
Human-Computer Interaction Design Patterns: Structure, Methods, and Tools

Christian Kruschitz
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt am Wörthersee, Austria

chris@isys.uni-klu.ac.at

Martin Hitz
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt am Wörthersee, Austria

hitz@isys.uni-klu.ac.at

Abstract—Design patterns play an important role when
managing design knowledge for later reuse. In the Human-
Computer Interaction (HCI) community, design patterns are
an often used tool for sharing design knowledge among user
interface (UI) designers as well as non UI experts. An HCI
design pattern consists of several different components. The
first component is the structure of a pattern, which
encapsulates the description of the problem, its context, and
the solution suggested by the pattern. Relationships and
semantics are important when design patterns are used in
pattern management tools. To make sure that the developed
patterns satisfy their users, it is important to evaluate and
validate the patterns’ content.

Keywords – HCI patterns, History, Organization, Evaluation,
Validation, Standardization .

I. INTRODUCTION
This paper is an extended version of [41] (PATTERNS09),
and gives an in-depth overview on the literature and research
on Human-Computer Interaction (HCI) design patterns.

HCI design patterns are an important tool for knowledge
sharing in the domain of Human-Computer Interaction. To
avoid reinventing the wheel again and again, design patterns
identify and document best practice solutions to support
user interface designers in their daily work in order to
improve their productivity and make the design process
more efficient.

Over the past years, many research activities in the area
of design patterns have aimed to make them easier to use.
The research focused on the pattern structure, organizing
principles, semantics, relationships, evaluation of the
usefulness of patterns, and tool support. This paper gives an
overview of the above-mentioned topics.

We start with a historical overview of design patterns
from the birth of the pattern concept to today’s activities in
the community. In Section III, we provide definitions of
relevant terms. Section IV deals with the pattern structures
from the early beginnings in architectural design to pattern
forms, which are currently used by the HCI design pattern
community.

The following sections deal with research topics on
design patterns, starting with the Organizing Principles
which are focusing on the categorization schemes of design

patterns for easier retrieval of the right pattern for a given
design problem within an collection or pattern language.
Section VI shows how to identify relationships among
design patterns. Relationships represent a key concept to
gain the full reuse potential from individual patterns. Proper
consideration of relationships promises even more powerful
search and navigation opportunities. Section VII describes
research approaches on how to enrich design patterns with
semantic information. By using ontologies, it is possible to
share HCI design patterns across different collections and it
is easier to identify patterns for a specific design problem.
When using patterns in interface design it is important that
the used pattern is valid for the problem to be solved.
Therefore, Section VIII presents some approaches of how to
evaluate and validate HCI design patterns. Section IX
introduces some software tools, which have been developed
in the past years. The last section deals with standardization
approaches.

II. HISTORY
Christopher Alexander, architect and mathematician, first
talked about patterns in his PhD thesis which was
subsequently published as the book “Notes on the Synthesis
of Form” in 1964 (see timeline in Figure 1). Christopher
Alexander laid the cornerstone of the later well known
concept of design patterns. Alexander argues that design
problems are getting more and more complex so that they
exceed the designer’s abilities to come up with a solution
from scratch. Furthermore, problems cannot show its own
solution, only a set of requirements, when combined
together, the requirements create a new idea [4]. From 1975
to 1979 Alexander published several books on the concept of
design patterns and pattern languages [3][5][6]. Although his
concept was originally meant to support reuse of
architectural design knowledge, it found its way into the HCI
community where it was first mentioned 1986 by Donald
Norman and Stephen Draper [51].

Ward Cunningham and Kent Beck have adopted this
principle to object-oriented programming (OOP) and user
interface (UI) implementation in 1987 [8][55]. They
presented five patterns for designing window-based user
interfaces in Smalltalk:

• WindowPerTask
• FewPanes
• StandardPanes

225

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• NounsAndVerbs
• ShortMenus

This small “pattern language” was intended to give novices
in Smalltalk the possibility to use the language with all its
strengths and avoid pitfalls. Cunningham and Beck were
surprised of the good interfaces their users designed.

The Hillside Group, which now sponsors pattern
conferences all over the world, has organized the first PLoP
(Pattern Languages of Programs) conference in October
1994 with 80 participants.

Design patterns made their breakthrough in the software
engineering community when Erich Gamma et al. published
one of the bestselling books in software engineering,
“Design Patterns: Elements of Reusable Object-Oriented
Software” [25]. This book was awarded in the Journal of
Object Oriented Programming (September 1995 Issue) “the
best OO book of 1995” and “the best OO book of all times”.
From this time on many design patterns and pattern
languages in software engineering as well as in user interface
engineering have been published.

In HCI, the actual start of the design pattern era was 1996
when Tod Coram and Jim Lee published the first design
patterns of a pattern language for user-centered interface
design [14]. Their intention was to provide high level
patterns with which user interface designers could build
graphical user interfaces which are pleasurable and
productive to use. In 1997 the first CHI workshop on pattern
languages in user interface design was organized. The
participants explored the use of a pattern language in user
interface design to make HCI knowledge reusable in
different applications [7]. At this time, user interface toolkits
have emerged to support user interface designers and

software engineers. However, the workshop participants
stressed that a more general description of user interface
design know-how, which is detached from a specific
implementation platform, would be desirable and agreed that
design patterns could be an appropriate tool. Design patterns
reside on a higher level of abstraction than UI toolkits and
are not bound to source-code for a specific implementation
of the addressed problem. Furthermore, patterns are written
in such a general way that they give pattern users the
possibility to decide how specific widgets should be
arranged to concretize the patterns’ solutions.

Other pattern workshops focusing on HCI design patterns
followed (see Table 1). Beside the discussion about the
concept of design patterns in the HCI domain in workshops
around the world, several books were published addressing
design patterns and pattern languages for the HCI domain:

• “A Pattern Approach to Interactive Design”
provides design patterns for interactive exhibits and
user interface design [11].

• “The Design of Sites” is a comprehensive pattern
language to help developing customer-centered
websites [18].

• “A Pattern Language of Web Usability” provides a
pattern language for the design of usable websites
[27].

• “Designing Interfaces” is a collection of HCI design
patterns which addresses how to build desktop and
mobile user interfaces [60].

• “Patterns for Computer-Mediated Interaction”
provides patterns for the design of Human-
Computer-Human Interaction (HCHI) [56].

Figure 1: HCI Design Patterns Main Activities Timeline

226

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• “Designing Social Interfaces” written by the curator
of the Yahoo!Design Pattern Library. This book
provides patterns for designing a usable social
website [15].

• “User-Centered Interaction Design Patterns for
Interactive Digital Television Applications” shows
how television applications can be designed based
on design patterns [42].

Beside the publication of books, the World Wide Web is the
perfect medium to disseminate and publish HCI design
patterns across the HCI community. Over time, many
repositories were published, some have disappeared and
others are still a point of reference to UI designers. Some of
them are listed below with a short comment on each of them.
For a more detailed description of a selected set of the
mentioned Web repositories, cf. Section VIII.

• “Common Ground” is Jennifer Tidwell’s pattern
language for HCI design [59].

• “Designing Interfaces” is the companion website to
the same named book [60].

• “Little Springs Design – Mobile UI Design
Resources” provides a design pattern collection for
designing UIs for mobile devices [45].

• “UI Patterns – User Interface Design Pattern
Library”, describes design patterns for desktop and
mobile phone UI design [61].

• “Yahoo!Design Pattern Library” is a very popular
design pattern collection by Yahoo! [66].

• “Welie.com – Patterns in Interaction Design” is a
huge design pattern repository which addresses
patterns for Desktop- and Webdesign [64].

• “Portland Pattern Repository” maybe the oldest
pattern repository [53].

Beside the above mentioned design pattern repositories there
exists several design pattern portals providing a collection of
references to design pattern resources. These are:

• “The Interaction Design Patterns Page”, a collection
of links to interaction design pattern resources [19].

• “hcipatterns.org”, provides information to HCI
design patterns web resources, books and other
related stuff like papers [29].

• “The Pattern Gallery”, a listing of design pattern
forms with a short statement [23].

• “The Hillside Group”, is the organization who
organizes the PLoP conferences. A good resource to
start with the design pattern concept [58].

In the following section, we define the terms HCI design
pattern, design pattern catalogue/collection, and pattern
languages. Furthermore, we describe the components of HCI
design patterns (see Figure 2), and describe the
developments of the last years.

III. DEFINITIONS

A. HCI Design Pattern
An HCI design pattern describes a recurring problem
together with a proven solution. An HCI design pattern, in
the following referred to as “pattern” or “design pattern”,
has a well-defined form, which is dependent on the
individual author’s preferences. A pattern form should be
used consistently across a pattern language or pattern
collection. This makes it easier for pattern users to
understand the problem, context, and solution of a pattern
throughout a pattern collection / language. The pattern itself,
when it is part of a collection or a pattern language, may
have references to other patterns.

B. Design Pattern Catalogue / Collection
Patterns are stored in design pattern catalogues or
collections. The patterns in such a catalogue are categorized
to support faster navigation within the repository. In this
case, patterns show almost no relationships among each
other and thus do not form a fully interconnected system.
Instead several patterns stand more or less alone and have
no or few connections to predecessor or successor patterns.
Furthermore, such a collection usually does not completely
cover a specific application domain.

C. Pattern Language
In contrast to a pattern catalogue / collection, a pattern
language is a complete set of patterns for a given family of

Conference Year Title Ref.
INTERACT 1999 Usability Pattern Languages [28]

ChiliPLoP 1999 CHI Meets PLoP [9]

CHI 2000 Pattern Languages for Interaction
Design: Building Momentum [24]

CHI 2001 Patterns: What’s in it for HCI (Panel) [10]

CHI 2003 Perspectives on HCI Patterns [22]

Table 1: Workshops on HCI Design Patterns

Figure 2: Components of HCI Design Patterns

HCI
Design
Pattern

Pattern
Form

Organizing
Principles

Relationships

SemanticsStandard-
ization

Evaluation /
Verification

Tool
Support

227

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

design problems in a given domain. A pattern language
describes problems by means of high-level design patterns,
which may be solved by lower-level design patterns. The
design patterns are connected through relationships, so that
they constitute a network.

In a pattern language, the “words” are the patterns, while
the connections between patterns represent the “rules of
grammar” which are situated in the pattern itself. When
words and rules of grammar are combined, a “sentence” is
generated. Sentences can be built in many different forms
when the rules of grammar are followed. So there is not
only one path through a pattern language, it offers several
possibilities to solve a design problem. A good example is
“The Design of Sites” by van Duyne et al., a pattern
language that allows designers to articulate an infinite
variety of Web designs [18]. Figure 3 visualizes a part of a
pattern language with focus on online shopping [62].

IV. PATTERN FORM
Patterns are written by researchers and UI designers in a
well-defined format, the so-called pattern form. This form is
dependent on the author’s preferences but several canonical
forms have been established in the history of design
patterns. These are described below in more detail.

A. Alexandrian Form
Christopher Alexander has invented the concept of design
patterns as a problem / solution pair and presented them in a
common format [3], which consists of:

• Picture: Shows an archetypal example of the pattern
in use.

• Introductory Paragraph: This sets the pattern in
the context of other, larger scale patterns.

• Headline: A short description of the problem.
• Body: Detailed description of the problem.
• Solution: The solution of the pattern which is

written as a design instruction.
• Diagram: Sketches the solution in the form of a

diagram.
• Closing Paragraph: Gives references to other

patterns and describes how this pattern relates to
with other, smaller patterns.

This pattern form is used with minor changes by Todd
Coram and Jim Lee [14], Jan Borchers [11], Ian Graham
[27], Mark Irons [37], Douglas van Duyne et al. [18], and
Eric Chung et al. [13].

B. Software Engineering Design Patterns
There are influential approaches stemming from the software
engineering domain, which are briefly described below:

THE GANG OF FOUR FORM

This form is used in the book “Design Patterns: Elements of
Reusable Object-Oriented Software” [25] and for many other
OO software design patterns from different authors.

• Pattern Name and Classification: The pattern
name describes in a word or two what the pattern is

about and the classification groups the pattern with
similar problems.

• Intent: A short statement what the pattern does and
some words about its rationale and intent.

• Also Known As: Alternative names for the pattern.
• Motivation: A scenario how the class and object

structures solve the addressed problem.
• Applicability: Describes the situation in which the

design pattern can be applied.
• Participants: Addresses which classes and/or

objects participate in the design pattern.
• Collaborations: Represents how the participants

collaborate with each other.
• Consequences: Tells the user how the pattern

supports its objectives.
• Implementation: Describes how to implement the

pattern and how to overcome common pitfalls.
• Sample Code: Contains some code fragments on

how to implement the pattern.
• Known uses: Examples of implementations

proving the value of the pattern.
• Related Patterns: References to other patterns

which are closely related.

THE PORTLAND FORM

The Portland Pattern Form [53] is not as clearly structured as
the others. The patterns are structured as text paragraphs.
Ward Cunningham describes the form he uses in the Portland
Pattern Repository as follows:

 “Each pattern in the Portland Form makes a
statement that goes something like: ‘such and so
forces create this or that problem, therefore, build a
thing-a-ma-jig to deal with them.’ The pattern takes
its name from the thing-a-ma-jig, the solution. Each
pattern in the Portland Form also places itself and
the forces that create it within the context of other
forces, both stronger and weaker, and the solutions
they require. A wise designer resolves the stronger
forces first, then goes on to address weaker ones.
Patterns capture this ordering by citing stronger
and weaker patterns in opening and closing
paragraphs.”

THE COPLIEN FORM

James Coplien used the so-called Canonical Form to
describe his patterns. This form is also called Coplien Form
because he was one of the more famous pattern writers in the
early stages of the software patterns movement [1].

• Name: Describes the name of the pattern.
• Problem: Addresses which problem will be solved

by the pattern.
• Context: Tells the user in which context the

pattern can be applied.

228

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Forces: This element describes (possibly
conflicting) requirements and their impact on the
design pattern.

• Solution: Shows the user how to balance the forces
and solve the problems.

• Resulting Context: States which context is
generated by applying the pattern.

• Rationale: Describes why the solution is
implemented in such a way.

• Author: Name of author and creation date.
Software engineers have adapted the Alexandrian Form to
describe their patterns. Significant changes are the
introduction of the content elements – Implementation,
Sample Code and Participants, which describe OO
programming facets like source code and UML diagrams.

C. HCI Design Pattern Forms

UI PATTERN FORM

This pattern form was developed at the INTERACT patterns
workshop in 1999 [28]. It comprises seven content elements:

• Name: Shortly describes the pattern’s intent.
• Sensitizing Example: This component should

sensitize the reader to the application of the pattern.
It is usually a screenshot or drawing of the pattern’s
solution.

• Problem Statement: Describes the conflicts (trade-
offs) between “forces” guiding the design approach.

• Body: Textual description of the pattern’s intent.
• Solution Statement: Tells what to do (and not how

to do it).
• Technical Representation: This example solution is

more detailed and intended to inform HCI experts
about the pattern’s solution.

• Related Patterns: References to successor patterns
which enhance or are similar to the pattern.

TIDWELL FORM

Jenifer Tidwell is using a very minimalistic form, which is
used throughout her book “Designing Interfaces” and the
accompanying website [60].

• Name: Describes the pattern’s intention and
defines a unique reference number.

• Sensitizing Image: This image sensitizes the
reader to the pattern’s solution.

• What: Short problem statement.
• Use When: Describes the context in which this

pattern can be used.
• Why: Describes the design rationale.
• How: Represents the solution part of the pattern.
• Examples: Screenshots of the instantiated pattern

with a short description.

HCI design pattern authors are not using content elements
such as Implementation or Source Code for their patterns. It
is not necessary to provide source code for demonstration
purposes of the pattern’s solution. The problem is that
interaction principles are implemented in many different
programming languages. Therefore, the pattern is written in a
more abstract way than software patterns. The pattern form is
significantly stronger based on the Alexandrian Form.

More pattern forms, which were recently used, can be
found at Sally Fincher’s portal [23].

V. ORGANIZING PRINCIPLES
Alexander has organized his pattern language into levels of
physical scale. He starts with high-level patterns which
describe the size and distribution of towns and proceeds in
several steps to low-level patterns which describe individual
rooms [3].

In analogy, an organizing principle for HCI patterns, as
Fincher and Windsor mentioned, should allow users to find
patterns they need within a large repository. An organizing
principle should meet at least the following objectives (cited
from [24]):

• Taxonomise – It must allow finding and selecting
material from a large repository.

• Proximate – It must allow users to locate
supporting, perhaps inter-related, patterns
applicable to their solution.

TASKS INFORMATION INTERACTION
Retrieval Retrieval tasks have (static) information passing

from the artefact to the user(s). The flow is usually
initiated by the user(s).

Monitoring Monitoring tasks have (dynamic) information
passing from the artefact to the user(s). The
information may come from ‘beyond’ the artefact.
The flow is usually initiated by the artefact.

Controlling Controlling tasks have information passing from
the artefact to the user(s) and a separate flow from
the user(s) to the artefact. The flow may be
initiated by either the user(s) – proactive control –
or by the artefact – reactive control

Construction Construction tasks have the user(s) putting new
information into the artefact

Transaction Transaction tasks have the user(s) putting linked
changes into the artefact. They are often
accompanied by a corresponding change in the
outside world.

Modification Modification tasks have user(s) changing
information already in the system. They may be
modifying ‘attribute values’ or ‘structure’

“Calculation” Calculation tasks have the user(s) putting
information into the system which it then
transforms and passes back to the users (not
necessarily synchronous).

Workflow Workflow tasks have the system providing
information to the user(s) which they then
transforms and passes back to the system (not
necessarily synchronous).

Communication Communication tasks have one group of users
putting information into the system that it passes
to another group of users.

Table2: Organizing Principle by Fincher and Windsor [21]

229

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Evaluative – The problem should be considered
from different viewpoints. So that it is possible to
evaluate and change the users approach or to
confirm the quality of their existing solution.

• Generative – It would be advantageous to support
users to consider the problem from different points
of view and allow for building new solutions, which
have not been previously considered.

Fincher and Windsor have adapted the Alexandrian structure
of scale to UI design, starting with a high-level category
Society, and descending via System, Application, UI
Structure and Component to the low-level categories
Primitive and Physical Detail. However, they do not
consider this categorization sufficient for UI designers to
find a pattern for their problem. So they suggested a second
and a third structure. The second one is based on the design-
by-type-of-task, where they have defined tasks based on the
information flow, which includes categorizations such as
Task-Retrieval, -Monitoring, -Controlling, -Construction and
others (see Table 2). The reason for the last categorization
structure is as the authors stated in their article: “It is as
common, as ‘natural’, for UI designers to structure their
design not around the nature of the interaction (the ‘how’),
but the stuff that is to be interacted with (the ‘what’)”. So
they suggested another category to satisfy UI designers
which comprises categories such as Volume, Complexity,
Structure, and Dynamics. Structure is further subdivided into
amorphous, sequential, hierarchical, directed acyclic graph,
and web. Dynamics is subdivided into creation / termination,
rate of change and patterns of change.

Another approach has been put forward by Mahemoff

and Johnston [46]: UI patterns can be assigned to four
different categories. First, the Task category comprises all
patterns addressing actions users might perform. Second, the
User Profile category gathers patterns focusing on user
groups. Third, User-Interface Elements helps designers and
programmers to understand when to use a specific interface
element or widget. Finally, Entire System patterns capture
the issues of specific kinds of systems.

Van Welie and van der Veer [62] are organizing their
patterns by means of “scaling the problem”. As design is
considered a top-down activity, their categorization is top-
down as well. Problems are scaled from high-level problems
like Business Goals to more detailed problems like Task
Level and Action Level as shown in Figure 3. Another
possibility to scale or group design patterns suggested by van
Welie and van der Veer are to organize them according to
their Function or to Problem Similarity, where Function can
be subdivided into Navigation, Searching, Product, Display,
Layout, and other sub-categories. Yet another organization
principle suggested by van Welie and van der Veer is to
categorize patterns according to user tasks and user type. A
user task can be selecting things, finding things and sorting.
This can be done by different types of users, namely novice
users, intermediate users, and expert users.

VI. RELATIONSHIPS
Relationships between design patterns are a key concept to
gain the full reuse potential of individual design patterns. In
HCI patterns, relationships are typically described very
briefly, only specifying the connections to other patterns
which may be applicable to a particular design problem.
However, proper consideration of relationships promises

Figure 3: A part of a pattern language for Web design with focus on shopping [62]

230

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

even more powerful search and navigation opportunities. In
the past, software engineering researchers have proposed
possible categorization approaches for relationships in the
domain of OOP patterns.

Primarily, relationships help to understand the complex
interdependencies among design patterns. Pattern users can
use relationship information in addition to the
aforementioned pattern classifications to identify patterns
which are applicable to specific design problems.
Furthermore, relationships can be exploited for browsing
large re-use repositories [36]. To improve and quicken the
finding process, the browsing paradigm can be combined
with the search paradigm as well. First the user searches for a
specific design problem and based on the query results it is
possible to browse through the repository to identify the best
matching solution.

Noble’s [50] proposal consists of three primary
relationships (a pattern uses another pattern, a pattern refines
another pattern, a pattern conflicts with another pattern) and
a number of secondary relationships such as used by, refined
by, variant, similar, combines, and others.

Zimmer’s [67] approach deals with the classification of
relationships in Gamma’s [25] design patterns collection. He
classifies relationships into three categories: a pattern uses
another pattern in its solution, a pattern is similar to another
pattern, and a pattern can be combined with another pattern.
Beside this categorization, it is possible to modify existing
relationships to use their altered version between different
patterns. The application of categorized relationships allows
to structure patterns in different layers. Zimmer has
identified three semantically different layers: basic design
patterns and techniques, design pattern for typical software
problems, and design patterns specific to an application
domain. Van Welie and van der Veer have indentified
relationships similar to the relationship between classes in
the software engineering domain [62]. They are using

Association, Specialization and Aggregation to describe their
identified relationships among design patterns. To illustrate
the relationships they have provided examples how the
relationships work. Figures 4, 5 and 6 show a summary of
their explanations.

Beside the relationships discovered by van Welie we
have investigated another one. It is called Anti-Association.
It is similar to Association but it is a connection to a so-
called anti-pattern, a pattern describing a bad solution
approach.

VII. SEMANTICS
Beside the relationships, semantics of design patterns can be
described using ontology. Throughout the Web community
there exist many design patterns which describe the same
problem but with a different vocabulary. So it is difficult to
understand and to access this design knowledge. Therefore,
an ontology or formalized semantics are necessary to
provide a common vocabulary and a machine processable
form of design patterns to be used by pattern management
tools.

Over the years several approaches have been developed
to overcome the aforementioned problem. Below we
describe some of the research activities on this topic
regarding HCI design patterns.

Montero et al. describe Web design patterns using
DAML+OIL [48]. In their approach they are dealing with
knowledge from two different areas. On the one hand there
is the Hypermedia Models area which describes the
elements of Web applications and is defined in four basic
terms:

• Node – a place holder which contains a number of
content elements.

• Content – a unit of information.
• Link – a connection between two or more nodes or

contents.
• Anchor – the source or target of a link.

On the other hand, the Design Patterns area which represents
design patterns with respect to their essential content
elements. Therefore, a pattern in their ontology is defined in
five different terms:

• Name – identifies the design pattern.
• Category – is used for classifying the pattern.
• Problem – describes the context in which the

pattern can be applied and the problem it addresses.
• Solution – shows how the problem can be solved.
• Related Patterns – is referencing other similar or

complementary patterns.
The ontology itself is specified in DAML+OIL [57], and is
subdivided into three layers. The first layer represents the
pattern and hypermedia elements and is the basis for the
second layer, which represents the set of hypermedia design
patterns. Finally, the instances of the hypermedia design
pattern layer represent the third layer. For a more detailed
specification and examples see [48].

Figure 4: Specialization - The AD.SEARCH Pattern

“is-a” specialization of the SEARCH PATTERN

Figure 5: Aggregation - SHOPPING CARD consists of

one or more design patterns.

Figure 6: Association - SHOPPING CARD is "related to"

PRODUCT COMPARISON

231

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another approach is used by Scott Henninger and
colleagues [31][32][33][34][35]. They are focusing on the
development of a Web-based ontology to represent design
patterns which are computed by agents. Their research goal
is to put the loosely coupled pattern collections into strongly
coupled pattern languages which represent the context in
which usability patterns can be applied. Furthermore, it was
important to find mechanisms for validating design patterns.
Tool support plays a crucial role in their approach because it
should be possible to get useful patterns for a specific
design problem when going through a question and answer
(Q&A) sequence. The results of which will be computed by
an inference engine.

Henninger uses OWL (Web Ontology Language) [52] to
define a metamodel for intelligent pattern languages. The
metamodel describes pattern properties. Some of the
properties Henninger is using are [33]:

• hasProblem – describes the design needs of an
actor for which the pattern was created.

• hasForces – addresses constraints and tradeoff in
choosing the solution suggested in the pattern.

• hasSolution – tells the user which actions must be
taken to solve the problem.

• hasContext – sets the context where the design
pattern can be useful

• hasRationale – describes why the solution is
effective.

Beside these generic properties other local semantics and
range restrictions are defined in the metamodel due to the
fact that the metamodel supports different types of design
pattern concepts (i.e. OOP-design patterns, HCI design
patterns). Furthermore, the metamodel contains several
types of semantic relationships to describe the connections
between design patterns:

• uses – Pattern A uses Pattern B if the usage is
optional [67].

• requires – Pattern A requires Pattern B [67].
• alternative – Two patterns are alternative if they

share the same problem and context but exhibit
different solutions [33].

• conflictsWith – Pattern A conflicts with Pattern B
if they should not be used together in a design
[33].

Figure 7 shows a part of an instance of a usability pattern
with the developed metamodel. The metamodel builds on
the HCI design pattern standardization approach by Fincher
et al. called PLML (cf. Section IX) and is enriched with
semantically meaningful pattern descriptions and
relationships between patterns. The pattern in Figure 4 is a
SHOPPING CART pattern which addresses the problem of
storing products that a user has selected. This is
accomplished with the property restriction
" hasProblem (Storing_Products ⊓ hasWebPages ≥ 1)".

The restriction is defined in OWL DL (OWL
Description Logic) to formalize the properties for OWL
reasoners. In addition to the property hasProblem the
pattern has other properties which define the problem and
requirements on possible solutions. For a more in-depth
description of Henninger’s design pattern metamodel see
[33].

To facilitate tool support Henninger combines BORE
[30, 32] and the semantic Web representation of design
patterns. BORE (Building on Organizational Repository of
Experiences) is used to demonstrate semantic Web
technologies to support the design of user interfaces. The
design tool can define a methodology with a set of activities
which describe the development process. It is using Q&As
to customize the methodology which consists of all possible
activities which are necessary to design a user interface.
BORE builds on the experiences of many usability projects
and various contexts and it uses a rule-based representation
that captures the requirements of the system.

VIII. EVALUATION AND VALIDATION OF DESIGN
PATTERNS

There are a lot of HCI design patterns available in the
community. Some are good and some are less valuable. The
usefulness of a pattern is often subject to the eye of the
beholder. But how do we measure the usefulness of design
patterns according to quality criteria or formal metrics? We
have investigated two approaches which are dealing with
the evaluation of patterns and pattern catalogues in HCI as
well as in the software engineering domain in a structured
way.

Wurhofer et al. presents a Quality Criteria Framework
which features five main quality criteria for HCI design
patterns [63] and which is based on approaches from
different researchers [10][39][47][49]. Figure 8 shows a
summary of the quality criteria suggested by Wurhofer. In
the following we give a short summary of each criterion
suggested by the framework.

Figure 7: OWL Description of a Usability Design Pattern [33]

232

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Findability – means that a pattern must be found
easily within a pattern language / collection. This
implies that they must have a meaningful
categorization and pattern name.

• Understandability – demands that the patterns’
content elements (name, problem, solution,…)
must be written in an clear and simple to
understand manner. This is achieved by the below
described sub-criteria:
- Completeness of Information – states that that

the pattern must carry all relevant information
(forces, problem, context, solution, example,
etc.).

- Language – means that the pattern must be
written in easy understandable terms and short
sentences.

- Problem-Centeredness – all parts of the pattern
should be centered on the problem and the
problem solution relationship must be clear.

- Balance between Concreteness and
Abstractness – the pattern should not be too
abstract nor to detailed.

- Comprehensiveness of Pattern Parts – this
criterion ensures that each part of the pattern
covers everything important to the user.

• Helpfulness – ensures that each pattern is written
in such a style that the pattern gives the user as
much information as possible to implement it
worries. This criterion is achieved through six sub-
criteria:
- Improvement of Design / Architecture – the

quality of a pattern is verified if it helps to
improve the design or development of a
system.

- Problem Solving – the pattern should help to
avoid common pitfalls by using common
solutions to the addressed problem.

- Support of Communication – states that the
design pattern should serve as the common
“language” for all stakeholders.

- Capturing of Knowledge – this criterion stands
for the reuse aspect of the design pattern. It
should capture relevant knowledge in its
domain to the user.

- Memorability – the main idea of a pattern must
be kept in mind of the stakeholders. This can be
achieved using an appropriate and easy to
remember pattern name or a good sensitizing
image.

- Feasibility – the patterns solution should be
realized easily.

• Empirical Verification – means that a pattern
based on empirical studies has a higher quality than
patterns based on personal experience.

• Overall Acceptability – states how much a pattern
user agrees with the pattern’s content. To fulfill

this criterion it is important to support the pattern
user’s subjective acceptance of a pattern. This can
be achieved by increasing the Overall Believe in
Pattern and the Overall Agreement with Pattern.

With this criteria catalogue it is possible to validate design
patterns according to their quality.

Another approach has been developed by Cutumisu et al.
[16]. They propose how to evaluate the effectiveness of a
design pattern catalogue or compare different catalogues
according to their effectiveness. The authors developed a
metric with which it is possible to validate patterns within
an existing design pattern catalogue. They defined four
metrics which are dependent on a specific application. That
means the metrics take the patterns which are used in a
specific application and compare them using various
formulae to the used pattern catalogue. Cutumisu et al.
define the four metrics as follows:

• usage – is the ratio of patterns used in the
application that come from the catalogue to the
total number of patterns in the catalogue.

• coverage – is the ratio of catalogue patterns used in
the application to the total number of patterns used
in the application.

• utility – is the ratio of pattern instances in the
application whose patterns are in the catalogue to
the total number of patterns used in the application
that come from the catalogues.

• precision – is the ratio of the total number of
patterns used in the application that come from the
catalogue to the number of adaptations required for
these pattern instances.

If a pattern catalogue has a high usage, coverage, utility, and
precision it is, according to Cutumisu et al. a good pattern
catalogue. Although the pattern metrics are designed for
software patterns, it is easy to adapt them to the HCI design
pattern domain. For a more detailed description and the
equations for each of the metrics see [16].

IX. TOOL SUPPORT
There are various tools which are exploiting the reuse
potential of HCI design patterns. These tools can be
categorized into online libraries / catalogues, pattern
management tools, and pattern-based UI design tools. Due
to space limitation we describe, in our mind, the most
important ones.

Figure 8: Components of the Quality Criteria Framework [63]

233

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Pattern Libraries / Collections
Pattern libraries or collections are focusing on the
categorization and dissemination of patterns via the Internet.
Sometimes there are basic mechanisms provided to create
and submit patterns to a repository. Such an online pattern
library is the Yahoo! Design Pattern Library [43, 66], a part
of the Yahoo! Developer Network. The founder’s intention
of the Yahoo! Library was to provide a tool to increase the
consistency and usability across Yahoo! and the
productivity of the UI design team. Today the design pattern
library is an often-used tool for UI designers and
researchers. Currently, there are about 47 patterns in six
categories available. Each pattern undergoes an extensive
review process within Yahoo!. They are reviewed, revised,
and rated. After review, the patterns are published and made
available to the public. All patterns in this library are under
the Creative Commons Attribution 2.5 License (June 2009).
Main features of the library are:

• A blogging tool for discussing patterns in the
library.

• A history function which helps users to see which
changes were made over time.

Further online pattern libraries are Welie.com [64], which
provides 130 UI design patterns with the possibility to
export them to PLML [22]. Furthermore, website users can
comment and discuss certain patterns.

As an addition to her Designing Interfaces book [60],
Tidwell provides a pattern library with selected patterns
where she updates and publishes new patterns. This library
is available at [60].

B. Pattern Management Tools
Pattern management tools are focusing on manipulating
patterns, navigating through pattern libraries, and providing
mechanisms to add relationships between patterns to create
a pattern language. They are easy to access and pattern users
can communicate with others via the pattern repository.

MOUDIL (Montreal Online Usability Patterns Digital
Library) [26] is a comprehensive framework for capturing
and disseminating patterns. It provides features and tools
like:

• Submission of patterns in different formats.
• International review and validation of submitted

patterns.
• A pattern editor for adding semantic information to

the patterns.
• A pattern navigator which allows navigating in

different ways through the pattern library.
• A pattern viewer which provides different views of

the pattern.
Unfortunately, the prototype of this pattern library is not
longer available online.

Currently under development is another online pattern
management tool which employs XPLML [40], an
improved version of PLML. XPLML provides a set of
common content elements, and it is possible to add semantic
information to design patterns. The tool will offer features
such as:

• A pattern editor with functions to support pattern
authors in writing and updating design patterns.

• A design pattern language visualization tool for
presenting relationships between patterns in a
pattern language.

• The pattern form transformation allows pattern
users to change the presentation form of a design
pattern. For example, if a user prefers the
Alexandrian form, the tool provides mechanisms to
change the pattern form from e.g. Tidwell’s to the
preferred (Alexandrian) form in order to maximize
user acceptance.

• A wiki functionality which should involve all
interested users in developing new and improving
existing patterns.

C. Pattern-based UI design tools
The last category describes pattern-based UI design tools.
They provide functions for using design patterns in UI
design activities. Patterns are used for generating user
interfaces in a semi-automatic way. These tools usually
provide a defined set of UI patterns, which can be used
within the tool as building blocks to create the UI system.

PIM (Patterns in Modeling) [54], a model-based UI
development tool, aims to support UI designers in
composing the UI models through pattern application. With
PIM it is possible to develop user interfaces on a more
abstract and conceptual way. This helps designers to handle
very complex systems more easily. Users can put their
attention on conceptual properties rather than being
distracted by technical and implementation details.

A further tool, developed by Ahmed and Ashraf, is
called Task Pattern Wizard [2]. It is based on XUL (XML
User Interface Language) [65] to describe the patterns and
models. UI design patterns are used as modules for
establishing task, dialog, presentation, and layout models.
The tool guides the UI designer through the pattern adaption
and integration process and it provides functions for using,
selecting, adapting, and applying patterns within the
proposed framework PD-MBUI (Pattern-Driven and Model-
Based User Interface). The framework tries to unify the
pattern-driven and model-based approaches, two methods
for UI and software engineering. A more detailed
description of the framework is given in [2].

DAMASK, developed by Lin and Landay [44], is a
prototyping tool to produce Web UI’s across different
devices with the support of design patterns. The tool relies
on two components. The layer component specifies which
parts of the UI can be used across all devices and which can
only be used on a single device. The second component is
the pattern component: In DAMASK, an HCI design pattern
consists of pre-defined UI elements that are optimized for
each device. The pattern repository of DAMASK has 90
patterns from “The Design of Sites” [18] which can be
extended by the UI designer. The UI designer sketches out a
UI for one device and DAMASK constructs an abstract
model from which it generates the UI’s for the other
devices. Once the first layout is established, the UI designer

234

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can refine this layout and DAMASK changes the UI’s for the
other devices accordingly. Furthermore, the tool provides a
function for testing the established UI’s.

X. STANDARDIZATION APPROACHES
To our knowledge, the only serious standardization
approach was started at a workshop at a Human-Computer
Interaction conference in 2003. Due to the vast amount of
design pattern forms, Fincher et al. [22] proposed a standard
pattern form for HCI patterns called PLML (pronounced
“pell mell”). The goal was to provide a standard pattern
form where common elements should help pattern authors
and users to use design patterns across different collections.
PLML is specified in XML and comprises 16 content
elements on which the workshop participants agreed. It
turns out that only van Welie’s pattern collection [64] makes
use of PLML. He provides an export function to transform
patterns from his collection to PLML. However, this
approach suffers from certain technical limitations as
Kamthan points out [38]. He mentions that the design
principles behind the PLML DTD are not specified and that
elements are not strictly enough defined, because of the
broad use of the XML ANY element in the specification.
Kamthan also points out that PLML does not describe
semantic relationships between patterns, which are
necessary when using PLML in a pattern language.

 Since the publication of PLML, researchers tried to
improve it. PLML v. 1.2. developed by Deng et al. [17], is
an augmented PLML with some additional elements but
does not solve serious shortcomings such as the lack of
formalized relationships among patterns.

XI. CONLUSION AND FUTURE WORK
The concept of HCI design patterns is widely accepted tool
to represent design knowledge in a reusable format. In the
last years many concepts concerning the components of HCI
patterns were proposed, such as pattern forms, organizing
principles, standardization approaches, ontology, evaluation
and verification of patterns. This diversity leads to blurred
conceptualization and may confuse especially novice users.
To exploit the full reuse potential of patterns, a unification
of the above discussed components should be established,
which does not constrain pattern authors in their work but
supports pattern users by easing understanding and
instantiation of patterns to specific design problems [40].
Therefore a universal pattern form needs to be established
and enriched with semantics. This article shows that there
are many HCI design pattern resources available on the
WWW and because of the vast amount of different design
patterns available there exists many different forms as well.
To overcome the problem, an appropriate ontology would
help to share and disseminate HCI design patterns among
different repositories and help the authors and pattern users
to work more efficient with the provided design knowledge.
Therefore, a lot of research must be undertaken which
includes analyzing the different design pattern forms and
examining the content elements’ semantics. Furthermore, to
agree on a “standard” pattern form it is necessary to discuss

the results of the above mention research with the HCI
design pattern community to agree on a unified HCI design
pattern structure.

REFERENCES
[1] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K.

Nicodemus, “Fault-Tolerant Telecommunications System Patterns”,
in Pattern Languages of Program Design 2, pp. 549-562, Addison-
Wesley, 1996

[2] S. Ahmed and G. Ashraf, “Model-based User Interface Engineering
with Design Patterns”, in Journal of Systems and Software, vol. 80,
pp. 1408-1422, 2007

[3] C. Alexander, S. Ishikawa, and M. Silverstein, “A Pattern Language”,
Oxford University Press, 1977

[4] C. Alexander, “Notes on the Synthesis of Form”, Harvard University
Press, 1964

[5] C. Alexander, “The Oregon Experiment”, Oxford University Press,
1975

[6] C. Alexander, “The Timeless Way of Building”, Oxford University
Press, 1979

[7] E. Bayle, “Putting it all together: Towards a Pattern Language for
Interaction Design: A CHI workshop”, in SIGCHI Bulletin, vol. 30,
pp. 17 – 23, 1998

[8] K. Beck and W. Cunningham, “Using Pattern Languages for Object-
Oriented Programs”, OOPSLA’87:Workshop on the Specification
and Design for Object-Oriented Programming, 1987

[9] J. Borchers, “CHI Meets PLoP: An Interaction Patterns Workshop”,
SIGCHI Bulletin, vol. 32, 2000

[10] J. Borchers and J. Thomas, “Patterns: What’s in it for HCI?”, CHI’01:
Extended Abstracts on Human Factors in Computing Systems, ACM
Press, pp. 225 - 226, 2001

[11] J. Borchers, “A Pattern Approach to Interactive Design”, Wiley, 2001
[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stahl,

„Pattern-Oriented Software Architecture: A System of Patterns“, vol.
1, Wiley, 1996

[13] E. Chung, J. Hong, J. Lin, M. Prabaker, J. Landay, and A. Liu,
“Development and Evaluation of Emerging Design Patterns for
Ubiquitous Copmuting”, in Proc. Of Designing Interactive Systems,
2004

[14] T. Coram and J. Lee, “Experiences – A Pattern Language for User
Interface Design, 1996, Available at:
http://www.maplefish.com/todd/papers/Experiences.html, Accessed
on: June 30, 2010

[15] C. Crumlish and E. Malone, “Designing Social Interfaces: Principles,
Patterns, and Practices for Improving the User Experience”, O’Reilly
Media, 2009

[16] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton,
T. Roy, J. Siegel, and M. Carbonaro, “Evaluating Pattern Catalogs:
The Computer Games Experience”, ICSE '06: Proceedings of the 28th
International Conference on Software Engineering, ACM, pp. 132—
141, 2006

[17] J. Deng, E. Kemp, and G. Todd, “Focussing on a Standard Pattern
Form: The Demelopment and Evaluation of MUIP”, in Proc. of the
Seventh ACM SIGCHI New Zealand Chapter’s International
Conference on Computer-Human Interaction, pp. 83-90, ACM Press,
2006

[18] D. van Duyne, J. Landay, and J. Hong, “The Design of Sites:
Patterns, Principles, and Processes for Crafting a Customer-Centered
Web Experience”, Addison-Wesley, 2003

[19] T. Erickson, “The Interaction Design Patterns Page”, Available at:
http://www.visi.com/~snowfall/InteractionPatterns.html, Accessed on
June 30, 2010

[20] S. Fincher, “The Pattern Gallery”, Available at:
http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html,
Accessed on June 30, 2010

235

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J. Thomas, and
P. Molina, “Perspectives on HCI Patterns: Concept and Tools”,
CHI’03: Extended Abstracts on Human Factors in Computing
Systems, ACM Press, pp. 1044 – 1045, 2003

[22] S. Fincher, “Perspectives on HCI Patterns: Concepts and Tools
(introducing PLML)”, Interfaces, vol. 56, pp.26-28, 2003

[23] S. Fincher, “The Pattern Gallery”, Available at:
http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html,
Accessed on June 30, 2010

[24] S. Fincher and P. Windsor, “Why Patterns are not enough: Some
Suggestions Concerning an Organising Principle for Patterns of UI
Design”, CHI’2000 Workshop on Pattern Languages for Interaction
Design: Building Momentum, 2000

[25] E. Gamma, R. Helm, R. Johnson, andJ. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley
Reading, 1994

[26] A. Gaffar, H. Javahery, A. Seffah, and D. Sinning, “MOUDIL: A
Comprehensive Framework for Disseminating and Sharing HCI
Patterns”, CHI’03 workshop: Perspectives on HCI patterns: Concepts
and Tools, 2003

[27] I. Graham, “A Pattern Language of Web Usability”, Addison-Wesley,
2003

[28] R. Griffiths, L. Pemberton, and J. Borchers, “Usability Pattern
Language Workshop”, at INTERACT’99, Available at:
http://www.it.bton.ac.uk/staff/rng/UPLworkshop99/PositionPapers.ht
ml, Accessed on: June 30, 2010

[29] “HCIPATTERNS.ORG”, Available at: http://www.hcipatterns.org/,
Accessed on June 30, 2010

[30] S. Henninger, “Accelerating the Successful Reuse of Problem Solving
Knowledge Through the Domain Lifecycle”, ICSR '96: Proceedings
of the 4th International Conference on Software Reuse, IEEE
Computer Society, 1996

[31] S. Henninger, M. Keshk, and R Kinworthy, “Capturing and
Disseminating Usability Patterns with Semantic Web technology”,
Workshop at CHI 2003: Perspectives on HCI Patterns: Concepts and
Tools, 2003

[32] S. Henninger, “Tool Support for Experience-Based Software
Development Methodologies”, in Advances in Computing, vol. 59,
pp. 29 – 82, 2003

[33] S. Henninger and P. Ashokkumar, “An Ontology-Based Metamodel
for Software Patterns”, 18th International Conference on Software
Engineering and Knowledge Engineering (SEKE2006), pp. 327 –
330, 2006

[34] S. Henninger, “Disseminating Usability Design Knowledge through
Ontology-Based Pattern Languages”, Proc. Semantic Web User
Interaction Workshop (ISWC2006). 2006

[35] S.Henninger and P. Ashokkumar, “An Ontology-Based Infrastructure
for Usability Design Patterns”, Proc. First International Workshop
Semantic Web Enabled Software Engineering, 2005

[36] M. Hitz and H. Werthner, A Graph Oriented Approach to Enhance
Reusability in *-bases, WISR’92: 5th Annual Workshop on Software
Reusability, 1992

[37] M. Irons, “Patterns for Personal Web Sites”, Available at:
http://www.rdrop.com/~half/Creations/Writings/Web.patterns/,
Accessed on: June 30, 2010

[38] P. Kamthan, “A Critique of Pattern Language Markup Language”,
Interfaces, vol. 68, pp. 14-15, 2006

[39] D. Khazanchi, J. Murphy, and S. Petter, “Guidelines for evaluating
patterns in the IS domain”, MWAIS 2008 Proceedigs, 2008, Paper 24,
Available at : http://aisel.aisnet.org/mwais2008/24, Accessed on: June
30, 2010

[40] C. Kruschitz, “XPLML: A HCI Pattern Formalizing and Unifying
Approach”, in Proc. of the 27th International Conference Extended
Abstracts on Human Factors in Computing Systems, pp. 4117 – 4122,
ACM, 2009

[41] C. Kruschitz and M. Hitz, “The Anatomy of HCI Design Patterns”,
Proc. of Computation World; Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, IEEE
Computer Society, pp. 202 – 207, 2009

[42] T. Kunert, “User-Centered Interaction Design Patterns for Interactive
Digital Television Applications”, Springer, 2009

[43] M. Leacock, E. Malone, and C. Wheeler, “Implementing a Pattern
Library in the Real World: A Yahoo! Case Study”, ASIS&T IA
Summit, 2005

[44] J. Lin and J. Landay, “Employing Patterns and Layers for Early-Stage
Design and Prototyping of Cross-Device User Interfaces”, in Proc.
26th International Conference on Human Factors in Computing
Systems, pp. 1313-1322, ACM, 2008

[45] “Littles Springs Design – Mobile UI Design Resources”, Available at:
http://patterns.littlespringsdesign.com/index.php/Main_Page,
Accessed on: January 18, 2010

[46] M. Mahemoff and L. Johnston, “Pattern Language for Usability: An
Investigation of Alternative Approaches”, in Proc. Third Asian-
Pacific Conference in Computer Human Interaction, pp. 25-31, IEEE
Coomputer Society, 1998

[47] K. McGee, “Patterns and Computer Game Design Innovation”, IE’07:
Proc. of the 4th Australasian Conference on Interactive Entertainment,
pp. 1 – 8, 2007

[48] S. Montero, P. Díaz, and I. Aedo, “Formalization of Web Design
Patterns using Ontologies”, Proc. Of the 1st International Atlantic
Web Intelligence Conference, Springer-Verlag,Vol. 2663, pp. 179 –
188, 2003

[49] S. Nieburg, K. Kohler, and C. Graf, “Engaging Patterns: Challenges
and Means Shown by an Example”, Engineering Interactive Systems,
Springer, pp. 586 – 600, 2008

[50] J. Noble, “Classifying Relationships Between Object-Oriented Design
Patterns”, in Proc. of the Australian Software Engineering
Conference, 1998, IEEE Computer Society

[51] D.A. Norman and S.W. Draper, “User-Centered System Design: New
Perspectives on Human-Computer Interaction.”, Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1986

[52] “OWL – Web Ontology Language”, Available at:
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, Accessed
on June 30, 2010

[53] “Portland Pattern Repository”, Available at: http://c2.com/ppr/,
Accessed on January 5, 2010

[54] F. Radeke, P. Fobrig, A. Seffah, and D. Sining, „PIM Tool: Support
for Pattern-Driven and Model-Based UI Development“, 5th
International Workshop: Task Models and Diagrams for User
Interface Design, LNCS: Programming and Software Engineering,
vol 4385, pp. 82-96, 2007

[55] T. Schuemmer and S. Lukosch, “Patterns for Computer-Mediated
Interaction”, John Wiley & Son, 2007

[56] R. Smith, “Panel in Design Methodology”, OOPSLA’87:Addendum
to the Proceedings on Object-Oriented Programming Systems,
Languages and Applications, pp. 91-95, ACM, 1987

[57] “The DARPA Agent Markup Language”, Available at:
http://www.daml.org, Accessed on June 30, 2010

[58] “The Hillside Group”, Available at: http://hillside.net, Accessed on
June 30, 2010

[59] J. Tidwell, “Common Ground”, Available at:
http://www.mit.edu/~jtidwell/common_ground.html, Accessed on
June 30, 2010

[60] J. Tidwell, “Designing Interfaces”, O’Reilly, 2005 Available at:
http://www.designinginterfaces.com, Accessed on June 30, 2010

[61] “UI Patterns - User Interface Design Pattern Library”, Available at:
http://ui-patterns.com, Accessed on June 30, 2010

[62] M. van Welie and G. van der Veer, “Pattern Languages in Interaction
Design: Structure and Organization”, Human-Computer Interaction –
INTERACT’03, pp.527-534, IOS Press, 2003

236

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[63] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “Introducing a
Comprehensive Quality Criteria Framework for Validating Patterns”,
Future Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, Computation World, pp. 242 – 247, 2009

[64] “Welie.com – Patterns in Interaction Design”, Available at:
http://www.welie.com, Accessed on June 30, 2010

[65] “XML User Interface Language”, Available at:
https://developer.mozilla.org/En/XUL, Accessed on June 30, 2010

[66] “Yahoo! Design Pattern Library”, Available at:
http://developer.yahoo.com/ypatterns/, Accessed on June 30, 2010

[67] W. Zimmer, “Relationships between Design Patterns”, Pattern
Language of Program Design, Addison-Wesley, 1994

237

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

