
Sources of Software Requirements Change from the Perspectives of Development

and Maintenance

Sharon McGee
1
 and Des Greer

2

School of Electronics, Electrical Engineering and Computer Science

Queens University

Belfast, United Kingdom

{
1
smcgee08|

2
des.greer}@qub.ac.uk

Abstract— Changes to software requirements occur during

initial development and subsequent to delivery, posing a risk to

cost and quality while at the same time providing an

opportunity to add value. Provision of a generic change source

taxonomy will support requirements change risk visibility, and

also facilitate richer recording of both pre- and post-delivery

change data. In this paper we present a collaborative study to

investigate and classify sources of requirements change,

drawing comparison between those pertaining to software

development and maintenance. We begin by combining

evolution, maintenance and software lifecycle research to

derive a definition of software maintenance, which provides

the foundation for empirical context and comparison.

Previously published change ‘causes’ pertaining to

development are elicited from the literature, consolidated using

expert knowledge and classified using card sorting. A second

study incorporating causes of requirements change during

software maintenance results in a taxonomy which accounts

for the entire evolutionary progress of applications software.

We conclude that the distinction between the terms

maintenance and development is imprecise, and that changes

to requirements in both scenarios arise due to a combination of

factors contributing to requirements uncertainty and events

that trigger change. The change trigger taxonomy constructs

were initially validated using a small set of requirements

change data, and deemed sufficient and practical as a means to

collect common requirements change statistics across multiple

projects.

Keywords- Requirements change; requirements

management; project management; card sorting; software

evolution; development; maintenance.

I. INTRODUCTION

To some, effective management of changes to software

during its lifetime is the key to the effective software project
management [43]. While accepting that requirements
changes are inevitable during software development, the
increased cost of changes later in the development lifecycle
[53][2], combined with the threat that volatility poses to
project schedule, cost [3][4], and defect rates [5][4], means
that requirements volatility constitutes one of the top ten
risks to successful project development [6]. Continuing post-
delivery, constant adaptation and change is necessary if
software is to retain value and remain useful [38]. Viewing
software evolution as a continuum from conception to
demise is a perspective purported by some researchers [45],

though much empirical effort is bounded by a clear
distinction between initial development and post-
implementation [34][44][35]. Pfleeger‟s [7] recommendation
that “We must find a way to understand and anticipate some
of the inevitable change we see during software
development” is complemented by Bennett and Rajlich‟s
[35] encouragement to focus upon empirically founded
predictive models of maintenance.

Working with an industrial partner, our shared objective
is to design and conduct a series of studies that collectively
address the challenge of requirements change anticipation.
Our longer term aims are 1) To investigate the correlation
between the source of change and requirement type, 2) To
assess the impact of change source upon requirements
volatility and 3) To examine the pattern of source-induced
change during development and maintenance. The first step
is an exploration of the causes of requirements change, both
pre- and post delivery.

For the purpose of change management, it is generally
recommended that change requests are held in a database
with attributes such as „origin‟ and „change type‟ [8]. An
obvious starting point would therefore be to analyse existing
change control databases. However, it has been observed that
reasons for change are insufficiently recorded for the
purpose of analysis [9]. While this statement cannot be said
to apply generally, it has also been the experience of the
authors. Standardizing data collection across multiple
projects regardless of life-cycle phase will not only inform
explorative research, but also provide a means by which
industrial software providers can take ownership of empirical
opportunities. In this study we set out to build a taxonomy
of requirements change based on the source of the change,
including and comparing sources of change during software
development and maintenance. This classification of
requirements change sources should be useful as a pick-list
(along with other pre-defined attributes) in change diaries
across multiple projects within one organization, for the
purpose of future analysis.

Thus, the following questions are addressed:-

1. What are the sources of requirements change during
software development and maintenance?

2. Can they be similarly classified according to change
source domain?

186

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper combines a previous study [1] with new
results and is organised as follows. Section 2 describes
previous studies related to the classification and causes of
requirements change. Section 3 outlines the research
approach and methods used in this study. In Section 4 we
establish the software project categorisation used in this
study. Section 5 describes the research process, and
illustrates the derived taxonomy. Section 6 discusses our
findings with respect to previous work and outlines possible
application limitations. Finally we end our paper with
conclusions and plans for further work.

II. RELATED WORK

More abstract theories suggest that requirements change

because our perceptions of reality differ from actual reality
[32], or that the real world is unbounded yet our
understanding of the world is both bounded and based upon
assumptions which are often invalid [38].

Empiricists, seeking to complement these ideas with
more practical support, explore the causes of requirements
change by examining evidence during software development
and maintenance. Studies designed to classify requirements
changes fall into one of two camps. The first are those that
advocate the need for a domain-specific taxonomy. Lam et al
[10-12], who address the problem of managing volatility by
process control, recommend that volatility classification
should capture the domain-specific nature of change in order
to facilitate change estimation and reuse. This is echoed by
Stark [13] who analyses the impact of maintenance changes
on release schedule. The following discussion focuses upon
those studies such as Harker et al. [14] which propose a more
generic re-usable requirements change classification.

A. Software Development Change Classifications.

Harker et al. [14] divide empirically gathered

requirements changes into five categories depending upon
the source of the change – i) fluctuations in the organization
and market environment; ii) increased understanding of
requirements; iii) consequences of system-usage; iv) changes
necessary due to customer migratory issues or v) changes
due to adaptation issues. Based on Harker et al.‟s study, an
appraisal by Sommerville [15] includes compatibility
requirements relating to business process change in place of
migratory and adaptation issues. Working from data held in a
change control database within an industrial setting,
Nurmuliani et al [16] catalogues volatility by type (addition,
modification, deletion), origin, and reason for change.
Noting that most change requests used in the study had little
information about the reason for change, a further study was
undertaken using card sorting to classify the recorded
changes [9]. This resulted in a list of „super-ordinate
constructs‟ classified by reason for change – product
strategy, hardware/software environment changes, scope
reduction, design improvement, missing requirements,
clarification changes, testability and functionality
enhancement.

As can be seen there is little agreement in the
terminology used for classifying requirements change, and it
would seem at first sight that studies to date have little
commonality. This may be due to the different contextual
basis of the studies, or perhaps that classification was
established at different levels. It is possible, for example, that
Nurmuliani et al.‟s change reason of „missing requirement‟ is
included within Harker el al.‟s change source of „increased
understanding‟.

A genre of studies related to requirements engineering
risk and uncertainty is also of relevance. Mathiassen et al.
[17] classify requirements engineering risks by reliability,
complexity and availability, and relate these to appropriate
techniques.

B. Software Maintenance Change Classifications

Much empirical and theoretical work re-uses or builds

upon Swanson‟s classification [41] of maintenance changes
[34][44][46], which includes corrective, adaptive and
perfective changes. Chapin et al. [42] provide a thorough
review of literature referring to maintenance change types,
and propose a new classification which is an extension and
clarification of previous work, and is based upon observed
activities. These include changes to documentation, code,
and business rules. Incorporating both errors and
enhancements, this classification focuses not upon the
reason, cause or source of the change, but instead upon the
type of change being made. Both Kemerer & Slaughter [44]
and Heales [37] take a different approach and classify
changes according to what is being changed. From a
theoretical view point, Perry [39] discusses the dimensions
of change and concludes that software development imitates
the „real world‟ by the creation of a „model‟ from which we
abstract an „understanding of system requirements‟. These
are subsequently implemented upon a foundation of
sometimes weak „technical theory‟.

Due to the divergence of change sources compiled in
these studies, none of the classifications exclusively met the
needs of the subsequent stage of this research. However,
their findings, together with requirements change causes
derived from other studies are used to provide a collection of
change constructs upon which to base our classification
effort. A full list of change source constructs elicited from
the literature can be found in the appendix.

III. RESEARCH APPROACH

This study is the first of a family of studies [18]
employing a collaborative research approach, in that it seeks
to contribute to the body of knowledge in this area, whilst
answering to the need of our industrial partner to better
understand, manage and measure requirements changes.
Collaboration with industry is generally recommended to
ensure relevance and better transfer of research results [19].
In this instance the industrial partner gave of their time to
provide expert knowledge of software project management
and product maintenance.

187

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Preliminary Studies

To explore the scope and complexity of the problem, and
decide upon appropriate and effective research methods, a
number of initial investigations were undertaken. Three
unstructured interviews, during which project managers in
the main reflected upon their current project, demonstrated
the need for a focus for „memory-jogging‟. A subsequent
self-administered questionnaire exposed difficulties with
change construct interpretation and understanding, and a
review of a change database revealed that not all changes
were recorded, particularly those relating to the technical
solution. Therefore, methods were sought that would
maximise the opportunity for consensus building, provide a
visual basis for brainstorming, and maximise the potential
for knowledge sharing and exchange.

The unit of analysis is our industrial partner organization.
Participants were sampled from the company‟s Project
Managers and Maintenance Engineers by convenience,
within the stratum of those with at least 12 years experience
in IT.

B. Organisational Context

 Our industrial partner in this research employs 300 staff,
136 of whom are involved with software development. They
have 6 offices around the UK and Ireland and deliver IT
solutions to clients across both the public and private sectors.
Most of their contracts involve a single customer and
roughly 80% of these relate to governmental work. Nearly
all project managers are Prince2 certified and work with a
range of traditional and agile methodologies.

C. Workshops

In requirements engineering, group elicitation techniques
such as workshops aim to foster stakeholder agreement and
buy-in [20], and are a mechanism whereby individuals can
make decisions through the consensus building leadership of
a facilitator [21]. In view of this, they were used to
familiarize all participants with the constructs, come to a
common understanding of their meaning, and reach a
consensus of opinion at the end of the study regarding the
structure of the taxonomy to be used.

D. Card Sorting

Card sorting is a knowledge elicitation technique which
involves categorizing a set of cards into distinct groups
according to a single criterion. Each card represents a
construct which can be expressed in words or pictures, and
participants are invited to place them into related groups. The
categorisation may be left to the participants (open sort) or
pre-determined (closed sort). Maiden & Rugg [21] suggest
that card sorting is one of the most suitable techniques for
acquiring knowledge of data (in contrast to knowledge of
behaviour or process). Further, Rugg and McGeorge [54]
argue that card sorting overcomes one of the disadvantages
of the repertory grid method of categorisation since this uses
Likert-type measurements to capture participant responses
and is not well suited to nominal scale data. However, the
repertory grid approach does lend itself easily to statistical
analysis, which is one of the challenges of card sorting [22].

Other more semantic disadvantages include the need for
careful selection and naming of cards in order to ensure cross
participant construct understanding, and the potential
disparity of group labelling during open sorting. However,
the use of extensions such the Delphi method (each
participant iteratively improves a proposed hierarchy) [55]
can overcome some of these difficulties. Most analogous to
this approach is affinity diagramming which is similar to
card sorting except that the focus is upon reaching a
consensus, and therefore consists of a single card sorting
exercise with a number of participants. However, by contrast
to singular participant card sorting, taking this approach will
mean that the differences in participant perspectives will be
lost. Salient amongst the advantages of card sorting are its
simplicity, focus on participants terminology, and ability to
elicit semi-tacit knowledge [22]. A special edition of the
journal „Expert Systems‟ in 2005 [23] was dedicated to the
subject and it has widespread use in psychology, knowledge
engineering and requirements engineering. Accordingly,
single participant card sorting with supporting
aforementioned workshops for terminology understanding
and analysis consensus was deemed an appropriate approach
to the derivation of a taxonomy of change sources.

IV. SOFTWARE PROJECT CATEGORISATION

 In order to accommodate and compare sources of change

pertaining to all phases of the software lifecycle, it is first

necessary to clearly define what we mean by development

and maintenance. Noticing that there is some terminological

disparity in the literature [35], we firstly derive a character

based project categorization founded upon existing studies.

It is from this basis that we establish understanding between

academic and industrial research team members and

consider the validity of the results of this study.

A. Software Evolution

Lehman‟s influential and continuingly relevant work on
software change [38][45] brought the term evolution into
common research usage. Defined as “the dynamic behaviour
of programming systems as they are maintained and
enhanced over their lifetimes" [47], Belady & Lehman are
deliberately inclusive of all stages of the software lifecycle,
including initial development [38][43]. Subsequent to this
work, authors have applied the term to development [48],
used it as a substitute for maintenance [34][44], and
proposed that it refers to a period of time between initial
development and servicing [35]. Noting that the term lacked
a standard definition, Bennett & Rajlich [35] sought to
clarify its meaning by asking the question “What is
maintenance?” and proposing a staged model for the
software lifecycle [35]. This theory derived model promotes
the latter view that software enters a phase of evolution
following initial delivery and stops evolving once it is no
longer feasible to make requirements changes. Subsequently
the software enters a period of servicing when only minor
corrections are made. Bennett & Rajlich claim that from a
research perspective each stage has “different technical

188

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions, processes, staff needs and management activities”.
Therefore empirical research should firstly ensure context is
specified, and secondly explore the best solution for each
stage. Interestingly, in a retrospective examination, Lehman
& Ramil observed that their empirical research supported the
staged model [38].

B. Software Development and Maintenance

The term maintenance has been defined by the IEEE [49]
as “The modification of a software product after delivery to
correct faults, to improve performance or other attributes or
to adapt the product to a modified environment”. As argued
by Godfry & German [36], this definition is not
representative of all post-delivery activity, and the semantic
inference of the term evolution more closely reflects the
changing nature of software, and in particular accounts for
requirements changes. Nonetheless, the term maintenance is
still used widely, though not consistently. Kitchenham et al.
[46] developed an ontology of maintenance in which two
scenarios are outlined. The first scenario (A), more
commonly understood as evolutionary development, is
included since in this instance the incremental nature of
software delivery necessarily implies that there is a portion
of software in the post-delivery phase. The second scenario
(B) represents the case where activity concerning software
change is facilitated by a maintenance organisation distinct
from that of development. The second of those is the more
traditionally accepted view of maintenance and the context
of much „maintenance‟ research. As an interesting aside,
Basilli [50] considers software re-use and surmises that from
a re-use perspective all development can be considered
maintenance due to the prevalence of components usage.
Chapin et al. [42] assert that a classification of requirements
change types, more traditionally ascribed to maintenance,
can equally be applied to software development, and that this
project nomenclature is relevant only in so far that it is
prevalent in industry. Indeed, in that environment, deciding
whether a project is „maintenance‟ or „development‟ is
merely a question of project funding and contractual
agreement. Supportive of this contention is the observation
that the maintenance process ontology from Kitchenham et
al. [46] is derived from and bears direct semblance to a
development process ontology proposed by de Almeida et al.
[52]. The activities involved in managing change
(evaluation, impact analysis, approval, implementation,
regression testing) and the supporting processes of
configuration management, requirements traceability and
release planning are beneficial elements of change
management, irrespective of life-cycle phase. However,
Chapin et al also assert that the level of effort consumed by
these activities depends upon whether they occur in a
development or maintenance environment, and that
recognition of the differences between the two phases will
lead to more realistic measurement and work evaluation [51].
Kemerer & Slaughter suggest that the types of changes seen
during longitudinal post-delivery studies are not
homogeneous. Further empirical research may reveal
predictable patterns of evolutionary change which would

contribute to knowledge regarding the software lifecycle
[44].

It is apparent therefore that there is some commonality of

change process and activity shared amongst projects in

phases termed development, evolution and maintenance.

However, the observations made by Bennett & Rajlich [35]

Chapin [51] and Kemerer & Slaughter [44], who advocate

the benefit of differentiating between life-cycle phases, are

of sufficient significance to warrant empirical investigation.

 While an exhaustive account of the comparison between

development and maintenance is out of the scope of this

study, the categorisation illustrated in Table 1 was derived

for the purposes of this and future empirical studies. It

combines the staged model proposed by Bennett & Rajlich

[35], Kitchenham et al.‟s maintenance scenarios [46] and

Chapin‟s classification of change types [42]. The division

between development and maintenance was drawn to reflect

the importance of the factors relating to team knowledge,

stability and responsibilities [46][51], coupled with the

distinct contractual governance prevalent during „product

upkeep‟ and „servicing‟. From Table 1 we derive the

following definition of software maintenance.

Maintenance projects are those that:-

1. Employ staff whose work assignment is distinct

from that of pre-delivery development, and whose

application domain knowledge is not assumed.

2. Operate under a clearly defined support contract.

3. Involve activities of product correction and

enhancement to production software.

V. TAXONOMY DEVELOPMENT

This section describes the process of taxonomy
development. Upon agreement of the proposed
categorisation, a consideration of the sources of requirements
changes observed during software development informs the
organisation of an initial change source classification. This is
followed by further study incorporating sources of change
associated with maintenance projects.

A. Project Categorisation Clarification

With one project manager present, the proposed project

categorisation was reviewed. Two post-delivery support

contracts were examined and it was noticed that small

changes termed „enhancements‟ were permitted under the

terms of both contracts provided that they did not exceed an

agreed (contract-specific) cost ceiling. These would be

undertaken by a member of the organisation‟s maintenance

team and scheduled in accordance with maintenance

priorities. Provision was made in both contracts for further

enhancements, whose costs were estimated to be in excess

of the ceiling, which would require the agreement of a

further contract. This work would be undertaken by a

dedicated software development project team.

189

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE 1 DEVELOPMENT AND MAINTENANCE PROJECT CATEGORISATION

Under the proposed project categorisation, the

enhancement work falling under the maintenance contract

would be termed „maintenance‟ while the work requiring

further funding arrangements would fall under

„development‟. Since both cases would involve

requirements changes made to post-delivery software, this

supports Chapin et al.‟s comment that industrial naming

convention is a matter of budget considerations [42], and

highlights the potential for confusion when understanding

the context of research studies. It was emphasised by the

project manager that any development project emerging

from a maintenance contract would necessitate more depth

of requirements analysis processes than that required by the

„mini projects‟ undertaken under the terms of the

maintenance contract. The project categorisation as

proposed was used in the remainder of the study.

B. Development Change Source Constructs

Electronic keyword searches were performed to assemble
candidate academic papers, industrial articles, and text
books. Citations referring explicitly to requirements
change/evolution sources/causes/uncertainty/creep/risk were
followed in a forward direction in search of the initial source.
This resulted in a total of 73 papers and text books which
were reduced to a final 14 sources by the criteria „software
development‟ with „discovered empirically‟ or „seminal
work/text book‟. As „seminal work‟ was subjectively
assessed, this cannot be considered a systematic review.
However, without this criterion, papers such as „Issues in

requirements elicitation‟ [24] would not have been included.
The authors felt that this would be an oversight.

During the collation of change source constructs it
became apparent that reasons for change such as „diverse
user community‟ and „New tools/technology‟ were often
gathered together under the umbrella term „cause‟ [14, 15,
25]. Clearly there is a distinction between uncertainty giving
rise to change and events that trigger a change. Whilst an
event can lead to a change without preceding uncertainty,
uncertainty can not result in a change unless an event
resolves or intervenes to mitigate the risk of uncertainty. It
could be argued that change is „caused‟ by a combination of
uncertainty and trigger, although in reality causation cannot
be proved to arise from one, other or both due to the
presence of confounding environmental factors.
Accordingly, uncertainties and triggers, collectively referred
to as sources of change, were separated. This separation was
not difficult since in most cases the semantics of the
constructs related to an event (trigger) or a situation
(uncertainty).

C. Initial Workshop – development construct consolidation

The first workshop taking 2 ½ hours introduced the
constructs to 3 project managers and each construct was
clarified for meaning. In so doing, constructs sharing a
similar meaning were amalgamated, and those represented
by other constructs at a finer level of granularity were
removed. Additionally, constructs such as „New Functional
Feature‟, which would necessarily arise as the consequence
of resolved uncertainty or opportunity were also removed.
The most debated of the constructs was „changes following
prototyping‟. Though quoted as a cause of change, it was the
opinion of the participants that this change source should be
thought of as a technique, having no more causal

Development Maintenance

 Development Iterative Delivery Product Upkeep

Servicing

Naming

Convention

Initial

Development1

Evolution1

Maintenance Scenario A2

Evolution1

Maintenance Scenario B2

Servicing1

Maintenance Scenario B2

Staff Roles Pre-delivery

only

Pre and Post-delivery. Post delivery only Post-delivery only

Software

Engineer

Knowledge

Domain and

project-specific

technical

knowledge

inherent

Continuity of domain and

project-specific technical

knowledge.

Some Domain and

project-specific technical

knowledge required but

not assumed.

Domain and project-

specific technical

knowledge not required or

assumed.

User Support N/A Feedback through

requirements analysis

activities

Help/Support Desk

Service Level Agreement

Help/Support Desk

Service Level Agreement

Types of

changes

All types All types All types Corrective

1 Bennett & Rajlich [35]
2 Kitchenham et al. [46]

190

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

significance than other techniques such as „requirements
inspections‟. Either all techniques should be included and
constructs added accordingly, or constructs pertaining to
increased understanding should represent the techniques. The
final consensus favoured the latter argument, though the
addition of technique constructs remains a question for
further research. Four triggers were added and as a result of
this process, the number of constructs was reduced from 73
to 46. Making the distinction between trigger and
uncertainty was confirmed both to be viable and useful, since
triggers could more easily be attributed to requirements
changes. The constructs are listed in the Appendix under the
headings „Development Trigger Construct‟ and
„Development Uncertainty Construct‟. What remained was
to classify the triggers and assign uncertainty constructs
accordingly, thus endorsing the classification and confirming
that uncertainties had corresponding change events.

D. Participant Card Sorting (development)

Individual card-sorting ensured that the opinions and
contribution of each project manager were represented. The
process was first validated by a pilot card sort with 1 project
manager and 1 researcher. Each card sorting session was
audio-recorded and reviewed, and photographs were taken of
card classifications. This process took between 45 minutes
and 1 ½ hours.

Each of the 23 development trigger constructs (as they
appear in the Appendix) was written on a card and assigned a
random number which could be seen clearly in the
photographs. Six participants were asked to classify the
triggers according to their source.

All participants classified the triggers into between 3 and
5 categories, and there was homogeneity between the
classifications, although in all cases they were named
differently. For example, one project manager referred to
„ownership‟ of the categories; another used process labels
such as „customer interface‟ and „Requirements
engineering‟. Naming convention aside, 14 of the 23
constructs were placed in the same pattern by all participants,
that is, co-resided in 3 groups. Notably, differences of card
placement related to degree of granularity of classification.
For example, 4 participants grouped „increased customer
understanding‟ and „first engagement of customer‟ alongside
constructs relating to understanding the technical solution.
The classifications of the remaining 2 project managers
conveyed the importance of distinguishing between changes
that arose due to increased understanding of the problem, and
those relating to the technical answer to that problem. Only 1
classification, illustrated the distinction between market
factors and those concerning the customer organisation, the
remainder considering them similarly „external‟ to the
project.

E. Second Workshop- Consesus building

Four project managers attended a second workshop

lasting 3 ½ hours. Stimulating and interesting discussion
resulted in a unanimously agreed trigger taxonomy to which
uncertainty constructs were attributed.

Beginning with 3 untitled groups containing a total of 14
trigger constructs, it remained to come to a consensus of
opinion regarding the remaining 9. As observed by one of
the participants, the granularity differences were a matter of
perception. For example, as a project manager, constructs
such as „market stability‟ or „customer organisation strategic
change‟ were equally external to their control. However,
from the perspective of a customer, this is perhaps not the
case. Therefore, the final taxonomy was built according to
the variance of classifications made during the card sorting
procedure. Consequently, a taxonomy comprising 5 groups
was derived and agreed.

These groups comprised the change domains illustrated
in Table 2. Uncertainty constructs were attributed to their
associated domain. At this stage several additional
uncertainty constructs were added. Most notable amongst
these were technical uncertainty, and technical complexity of
solution. Though considered general project risks [26], they
had not previously been recognised as a source of
requirements change. This may be because they do not alter
the vision of the problem, but rather the way in which the
problem is addressed.

TABLE 2 CHANGE DOMAINS AND DESCRIPTIONS

Change Domain Description

Market Differing needs of many customers,
government regulations, external to
project.

Customer
Organisation

Strategic direction of a single
customer, customer organisation
considerations, external to project.

Project Vision Problem to be solved, product
direction and priorities.

Requirements
Specification

Specifying the requirements of the
established problem.

Solution Technical answer to problem.

Nonetheless, as discovered by Curtis et al. [25] „creeping

elegance‟ is a source of change and a risk to budget and
schedule slippage. There was some debate about the
positioning of „project size‟. Initially considered to be a risk
to change in all domains, it was further reasoned that size has
an effect, due to the increased difficulty of conceptualizing
the problem. Therefore „size‟ was placed in the domain of
project vision.

F. Maintenance Change Source Constructs

Of the initial 73 papers, 11 contained references to post-

delivery requirements change causes. Having established a

project categorisation, there was difficulty applying it to

other studies since none of them made reference to contract

conditions or staffing arrangements. Only the criteria

„changes to production software‟ was used. Interestingly

there were significantly fewer empirical studies examining

sources of requirements changes post-delivery than during

development, despite the high proportion (75% [35]) of

191

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enhancement work carried out during that time. It was noted

that many studies examining risks or uncertainty within the

maintenance environment were exploring risks to

maintenance change productivity rather than change

likelihood. Perhaps this indicates support for the argument

of Kitchenham et al. [46] that one of the major differences

between development and maintenance is that development

is requirement-driven and maintenance is event-driven. In

their words, “This means that the stimuli (i.e., the inputs)

that initiate a maintenance activity are unscheduled

(random) events”. Perhaps prohibitive to investigation is the

limited value that an exploration of change causes would

yield, should the contention be empirically proven that

maintenance change is stimulated by random events. Once

again, separation of trigger and uncertainty presented no

difficulties.

G. Third Workshop - Maintenance construct consolidation

Consolidation of maintenance constructs during a

workshop consisting of a researcher and 2 maintenance

team members, taking 2 hours, followed the same process as

development constructs, reducing an initial set of 36

constructs to 11 triggers and 12 uncertainties (see the

appendix). This is in marked contrast to the number of

constructs concerning development projects elicited from

the literature. Many of these constructs ignited lengthy

discussion. Of particular note was that many of the

uncertainty constructs were likely to introduce error rather

than requirements change. Those in that category included

„maintenance team instability‟ and „maintenance team

knowledge‟. By contrast, these team-related constructs had

been considered sources of requirements change during

development. It was believed that the perceived more

limited business knowledge required by maintenance

engineers coupled with the reduced need for requirements

analysis processes to implement „mini changes‟ meant that

these team attributes had no significant effect upon

requirements changes. Also interesting was the observation

that some uncertainties such as „economic climate‟ altered a

projects capacity to make change, rather than invoking

change. The construct „system usage‟ was removed since it

was seen as an „activity‟ during which an alternative change

source may manifest (such as „increased understanding‟),

rather than a cause of change itself. This bears comparison

to the removal of techniques during the development

construct consolidation. The 9 added constructs included

Commercial Off-the-shelf Software (COTS) usage, which

was felt to be a contributor to requirements change, due to

the need to react to new COTS opportunities and release

functionality. „Number of interfaces‟ and „Number of

functions‟ were added to reflect system complexity, as it

was thought that system complexity doesn‟t in itself lead to

changes of requirements during maintenance, though it

would during development when requirements are still

being understood. „Function Usage‟ was also added since

system functions used more frequently are prone to higher

levels of change.

H. Fouth Workshop - Card Sorting (Maintenance)

Since the intention was to discover if sources of change

during maintenance and development projects could be

similarly classified it was decided to perform one closed

card sort [22] within a workshop setting. Provided with the

change domains derived previously and described in Table

2, two maintenance engineers were asked to ascribe the

maintenance change constructs to one, many, or none of the

change domains.

The participants found the trigger constructs easy to

attribute, though some of the uncertainty constructs resided

in both requirements specification and project vision. A

higher number of users, or a high level of function usage

may uncover opportunities to improve the way in which the

system requirements have been implemented, or reveal new

desires and needs. Similarly, the discussion surrounding

„project size‟ during the consolidation of constructs

pertaining to software development, „system age‟ was

initially thought to reside in all domains. However, further

consideration led to the conclusion that, while an older

system is more likely to require functional updating without

changes to the surrounding market or customer

environment, the system could retain value in its current

state. By itself, the age of a system will only affect

performance or data storage issues requiring solution

maintenance. The term „semantic relativism‟ described by

Heales [37] as „generation of language construction‟ was

placed in the domain of project vision, although the

participants felt that as a concept it had less relevance than

the other uncertainties, and was difficult to evaluate. No

constructs remained unplaced.

I. Fifth Workshop – development and maintenance

taxonomy consolidation and comparison

During this workshop, taking 3 hours, both project

managers and maintenance engineers were brought together
to compare and consolidate the two previously derived
taxonomies. The following agenda items were agreed:

1. Identify and consolidate corresponding maintenance

and development constructs a) within the same
domain and b) within alternative domains.

2. Review constructs to determine if those located in a
single taxonomy related equally to both.

1) Maintenance and Development Construct

Consolidation.

Seven of the 12 maintenance related triggers, and 6 of the
12 maintenance related uncertainties were semantically
synonymous, though named differently to development
related constructs. Those that resided within the same change

192

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domain retained the naming convention used in the software
development change source taxonomy. There was some
discussion regarding the naming and placing of „Number of
interfaces‟ and „number of functions‟ which had been placed
in both the domains of project vision and requirements
specification by the maintenance engineers. These
represented factors contributing both to „project size‟ and
„logical complexity of problem‟ residing in the domains of
project vision and requirements specification respectively.
The ensuing discussion led to the recognition that while
these constructs embodied a similar concept, the difference
lay in the effects of the uncertainty. For example, while
„project size‟ affected the capability of the development team
to understand and model the problem, from the perspective
of the maintenance team it increased the likelihood for
change discovery during maintenance.

2) Development and Maintenance construct review

Only two sources of maintenance related requirements

change - „semantic relativism‟ and „response to gap in
market‟ were deemed applicable to initial software
development. However, when taking iterative development
into consideration, the constructs relating to system usage
also became relevant. It was argued by the project managers
that from their perspective „alter performance‟ is a (non-
functional) requirement change that would happen in
response to a market or customer need and was therefore not
a cause of requirements change. From the perspective of
maintenance, „alter performance‟ represented the pro-active
changes made to deter system degradation or promote further
usage. Therefore „design improvement/solution elegance‟
was a more appropriate construct. Those remaining within
the realm of software maintenance related only to system
age.

 However, many of the constructs pertaining only to
development applied also to maintenance. Indeed, it was
agreed that, aside from „cost/schedule overrun‟, only those
constructs relating to the ability to understand the problem
related solely to software development. However, it was also
noted that many of these sources, particularly those in the
domains of market and project vision would result in the
initiation of a new product release. So while the change may
be incurred during maintenance, it will be realised by a
software development team. Confirming the insight arising
from the discussion regarding project size, a number of the
uncertainties relating to software development were
applicable also to maintenance, though with a distinct
difference in effect. For example, during development high
quality of communication with customers affected the clarity
of the shared understanding of the problem, thereby reducing
the likelihood of subsequent requirements changes. By
contrast, during maintenance the quality of communication
increased the probability of change recommendation, and
hence had an effect upon system longevity.

The resulting taxonomy is shown in figure 1. The reader
is referred to the appendix for full construct tracing from
research origin to construct consolidation and comparison.
The change domains relate to both triggers and uncertainties.

There is a many to many relationship between the
uncertainties and triggers within each change domain and in
many cases a „chain‟ of uncertainties may culminate with a
trigger event. Those constructs marked „(D)‟ apply solely to
development, while those marked „(M)‟ are relevant only to
maintenance. Of interest was the observation by the project
managers that the structure of the domain also reflects the
amount of control they have of the uncertainties, with least
control at the top - „Market‟ and tighter control at the bottom
– „Solution‟.

J. Validation of Change trigger Constructs

The capability of the change trigger constructs to

describe the source of a change was initially validated by one
of the participating project managers who used a small
sample of changes (13) across two development projects to
ensure that each had a corresponding trigger which
accurately reflected the source of change. No changes were
made at this stage. This taxonomy will firstly be used within
the context of development, assessed for informative
capability and internal validity, before considering the
broader scope of applicability. Further validation of this
taxonomy is the subject of an on-going study using a current
project.

VI. DISCUSSION

This section evaluates the taxonomy thus derived with

respect to previously published change classifications,

explores the implications of the study with respect to the

comparison between development and maintenance and

outlines some possible limitations of this work.

A. Comparison with Previous Classificatons

The classification proposed in this study bears little
synergy with change reasons derived by Nurmuliani et al.
[16] as many of these reasons such as „missing requirement‟
and „new functional feature‟ were considered to be
consequences of other events, rather than sources of change.
By comparison, there is some resemblance to the
classification of change sources defined by Harker et al. [14].
In particular, a combination of market and customer
organisation domain sources equate to their „mutable‟ class
defined as “changes that arise in response to demands
outside the system”. By making the distinction between
changes that occur in response to market demands, and those
answering to customers‟ organisational considerations, the
taxonomy developed here reflects the difference between
customer-driven and market driven software development.
Harker et al.‟s „emergent‟ requirements, “direct outcomes of
the process of engagement in the development activities”,
correspond to constructs in both the project vision and
requirements specification domain. In differentiating
between project vision and requirements specification
domains we are recognising the difference between variation
in the product to be developed and change due to better
understanding of the problem. This is an important
distinction as it can support decisions regarding requirements
elicitation techniques and rigour of documentation.

193

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 Requirements Change Source Taxonomy

There are no analogous domains within this taxonomy for
the remainder of Harker et al.‟s categories. These include
prototyping or system usage, adaptive requirements and
migration requirements, which were reasoned to be
techniques, activities, or new requirements. Sommerville‟s
classification [15], while including „mutable‟, emergent‟ and
„consequential‟ change (system usage) also removes
adaptive and migration requirements. Instead „change to
business process‟ form a category which is included here in

the project vision domain, since these types of changes result
in a change of product direction. The solution domain has no
direct parallel in any classification but reflects the reality that
changes to the technical solution, though perhaps less visible,
pose a risk to timely development.

While there are some differences in contained constructs,
requirements availability as defined by Mathiassen et al. [17]
corresponds to requirements specification although
constructs relating to requirements complexity and reliability

194

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are included in both customer organisation and project
vision. That said, further categorising these domains
according to reliability and complexity would allow the
findings of both studies to be combined, thus relating
technique to change source domain.

A comparison can be drawn between this taxonomy and
classifications of change types during maintenance [42].
Excluding error handling, the taxonomy derived here
includes constructs in the solution domain relating to
perfection and adaptation while enhancements are further
classified according to the remaining change domains. There
is an encouraging parallel with Perry‟s software development
domains [39]. While the „real world‟ is represented here in
both the Market and customer organisation domains, Perry‟s
„model of the real world‟, „derived specification‟ and
„underlying theory‟ correspond closely to project vision,
requirements specification and solution respectively. Thus,
to an extent this study corroborates Perry‟s theoretical model
with empirical evidence, and furthers understanding of the
nature of the domains.

Of particular significance for our on-going research is
that by comparison to the descriptive or uncertainty based
nature of previous work, the clearly defined constructs
within each change source domain allow comparative source
data to be attributed to change databases. Therefore it would
be possible to assess the impact on the project of a particular
change source such as „new stakeholder‟ or „first
engagement of customer representative‟, giving software
providers some empirical data with which perhaps to
leverage customer involvement. Further, it would be possible
to assess the level of change in each change source domain.
Should, for example, a high proportion of changes come
from the domain of project vision, this would indicate the
vulnerability of the „problem‟ to change, thereby empirically
illustrating the need for more „agile‟ creative processes.

B. Comparison between development and Maintenance

Having derived a project categorisation based upon the

work of Kitchenham et al. [46], Bennett & Rajlich [35] and
Chapin et al [42] (refer to Table 1), the taxonomy derived in
this study verifies that many requirements change sources are
similarly relevant to development and maintenance. Thus
supporting Bennett & Rajlich‟s [35] observation that
software evolves during both iterative development and
maintenance, the differentiation presented by Kitchenham et
al. [46] between the two scenarios is also reflected in this
study. Sources of change arising due to continued
understanding of the requirements are attributable to iterative
delivery (scenario A), while those relating to system age are
relevant only to product upkeep and servicing (scenario B).
However, this observation relies upon a definition of
maintenance that includes only minor enhancements, which
are represented in Bennett & Rajlich‟s [35] model, not as a
lifecycle stage, but as an iterative element of evolutionary
product versioning. Refuting Kitchenham et al.‟s contention
that maintenance changes are event driven, while changes

during software development are requirement driven [46],
the separation of triggers and uncertainties and their
pertinence to both development and maintenance, reveals
that changes during software development can be equally
reactionary to external events. The pro-active approach to
maintenance described by one of the maintenance engineers
in this study suggests that maintenance changes, like those
during software development, aren‟t entirely event-driven,
but transpire as a result of a combination of uncertainty,
event and pro-active change discovery. Whilst the change
sources illustrated in the taxonomy indicate the similarities
between development and maintenance, further exploration
of the consequences of the uncertainties may reveal
differences to project risk.

C. Limitations

Generality of results are often sacrificed for richness and

complexity, reflecting an inherent conflict between internal
and external validity [19]. Given the disparity between both
terminology and published change taxonomies combined
with the debate among the participants of this study, it could
be argued that change classification is by nature a subjective
assessment. Motivated, however, by the potential for
improvement to requirements change visibility and
management, modelling change sources is a worthy
initiative. The collaborative approach taken here has led to
an internally usable model and reflects Sjoberg‟s et al.‟s
recommendation [19] to “formulate scope relatively
narrowly to begin with and then extend it gradually”.
Therefore no claims can be made with regard to external
validity beyond the boundaries of this study, and in particular
to projects employing alternative delivery models such as
service oriented and cloud computing. However given that
the constructs were drawn from a variety of empirically
based studies, it is plausible that the results apply to projects
similarly adhering to a more traditional development
lifecycle. The initial constructs are provided here, along with
methods description such that it should be possible to
replicate this study. Given the collaborative nature of this
research, and its immediate applicability, it has a high level
of relevance.

VII. CONCLUSION AND FURTHER WORK

This study set out to explore, classify and compare the
causes of requirements change during software development
and maintenance. A review of the terminology highlighted
the fuzzy distinction between projects termed „development‟
and those referred to as „maintenance‟. The disparity of
terminology in the literature is complemented, and to some
extent explained by the lack of distinction observed in
industry. Project nomenclature is decreed dependent upon
the size of the proposed change, and the supporting funding
agreement. This carries the implication that research in the
field of software development may apply to software
maintenance and vice versa. Further, that establishing
context in empirical research requires more than a reference

195

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to development or maintenance in a research article. A
somewhat narrower view of maintenance was defined in this
study which excluded evolutionary development and
reflected the naming convention used by our industrial
partners.

Expert knowledge of experienced project managers and
maintenance engineers was used to consolidate and classify
change source constructs elicited from the literature. An
initial study based on sources of change relevant to software
development resulted in a classification which made the
important distinction between uncertainty (situation) and
trigger (event) giving rise to change. In itself, this taxonomy
supports project risk visibility and facilitates the collection of
clearly defined change source data. In differentiating
between source domains pertaining to market, customer and
project vision a software provider using this taxonomy can
assess the level of changes that are arising due to a change in
the direction or vision of the problem, by contrast to those
pertaining to an increased understanding of the problem to
be solved. In so doing, project managers can make use of
internal empirical data to support process and technique
selection, and risk management.

A second study incorporating significantly fewer sources
of requirements change during software product maintenance
classified the constructs according to the change source
domains previously derived. The sources of maintenance
requirements change could easily be attributed to the change
domains defined in the initial study, and many of the
constructs had been included within the original taxonomy.
A comparative exploration revealed that most of the change
constructs applied to both development and maintenance,
though it was observed that the effects of the uncertainties
differed, and that some of the changes incurred during
maintenance would necessitate a new product release
requiring software development. Those constructs relevant
solely to development related to requirements and domain
understanding, while those pertaining only to maintenance
were concerned with system age. By contrast to the
contention that software maintenance changes are event
driven while development changes are requirement driven,
an implication of this study is that changes to requirements
are driven by a combination of event and uncertainty during
both development and maintenance. Further, opportunities
for requirements change may be sought pro-actively in both
situations.

This study was founded upon previously published
requirements change taxonomies, thus evaluating and
building upon their efforts. Therefore it addresses the
problems of divergent change source constructs, and reasons
that some of the classifications previously described as
„causes‟ were either consequences of other changes, types of
requirements, or more abstract concepts less easy to evaluate.

Having answered the questions posed in this study, it is
now possible to further our research and begin exploring
what kinds of requirements are more susceptible to change
arising within the change domains defined in this taxonomy.
This is currently on-going with our industrial partner. A
further study is envisaged which will explore patterns of
requirements change throughout the evolutionary progress of

software development and usage. The theoretical aspect of
the work presented here may contribute to ontological
studies, and open more issues in relation to emerging
paradigms such as dynamic updates in Service Oriented
Architecture and alternative delivery models such as cloud
computing. In the meantime the derived taxonomy can assist
practically in the identification and analysis of requirements
volatility and has particular relevance to customer driven
software development especially those working within the
government sector.

ACKNOWLEDGMENT

We would like to thank the project managers and
maintenance engineers whose valuable time was devoted to
the organization of this taxonomy.

REFERENCES

[1] S. McGee, D. Greer, “A Software Requirements Change Source
Taxonomy”, proc. 4

th
 Intl. Conf. Software Engineering Advances,

Porto, 2009.
[2] B. Williams, J. Carver and R. Vaughn, “Change Risk
Assessment: Understanding Risks Involved in Changing Software
Requirements”, Proc. International Conference on Software
Engineering Research and Practice, Las Vegas, Nevada, 2006.
[3] D. Zowghi and N. Nurmuliani, “A study of the impact of
requirements volatility on software project performance”, Proc.
Ninth Asia-Pacific Software Engineering Conference, 2002.
[4] S. Ferreira, F. Collofello, D. Shunk, G. Mackulac and P. Wolfe,
“Utilization of Process Modeling and Simulation in Understanding
the Effects of Requirements Volatility in Software Development”,
International Workshop on Software Process Simulation and
Modeling, Portland, Oregon, 2003.
[5] T. Javed, M. Maqsood and Q. Durrani, “A study to investigate
the impact of requirements instability on software defects”, ACM
Software Engineering Notes, 29, 3, 2004.
[6] B. Boehm,” Industrial Software Metrics Top 10 List”, IEEE
Software, 4(5), 1987.
*7+ S. L. Pfleeger, “Software Metrics: Progress after 25 Years? “,
IEEE Software, 25(6), 2008.
[8] K. Wiegers, Software Requirements, Microsoft Press, 2003.
[9] N. Nurmuliani, D. Zowghi and S. P. Williams, “Using card
sorting technique to classify requirements change”, Proc. 12

th
 IEEE

International Conference on Requirements Engineering, Kyoto,
Japan, 2004.
[10] W. Lam, M. Loomes and V. Shankararaman , “Managing
requirements change using metrics and action planning”, Proc. 3

rd

European conference on Software Maintenance and
Reengineering, Amsterdam, Netherlands, 1999.
[11] W. Lam and V. Shankararaman, “Requirements change: a
dissection of management issues”, Proc 25th EUROMICRO
Conference, Milan, Italy, 1999.
[12] W. Lam and V. Shankararaman, “Managing change in
software development using a process improvement approach”,
Proc. 24

th
 Euromicro Conference, vol 2, Vasteras Sweden, 1998.

*13+ G. Stark, A. Skillicorn and R. Ameele, “An Examination of the
Effects of Requirements Changes on Software Releases”,
CROSSTALK, The Journal of Defense Software Engineering, 1998.

196

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] S. D. P. Harker, K. D. Eason and J. E. Dobson, “The change and
evolution of requirements as a challenge to the practice of
software engineering”, Proc. IEEE International Symposium on
Requirements Engineering, San Diego, CA, USA, 1993.
[15] I. Sommerville, Software Engineering, Personal Education
Ltd, 2007.
[16] N. Nurmuliani, D. Zowghi and S. Powell, ”Analysis of
requirements volatility during software development lifecycle”,
Proc. Australian Software Engineering Conference, Melbourne,
2004.
[17] L. Mathiassen, T. Saarinen, T. Tuunanen and M. Rossi ,
“Managing Requirements Engineering Risks: Analysis and
Synthesis of the Literature”, Helsinki School of Economics Working
Papers W-379, 2004.
[18] D. Perry, A. Porter and L. Votta, “Empirical Studies of
Software Engineering: A Roadmap”, Proc. 22

nd
 International

Conference on Software Engineering, Limerick, Ireland, 2000.
[19] D. I. K. Sjoberg, T. Dyba and M. Jorgensen, “The future of
Empirical Methods in Software Engineering Research”, Proc.
Future of Software Engineering, Minneapolis, MN, 2007.
[20] B. Nuseibeh and S. Easterbrook, “Requirements Engineering:
A Roadmap”, Proc 22

nd
 International Conference on Software

Engineering, Limerick, Ireland, 2000.
[21+N. A. M. Maiden and G. Rugg. “ACRE: selecting methods for
requirements acquisition”, Software Engineering Journal, 11(3),
1996.
[22] S. Fincher and J. Tenenberg, “Making sense of card sorting
data”, Expert Systems, 22(3), 2005.
[23] Anonymous, Expert Systems Special Edition on Card Sorting,
22, 3, 2005.
[24] M. Christel and K. Kang, “Issues in Requirements Elicitation”,
Technical Report No. CMU/SEI-92-TR-012 Software Engineering
Institute, 1992.
[25] B. Curtis, H. Krasner and N. Iscoe, “A field study of the
software design process for large systems”, Communications of
the ACM, 31(11), 1988.
[26] H. Barki, S. Rivard and J. Talbot, “Toward an assessment of
software development risk”, Journal of Managment Information
Systems, 10(2), 1993.
[27] B. Boehm, “Requirements that handle IKIWISI, COTS, and
rapid change”, Computer, 33(7), 2000.
[28] A. Lamsweerde, Requirements Engineering : From System
goals to UML models to software specifications, John Wiley &
Sons Ltd, 2009.
[29] R. Pressman, Software Engineering. A Practitioner's
Approach, McGraw Hill, 2005.
*30+ T. Moynihan, “’Requirements-uncertainty': should it be a
latent, aggregate or profile construct?” Proc. Australian Software
Engineering Conference, Canberra, ACT, Australia, 2000.
[31]T. Moynihan. “How experienced project managers assess
risk”, IEEE Software, 14(3), 1997.
[32] A. M. Davis and K. V. Nori, “Requirements, Plato's Cave, and
Perceptions of Reality”, Proc. International Conference on
Computer Software and Applications, Beijing, China, 2007.
[33] C. Ebert and J. De Man, “Requirements uncertainty:
influencing factors and concrete improvements”, Proc. 27

th

International Conference on Software Engineering, ST Louis,
Missouri, USA, 2005.

[34] E. Barry, “Software evolution, volatility and lifecycle
maintenance patterns: a longitudinal analysis synopsis”, Proc
International Conference on Software Maintenance, 2002
[35] K. Bennett, V. Rajlich, “Software Maintenance and Evolution: a
roadmap”, Proc 22

nd
 International Conference on Software

Engineering, ACM Press, New York, 2000.
[36] M. Godfry, D. German, “The past, present, future of software
evolution”, Frontiers of Software Maintenance, 2008, FoSM 2008.
*37+ J. Heales, “Factors Affecting Information System Volatility”,
Proc. 21

st
 Intl. Conf. Information Systems, Brisbane, Australia,

2000.
[38] M. Lehman, J. Ramil, “Software Evolution”, Information
Processing Letters, 88(1-2), 2003
*39+ D. Perry, “Dimensions of Software Evolution”,n Proc. Intl.
Conf. Software Maintenance, Victoria, Canada, 1994.
*40+ M. Lehman, J. Ramil, “Towards a Theory of Software Evolution
– And it’s Practical Impact”
[41] E. Swanson, “The dimensions of Maintenance”, Proc. 2

nd
 Intl

Conf Software Engineering, CA USA, 1976.
[42] N. Chapin, J. Hale, K. Khan, J. Ramil, W. Tan, “Types of
Software Evolution and Software Maintenance” Journal of
Software Maintenance and Evolution: Research and Practice,
13(1), 2001.
*43+ M. Lehman, “Software’s future: managing evolution, IEEE
Software, 15(1), 1998.
[44] C. Kemerer, S. Slaughter, “An empirical approach to studying
software evolution” IEEE Transaction on Software Engineering,
25(4), 1999.
[45] M. Lehman, J. Ramil, P. Wernick, D. Perry, W. Turski, "Metrics
and Laws of Software Evolution - The Nineties View", Fourth
International Software Metrics Symposium (METRICS'97), 1997.
[46] . Kitchenham, G. Travassos, A. von Mayrhauser, F. Niessink ,
N. Schneidewind, J. Singer, S. Takada, R. Vehvilainen, H. Yang,
“Towards an ontology of software maintenance”, Journal of
Software Maintenance: Research and Practice 11(6), 1999.
*47+ L. Belady, M. Lehman, “A model of large program
development”, IBM Systems Journal 15(3), 1976.
*48+ K. Villela, J. Doerr, A. Gross, “Proactively managing the
Evolution of Embedded System Requirements”, Proc. 16

th

International IEEE Conf. Requirements Engineering, Caltunya,
2008.
[49] IEEE std. 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology, IEEE, New York, 1991
[50] V. Basili, “Viewing Maintenance as Reuse-Oriented Software
Development”, IEEE Software 7(1), 1990.
*51+ N. Chapin, “Productivity in Software Maintenance”, Proc.
National Computer Conference, Illinois, 1981.
*52+ F. de Almeida, S. de Menezes, A. da Rocha, “Using ontologies
to improve knowledge integration in software ebgineering
environments”, Proc. 2

nd
 World Multiconference on Systemics,

Cybernetics and informatics, 1998.
[53] N. Nurmuliani, D. Zowghi and S. P. Williams, “Requirements
Volatility and Its Impact on Change Effort: Evidence-based
Research in Software Development Projects”, Australian
Workshop on Requirements Engineering, Adelaide, 2006.
[54]G. Rugg, P. McGeorge, “The sorting techniques: a tutorial
paper on card sorts, picture sorts and item sorts”, Expert Systems,
22(3), 2005.
*55+ C. Paul, “A modified Delphi approach to a new card sorting
methodology”, Journal of Usability Studies, 4(1), 2008.

197

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Appendix

ID Development Trigger Construct Source Removed Applicable to
Maintenance

45 Use of Prototype [27] , [14] Technique, covered by
21, 44

68 New Stakeholder (role) [27] Y

96 Customer Company Reorganization [28], [16], [14], [27], [29] Y

51 New solution Tools/technology [27], [28], [25], [14], [8] Y

54 Change to government policy or regulation [28], [14],[8] Y

20 Participatory Learning [14], Y

28 Local Customization {14] New Stakeholder

50 Customer migration to new solution [14] Type of requirement

39 Customer need change [24], [25], [16], [29], [29] Too woolly, covered by
47, 96, 54, 82, 21, 45,
42, 90

44 Developers Increased Understanding of problem [25], [16],[17] Y

56 Scope Reduction [9][16] By-product of 88, 66

34 Changes to packaging/licensing/branding [9] Covered by 61

65 Solution Elegance (Design Improvement) [25], [9] Y

67 Resolution of mis-communication [9]

49 Testability [9] Type of Requirement

82 Business Process change (continuous improvement) [15], [8] Y

42 Response to competitor [25], [8] Y

16 Functionality Enhancement [16] Covered by 78, 65

11 Defect Fixing [16] Doesn’t result in
requirement change

69 Redundant Functionality [16] Covered by 66, 44, 20,
90, 67, 23, 51, 65, 21

8 Missing Requirement Identified [16] Not a
reason/cause/source

86 Clarification of Requirement [16] Covered by 67, 23

21 Increased customer understanding [28], [15], [8], [17]

72 New Class of User [28] Result of other changes,
covered by 82, 68

74 New Usage Condition [28] Covered by 78, 85

15 New way of doing things [28] Covered by 82, 96

77 Correction to Requirements specification [28] Covered by 23, 67

78 New Opportunity [28] Y

1 Change in the use of the information [17] Covered by 82

88 Cost or schedule overrun [29], [28]

49 Testability [16] Type of requirement

85 Change to Customer’s hardware/software [9] Y

58 System Usage (after installation, not prototype) [27], [15], [14] Out of scope of project
development

90 Changes to Market Demands [8], [14], [16], [29] Y

62 Resolution of Conflicting Requirement [16] Covered by 83

55 New Functional Feature [28] New Requirement

3 Improved Quality Feature [28] Change to requirement
for another reason

14 Result of Change in political climate
(needs of particular group emphasized)

[24], [8], [25] Y

93 Change to customer’s environment [15] Covered by 96, 68, 85,
47, 66

18 Changes in Underlying technologies [25] Covered by 85, 51

83 Incorrect Requirement Identified [16] Y

23 Resolution of Misunderstanding [25] Y

92 First or re-engagement of user representative Added

66 Change to business Case (Return on Investment, Total cost of
Ownership

Added Y

61 Customer Organization Strategic Change(New Marketing/Sales
direction, change to organization goals)

Added Y

12 Change of Stakeholder Representative Added Y

4 Understanding Technical Solution Added

198

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Development Uncertainty Construct Source(s) Removed Applicable to Maintenance

31 Analyst skill or experience [4], [24], [30], [8]

95 Development team knowledge of business area [24], [31]

79 Quality of Analysis techniques employed
(workshops, interviews, modeling etc)

[4], [8], [15], [29], [28]

59 Project Size [24], [17], [15] Y

30 Novelty of product
(business novelty)

[31], [8] Y

41 Logical complexity of problem [17], [31], [24]

19 Availability of communication with customer [17], [8] Y – added word ‘stakeholder’

22 Involved customer’s
knowledge/understanding/clarity of requirements

[24], [32], [31], [8]

64 Quality of Communication between analyst and
customer

[24], [17], [32], [8]

33 Involved customers experience with working
alongside IT to produce solutions

[31]

9 Diverse User Community [31], [15], [8] Summary of 29,
27, 40, 41, 2, 60

32 Incompatibility between requirements [28] Y

24 Lack of well understood model of utilizing system [17] unclear

55 Lack of well-understood model of the utilizing
system

[17] unclear

6 Lack of structure for activity or decision being
supported

[17] Covered by 22

52 Stability of Customers Business Environment [24] Y

76 COTS usage [28], [27] Y

2 All stakeholders identified [27], [33] Y

29 All Stakeholders involved [24], [33], [27], [8] Y

40 Clarity/unity of shared product vision [30], [14], [33], [8] Y

27 Synergy of stakeholder agenda [28], [31], [14] Y

43 Unknown Customer Project Dependencies [33] Y

46 Market Stability [25], [32], [14] Y

13 Differing Customer Needs [25] Y

38 Type of user doing specification
(incorrect user involved)

 [8][30] [17]

89 Change in the utilizing system [17] unclear

80 Low Staff morale [4]

10 Large number of users [17] Not a risk if
correct user
involved - 38

Y

87 Level of participation of users in specification [17] Covered by 19,
64

81 Lack of user experience of utilizing system [17] Covered by 22

63 Degree of Change to customers workflow [31], [8] Y

48 Quality of Requirements specification Added

71 Technical Uncertainty of Solution Added

84 Technical Complexity of Solution Added

53 Quality of Development team Communication Added Y – removed word ‘development’

73 Age of Requirements(elapsed time since
completion of requirements documentation)

Added

60 Insufficient Sample of User Representatives Added

35 Development team (PM and analyst) stability Added

199

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Maintenance Trigger Construct Source Removed Equivalent Development Construct

161 Use Of Case Tools [34] Technique

141 Maintenance activities [34] technique

146 Changes to deployment Environment [36]

153 New Opportunity [36], [38] , [40] Covered by 137

128 Domain changes due to system Use [36], [38]

125 Evolution of surrounding environment [36] Unclear

113 Deferred Requirements during development [37]

109 System Usage [38] , [39] , [14] Activity

142 Changing Customer Needs [38] Unclear Variation of development constructs

104 Changing Technology (for solution) [38] , [40], [42] New Tools/Technology

116 Increased customer understanding [39] Increased Customer Understanding

151 New technological Methods [39] Covered by 104

112 New Tools [39] Covered by 104

119 Organisation Changes [39] Company re-organisation

138 Change to Operational Domain [40] Covered by
146,104,151

132 Increased User Sophistication [40] Covered by 116

136 Response to competition [40] Response to Competitor

165 Ambition [40] Covered by 153,
137

162 Business Process Improvement [40] Business Process Change

101 Migration to other technology Environments [14] Covered by 146

144 Function added, replaced, deleted [42] Not a cause

103 Adapt to new technological environment [42] Covered by 146

123 Alter system performance [42] Design improvement/.solution elegance or
response to competitor/new opportunity

147 Alter Maintainability [42] Design Improvement/solution elegance

137 Response to Gap in Market Added Response to gap in market (added)

ID Maintenance Uncertainty Construct Source Removed Equivalent Development
Construct

166 Business Size [34] Represented by 157,163

121 Maintenance team Instability [34] Not a cause of req change

135 System Complexity [34] Increase defects but not req
change.
Represented by 157, 163

143 In-house software [34] Increase change capability
but not cause

158 Maintenance Team Knowledge [35] Not causing req change

117 Cohesive Architecture [35] Effects defects but not req
change

148 Presence of Competitor [36] Presence of Competitor (added)

118 Market Environment [36] Market Stability

154 Semantic Relativism [37] Semantic Relativism (added)

115 System Age [37]

102 Period [37] Unknown

167 Economic Climate [38] Effects ability for change but
not cause

164 COTS usage Added COTS Usage

157 No of Interfaces Added Project Size

139 Diversity of User Needs Added Differing Customer Needs

156 Stakeholder Agreement Added Synergy of Stakeholder agenda

163 No of Functions Added Project Size

221 Quality Control during development Added Quality Control during
development (added)

102 Function Usage Added Function Usage (added)

126 No. Of Users Added No Of Users (added)

200

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

