt, C., Ternité, T., and Kuhrmann, M.: The V-
Modell XT Applied - Model-Driven and Document-Centric
Development, Proc. 3rd World Congress for Software Quality, Vol.
III, Online Supplement, pp. 131-138, 2005.

95

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] WfMC. 1993. Workflow management coalition. http:// www.
wfmc.org/

[20] Hill, J.B., Pezzini, M., and Natis, Y.V.: Findings: Confusion remains
regarding BPM terminologies. Report No. G00155817, Gartner
Research, 2008.

[21] Oberhauser, R.: Leveraging Semantic Web Computing for Context-
Aware Software Engineering Environments, In: "Semantic Web, In-
Tech, 2010.

[22] Grambow, G., Oberhauser, R., and Reichert, M.: Semantic Workflow
Adaption in Support of Workflow Diversity, Proc. 4th Int’l Conf. on
Advances in Semantic Processing (SEMAPRO’10), Florence, 2010,
pp. 158-165

[23] Grambow, G., Oberhauser, R., and Reichert, M.: Semantically-Driven
Workflow Generation using Declarative Modeling for Processes in
Software Engineering, Proc. of the 4th Int’l Workshop on
Evolutionary Business Processes, IEEE Computer Society Press
(accepted for publication).

[24] Grambow, G., Oberhauser, R., and Reichert, M.: Towards a Software
Engineering Workflow Language, Proc. 10th IASTED Conference on
Software Engineering, Innsbruck, Austria, 2011.

[25] Grambow, G., Oberhauser, R., and Reichert, M.: Employing
Semantically Driven Adaptation for Amalgamating Software Quality
Assurance with Process Management, Proc 2nd Int’l Conf. on
Adaptive and Self-adaptive Systems and Applications
(ADAPTIVE’10), Lisbon, pp. 58-67, 2010.

[26] Müller, D., Herbst, J., Hammori, M., and Reichert, M.: IT Support for
Release Management Processes in the Automotive Industry. Proc. 4th
Int'l Conf. on Business Process Management (BPM'06), Vienna,
Austria, pp. 368-377, 2006

[27] Künzle, V. and Reichert, M.: PHILharmonicFlows: towards a
framework for object-aware process management. Journal of
Software Maintenance and Evolution: Research and Practice, 23(4),
pp. 205-244, Wiley, 2011

[28] Künzle, V. and Reichert, M.: Integrating Users in Object-aware
Process Management Systems: Issues and Challenges. Proc. BPM'09
Workshops, 5th Int’l Workshop on Business Process Design
(BPD'09), Ulm, Germany, pp. 29-41, LNBIP 43(1), 2009.

[29] Sadiq, S., Orlowska, M., Sadiq, W., and Schulz, K.: When workows
will not deliver: The case of contradicting work practice. In: Proc.
BIS'05. (2005)

[30] Basili, V., Caldiera, G., and Rombach, H.D.: Goal Question Metric
Approach, Encycl. of Software Engineering, John Wiley & Sons, pp.
528-532, 1994

[31] Luckham, D.C.: ‘The power of events: an introduction to complex
event processing in distributed enterprise systems’ Addison-Wesley,
2001)

[32] microTOOL in-Step: http://www.microtool.de/instep/en/index.asp
[Jan .2011]

[33] Copeland, T.: PMD Applied, Centennial Books, 2005
[34] Ayewah, N,, Hovemeyer, D., Morgenthaler, J. D., Penix, J., and

Pugh, W.: Experiences using static analysis to find bugs, IEEE
Software, 25(5), pp. 22-29, 2008.

[35] Yang, Q., Li, J.J., and Weiss, D.: A survey of coverage based testing
tools, Proc. Intl. Workshop on Automation of Software Testing
(AST’06), pp. 99–103. ACM Press, 2006.

[36] Cobertura http://www.cobertura.sourceforge.net [Jan 2011]
[37] EMMA http://www.emma.sourceforge.net [Jan 2011]
[38] Johnson, P. M.: Requirement and Design Trade-offs in Hackystat: An

In-Process Software Engineering Measurement and Analysis System,
Proc. of the 1st Int’l Symposium on Empirical Software Engineering
and Measurement, IEEE Computer Society, pp. 81-90, 2007.

[39] Esper: http://esper.codehaus.org/ [Jan 2011]
[40] Gelernter, D.: Generative communication in Linda, ACM

Transactions on Programming Languages and Systems, 7(1):80-112,
1985.

[41] Meier, W.: eXist: An Open Source Native XML Database, Web,
Web-Services, and Database Systems, Springer, ,pp. 169-183, 2009.

[42] Browne, P.: JBoss Drools Business Rules. Packt P. Browne. JBoss
Drools Business Rules. Packt Publishing, 2009.

[43] O'Brien, P.D. and Nicol, R.C.: FIPA — Towards a Standard for
Software Agents, BT Technology Journal, 16 (3):51-59, 1998.

[44] Bellifemine, F., Poggi, A., and Rimassa, G.: JADE - A FIPA-
compliant Agent Framework, Proc. 4th Int’l Conf. and Exhibition on
the Practical Application of Intelligent Agents and Multi-Agents.
London, 1999.

[45] Gasevic, D., Djuric, D., and Devedzic, V.: Model driven Architecture
and Ontology Development, Springer, 2006.

[46] World Wide Web Consortium: OWL Web Ontology Language
Semantics and Abstract Syntax, 2004

[47] World Wide Web Consortium: Resource Description Framework
(RDF) Concepts and Abstract Syntax, 2004

[48] Prud’hommeaux, E. and Seaborne, A.: ‘SPARQL Query Language
for RDF, W3C WD 4, 2006.

[49] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y.: Pellet:
A Practical OWL-DL Reasoner. Journal of Web Semantics 5(2), pp.
51-53, 2006

[50] McBride, B.: Jena: a semantic web toolkit, Internet Computing, 2002
[51] Dadam, P. and Reichert, M.: The ADEPT Project: A Decade of

Research and Development for Robust and Flexible Process Support -
Challenges and Achievements. Computer Science - Research and
Development, Springer. 23(2), pp. 81-97, 2009.

[52] Reichert, M. et al: Enabling Poka-Yoke Workflows with the
AristaFlow BPM Suite. Proc. BPM'09 Demonstration Track, Ulm,
Germany, 2009.

[53] Reichert, M., Rinderle-Ma, S., and Dadam, P.: Flexibility in Process-
aware Information Systems. LNCS Transactions on Petri Nets and
Other Models of Concurrency (ToPNoC), Special Issue on
Concurrency in Process-aware Information Systems. LNCS 5460, pp.
115-135, 2009

[54] Weber, B., Reichert, M., and Rinderle-Ma, S.: Change Patterns and
Change Support Features - Enhancing Flexibility in Process-Aware
Information Systems. Data and Knowledge Engineering, Elsevier,
66(3), pp. 438-466, 2008

[55] Lanz, A., Kreher, U., Reichert, M., and Dadam, P.; Enabling Process
Support for Advanced Applications with the AristaFlow BPM Suite.
Proc. of the Business Process Management 2010 Demonstration
Track, September 2010, Hoboken, New Jersey, USA.

[56] Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U.,
and Goeser, K.: Architecural Principles and Components of Adaptive
Process Management Technology. In: PRIMIUM - Process
Innovation for Enterprise Software. Lecture Notes in Informatics ,
Vol. P-151, pp. 81-97, 2009.

[57] Reichert, M. and Dadam, P.: ADEPTflex - Supporting Dynamic
Changes of Workflows Without Losing Control. Journal of Intelligent
Information Systems, Special Issue on Workflow Management
Systems, 10(2), pp. 93-129, 1998

[58] Li, C. and Reichert, M. and Wombacher, A.: Mining Business
Process Variants: Challenges, Scenarios, Algorithms. Data &
Knowledge Engineering, 70(5), pp. 409-434, Elsevier, 2011.

[59] Günther, C.W. and Rinderle-Ma, S. and Reichert, M. and van der
Aalst, W.M.P. and Recker, J.: Using Process Mining to Learn from
Process Changes in Evolutionary Systems. Int'l Journal of Business
Process Integration and Management, Special Issue on Business
Process Flexibility, 3(1), pp. 61-78, 2008.

[60] Weber, B. and Reichert, M. and Wild, W. and Rinderle-Ma, S.:
Providing Integrated Life Cycle Support in Process-Aware
Information Systems. Int'l Journal of Cooperative Information
Systems, 18(1), pp. 115-165, World Scientific Publ, 2009.

[61] OpenUp http://epf.eclipse.org/wikis/openup/ [November 2010]
[62] Scott, K.: The Unified Process Explained, Addison-Wesley Longman

Publishing Co., Inc., 2002

96

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[63] T. J. McCabe: A complexity measure, IEEE Trans. Software Eng.
2(4), pp. 308-320, 1976.

[64] Nejmeh, B.A.: NPATH: A measure of execution path complexity and
its applications. Comm. of the ACM, 31(2):188-200, 1988.

[65] Chidamber, S.R. and Kemerer, C.F.: A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, 20 (6),
pp. 476-493, 1994.

[66] Bansiya, J. and Davis, C.: A Hierarchical model for object-oriented
design quality assessment, IEEE Transactions on Software
Engineering, 28(1), pp. 4–17, 2002.

[67] Olague, H.M., Etzkorn, L.H., Gholston, S., and Quattlebaum, S.:
Empirical Validation of Three Software Metrics Suites to Predict
Fault-Proneness of Object-Oriented Classes Developed Using Highly
Iterative or Agile Software Development Processes, IEEE
Transactions Software Engineering., 33(6), pp. 402-419, 2007.

[68] Oman, P.W., Hagemeister, J., and Ash, D.: A Definition and
Taxonomy for Software Maintainability, Technical Report #91-08-
TR, Software Engineering Test Laboratory, University of Idaho,
Moscow, ID, 1991.

[69] Coleman, D.: Assessing Maintainability, Proc. of the Software
Engineering Productivity Conference 1992, Hewlett-Packard, Palo
Alto, CA, pp. 525-532, 1992.

[70] Coleman, D., Ash, D., Lowther, B., and Oman, P.W.: Using Metrics
to Evaluate Software System Maintainability, IEEE Computer, 27(8),
pp. 44-49, 1994.

[71] JHawk http://www.virtualmachinery.com/jhawkprod.htm [November
2010]

[72] Moha, N., Gueheneuc, Y.G., Duchien, L., and Meur, A.F.: DECOR:
A method for the specification and detection of code and design
smells, IEEE Transactions on Software Engineering, 36(1), pp.:20-36,
2010.

[73] Chen, T., Homayoun Far, B., and Wang, Y.: Development of an
Intelligent Agent-Based GQM Software Measurement System, Proc.
12th Asian Test Symposium (ATS), pp. 188-197, 2003.

[74] Junling Huang, Far, B.H.: Intelligent software measurement system
(ISMS), Canadian Conf. on Electrical and Computer Engineering, pp.
1033–1036, 2005.

[75] FanJiang, Y.-Y and Wu, C.-H.: Towards a Multi-agents Architecture
for GQM Measurement System, Proc. 9th Int’l Conf. on Hybrid
Intelligent Systems, pp. 277-280, 2009.

[76] Seyyedi, M.A., Teshnehlab, M., and Shams, F.: Measuring software
processes performance based on the fuzzy multi agent measurements,
Proc. Intl Conf. on Information Technology: Coding and Computing -
Volume II. ITCC. IEEE Computer Society, Washington, DC, pp.
410-415, 2005.

[77] Seyyedi, M.A., Shams, F., and Teshnehlab, M.: A New Method For
Measuring Software Processes Within Software Capability Maturity
Model Based On the Fuzzy Multi-Agent Measurements, Proc. World
Academy Of Science, Engineering and Technology Vol. 4, pp. 257-
262, 2005.

[78] Lavazza, L.: Providing automated support for the GQM measurement
process, IEEE Software, 17(3), pp.:56-62, 2000.

[79] Lavazza, L. and Barresi, G.: Automated support for process-aware
definition and execution of measurement plans, Proc. 27th Int’l Conf.
on Software Engineering, pp. 234 – 243, 2005.

[80] Lott C.M. and Rombach H.D.: Measurement-based guidance of
software projects using explicit project plans, Information and
Software Technology 35(6-7), pp. 407-419, 1993.

[81] Morisio M.: Measurement Processes are Software Too, Journal of
Systems and Software 49(1), pp. 17-31, 1999.

[82] Broeckers A., Differding C., and Threin G.: The Role of Software
Process Modeling in Planning Industrial Measurement Programs,
Proc. Int. Metrics Symposium, Berlin 1996.

[83] Visaggio, G.: Process Improvement Through Data Reuse, IEEE
Software 11(4), pp. 76-85, 1994.

[84] De Panfilis, S., Kitchenham B., and Morfuni N.: Experiences
introducing a measurement program, Information and Software
Technology 39(11), pp. 745-754, 1997.

[85] Lofi C.: cGQM - Ein zielorientierter Ansatz für kontinuierliche,
automatisierte Messzyklen, Proc. 4th National Conf. on Software
Measurement and Metrics (DASMA MetriKon 2005), 2005.

[86] Pelletier, S.-J., Pierre, S., and Hoang, H.H.: Modeling a Multi-Agent
System for Retrieving Information from Distributed Sources, Journal
of Computing and Information Technology, 11(1), pp. 15-39, 2003.

[87] Wang, M., Wang, H., and Xu, D.: The design of intelligent workflow
monitoring with agent technology, Knowledge-Based Systems, 18(6),
pp. 257-266, 2005.

[88] Tan, W., Chen, R., Shen, W., Zhao, J., and Hao, Q.: An Agent-Based
Collaborative Enterprise Modeling Environment Supporting
Enterprise Process Evolution, Computer Supported Cooperative
Work in Design III, pp. 217-226, 2007

[89] Korpipipää P. et al.: Managing context information in mobile devices.
IEEE Pervasive Computing 2(3), pp.42-51, 2003

[90] Fahy, P. and Clarke, S.: CASS – a middleware for mobile context-
aware applications. Proc. Workshop on Context-awareness (held in
connection with MobiSys’04), 2004.

[91] Gu, T., Pung, H.K., and Zhang, D.Q.: A middleware for building
context-aware mobile services. Proc. IEEE Vehicular Technology
Conference (VTC), Milan, Italy, pp. 2656 – 2660, 2004.

[92] Biegel, G. and Cahill, V.: A framework for developing mobile,
context-aware applications. Proc. 2nd IEEE Conference on Pervasive
Computing and Communication, pp. 361 - 365 , 2004

[93] Dorn C., Dustdar S.: Sharing Hierarchical Context for Mobile Web
services. Distributed and Parallel Databases 21(1), pp. 85-111, 2007.

[94] Pedrinaci, C., Domingue, J., and Alves de Medeiros, A.: A Core
Ontology for Business Process Analysis, LNCS 5021, pp. 49-64,
2008.

[95] Ma, Z., Wetzstein, B., Anicic, D., Heymans, S., and Leymann, F.:
Semantic Business Process Repository, Proc. Workshop on Semantic
Business Process and Product Lifecycle Management, pp. 92–100,
2007

[96] Lin, Y. and Strasunskas, D.: Ontology-based Semantic Annotation of
Process Templates for Reuse, Proc.10th Int’l Workshop on Exploring
Modeling Methods for Systems Analysis and Design (EMMSAD'05),
2005.

[97] Koschmider, A. and Oberweis, A.: Ontology based Business Process
Description, Proc. CAiSE´05 Workshops, pp. 321-333, 2005.

[98] Thomas, M., Redmond, R., Yoon, V., and Singh, R.: A Semantic
Approach to Monitor Business Process Performance,
Communications of the ACM 48(12), pp. 55-59, 2005

[99] Weber, B. and Sadiq, S. and Reichert, M:. Beyond Rigidity -
Dynamic Process Lifecycle Support: A Survey on Dynamic Changes
in Process-aware Information Systems. Computer Science - Research
and Development, 23(2), pp. 47-65, Springer, 2009.

[100] Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G.: Specification and
implementation of exceptions in workflow management systems.
ACM TODS, 24(3), pp. 405–451, 1999.

[101] Müller, R., Greiner, U., and Rahm, E.: AGENTWORK: A workflow
system supporting rule–based workflow adaptation. Data &
Knowledge Engineering, 51(2), pp. 223–256, 2004.

[102] Beckstein, C. and Klausner, J.: A planning framework for workflow
management. Proc. Workshop Intelligent Workflow and Process
Management. Stockholm, 1999.

[103] Liu, C. and Conradi, R.: Automatic replanning of task networks for
process model evolution. Proc. European Software Engineering
Conference, pp. 434–450. Garmisch, Germany, 1993.

[104] Müller, D., Reichert, M., and Herbst, J.: A new paradigm for the
enactment and dynamic adaptation of data-driven process structures.
Proc. CAiSE’08, pp. 48–63, 2008

97

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[105] Heimann, P., Joeris, G., Krapp, C., and Westfechtel, B.:
DYNAMITE: Dynamic task nets for software process management.
Proc. Int’l Conf. Software Engineering (ICSE’06), pp. 331–341, 1996

[106] Künzle, V. and Weber, B. and Reichert, M.: Object-aware Business
Processes: Fundamental Requirements and their Support in Existing
Approaches. Int’l Journal of Information System Modeling and
Design (IJISMD), 2(2), pp. 19-46, IGI Global, 2011.

[107] Künzle, V. and Reichert, M.: Striving for Object-aware Process
Support: How Existing Approaches Fit Together In: Proc. 1st Int’l
Symposium on Data-driven Process Discovery and Analysis,
Campione d'Italia, 2011 (accepted for publication).

[108] Künzle, V. and Reichert, M.: A Modeling Paradigm for Integrating
Processes and Data at the Micro Level. In: Proc. 12th Int'l Working
Conference on Business Process Modeling, Development and Support
(BPMDS'11), London, June 2011, LNBIP 81, pp. 201-215, 2011

98

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX A: LIST OF UTILIZED METRICS
GKPI:REL:Reliability

GKPI:MAINT:Maintainablity
GKPI:FUNC:Functionality
GKPI:PERF:Performance

QKPI:CK:ChidamberAndKemerer
QKPI:QMOOD:QmoodMetricsSuite

QKPI:COMP:Complexity
QKPI:DD:DefectDensity
QKPI:CC:CodeCoverage

QKPI:DLT:DegreeOfLoadTesting
QKPI:UND:Understandability
QKPI:CSD:CodeSmellDensity
QKPI:MI:MaintainablitiyIndex
QKPI:UCC:UseCaseCovrage

QKPI:FTCF:FunctionalTestingComplienaceFactor
QKPI:CTAF:CodeTuningActivityFactor

QKPI:PAF:ProfilingActivityFactor
QKPI:PTCF:PerformanceTestComplianceFactor

KPI:CSV:CodingStyleViolations
MET:WMC: Weighted Methods per Class

MET:DIT: Depth of Inheritance Tree
MET:NOC: Number of Childeren

MET:CBO: Coupling between Objects
MET:RFC: Response for Class

MET:LCOM: Lack of Cohesion in Methods
MET:ANA:AvgNumberOfAncestors
MET:CAM:CohesionAmongMethods

MET:CIS:ClassInterfaceSize
MET:DAM:DataAccessMetric

MET:DCC:DirectClassCoupling
MET:MOA:MeasureOfAggregation

MET:MFA:MeasureOfFunctionalAbstraction
MET:NOM:NumberOfMethods

MET:CYC: CyclomaticComplexity
MET:NPC:NPathComplexity

MET:DD: DefectDensity
MET:CC: CodeCoverage

MET:DLT: DegreeOfLoadTesting
MET:CR:CommentRatio

MET:TMM:TooManyMethods
MET:UEM:UncommentedEmptyMethod

MET:UEC:UncommentedEmptyConstructor
MET:ECB:EmptyCatchBlock
MET:TMF:TooManyFields

MET:UCC:UCC:UseCaseCovrage
MET:FTCF:FunctionalTestingComplienaceFactor

MET:CTAF:CodeTuningActivityFactor
MET:PAF:ProfilingActivityFactor

MET:PTCF:PerformanceTestComplianceFactor

APPENDIX B: PMD RESULTS

Metric Value Violation
Threshold

MET:AccClGen 1 5
MET:AvoidDeeplyNestedIfStmts 2 5

MET:AvoidInstanceof
ChecksInCatchClause 1 5

MET:AvoidReassigningParameters 1 5
MET:AvoidSynchronized

AtMethodLevel 2 5

MET:ClassWithOnlyPrivate
ConstructorsShouldBeFinal 4 10

MET:CloseResource 1 5
MET:CollapsibleIfStatements 1 20

MET:CompareObjectsWithEquals 1 5
MET:ConfusingTernary 6 20

MET:CyclomaticComplexity 4 2
MET:EmptyCatchBlock 2 1

MET:EmptyMethodInAbstract
ClassShouldBeAbstract 2 5

MET:ExcessiveImports 1 5
MET:ExcessivePublicCount 1 5

MET:LooseCoupling 4 20
MET:NPathComplexity 1 5

MET:OverrideBothEquals
AndHashcode 1 5

MET:PositionLiterals
FirstInComparisons 1 5

MET:SimplifyBooleanExpressions 2 5
MET:SingularField 1 5
MET:StaticMethods 1 5
MET:SwitchStmts

ShouldHaveDefault 1 5

MET:TooManyFields 1 5
MET:TooManyMethods 4 3

MET:Uncommented
EmptyConstructor 5 5

MET:UncommentedEmptyMethod 5 5
MET:UnconditionalIfStatement 1 5

MET:UseCollectionIsEmpty 2 5
MET:UseLocaleWith

CaseConversions 2 5

99

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

