
Automatic Identification of Cohesive Structures within Modularity Reengineering

Anja Bog Oleksandr Panchenko Kai Spichale Alexander Zeier
Hasso Plattner Institute for Software Systems Engineering

University of Potsdam
August-Bebel-Str. 88, 14482 Potsdam, Germany

Email: {anja.bog, panchenko, kai.spichale, zeier}@hpi.uni-potsdam.de

Abstract—The quality of software systems depends heavily
on the quality of their structure, which affects maintainability
and readability. To improve the quality of structure, a system
can be restructured. This paper describes a restructuring pro-
cess, which uses a combination of strongly connected compo-
nent analysis, dominance analysis, and intra-modular similarity
clustering to identify and preserve structures that have been
thoughtfully placed together, but would be separated by pure
metric-based or similarity-based techniques. The use of the
proposed method allows a significant reduction of the number
of components that should be moved. Therefore, the number
of false movements is alleviated. The proposed approach was
implemented in a prototype and illustrated by statistics and
examples from 18 open source Java projects. A coherence
metric is introduced to further improve restructuring results.

Keywords-Source code organization, Restructuring, reverse
engineering, and reengineering, Metrics

I. INTRODUCTION

Each time that a software element (e.g., method, class,
package) is added, the developer has to decide where this
element has to be placed. It is likely that the developer
chooses a suboptimal position because of the limited abil-
ity of humans to cope with the increasing complexity of
software systems. Besides this, any source code change
could introduce new dependencies among software elements,
which might adversely affect the system structure. Depen-
dencies could also vanish, which allows creating simplified
configurations. This paper is an extended version of our
previous work [1], integrating the proposed pre-processing
techniques into the entire process of restructuring and adding
discussions about further techniques to enhance the results,
i.e., cohesion.

In this paper we present an approach for generating
restructuring advice to improve the physical structure [2] of
software systems. Restructuring advice comprises moving
misplaced software elements, whereas dependencies among
software elements are kept unchanged. Thus, restructuring
advice leads to another system configuration.

The proposed approach includes a preprocessing phase
and a restructuring phase. In the restructuring phase, several
alternative configurations of the original system are created
and compared to each other based on coupling, cohesion,
and coherence. However, not all configurations that lead to
better values of these metrics are acceptable. Not heeding

design decisions of the original system and only improving
metric values, may pull apart cohesive structures consist-
ing of elements that were thoughtfully placed together.
Therefore, given configurations must not be ignored as they
capture well-considered design decisions. The preprocessing
phase identifies such structures that should be preserved dur-
ing restructuring and helps to distinguish between intended
and unaware decisions.

Restructuring advice is created as the result of the prepro-
cessing and restructuring phase. In the following steps this
advice is validated by developers and eligible restructuring
advice can be implemented. For the preprocessing phase
we propose techniques that are applied to identify intended
cohesive structures and to mark them for preservation during
restructuring. Since the techniques used in this paper are
based purely on structural analysis of the software system,
semantical meanings of the elements are not taken into
account and are out of scope for this paper. The results of
the preprocessing phase are further enhanced by applying
the cohesion metric in the restructuring phase in order to
choose an optimal system configuration.

The following section introduces the graph structure used
as the basis for the restructuring algorithms. Section III
relates the approach to existing research. An overview of
the proposed reengineering process is given in Section
IV. The subsequent section focuses on the preprocessing
phase of the reengineering process detailing the steps and
algorithms, which are applied in order to create restructuring
advice. Section VI discusses a further possibility to improve
the restructuring results by introducing coherence metric.
Afterwards, a short overview of our implementation to create
restructuring advice is given in Section VII. Section VIII
concludes the paper and gives an overview of possible
directions for future work.

II. MODULE DEPENDENCY GRAPH

The proposed restructuring approach is independent of
any programming language. To accomplish this objective,
the described techniques are based on the Module Depen-
dency Graph (MDG) [3] that has three types of elements:
components, modules, and dependencies. A component rep-
resents an atomic software element whose internal struc-
ture is not considered at this level of granularity. Calls

136

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

between components are represented by dependencies. Each
pair of distinct components can be linked by at most one
dependency. The components and their dependencies form
a directed graph. Modules are disjoint sets of components.
Figure 1 shows the elements of an MDG. Notice that the
inter-modular dependency between b and c implies a module
dependency between M1 and M2.

Component

Module

Inter-modular dependencyIntra-modular dependency

a b cM1 M2

Figure 1. MDG Elements

A graph is defined as a pair (V,E), where V is the
vertex set and E is the edge set. However, the graph
described above must be extended to satisfy the need to
reflect modularization properties. Therefore a partition is
defined. A partition of a set X is a set of nonempty subsets
of X such that every element x in X is in exactly one of
these subsets. Thus, an MDG is a triple (V,E,M), where
(V,E) is a directed graph and M represents modules and is
a partition of V .

The MDG can be applied at different levels of granularity.
Java applications can be modeled as follows: Java classes
are represented by components and packages by modules.
Experiments have also been executed on a larger system
developed with the SAP [4] component model that divides
software projects into development components (DCs) to
organize the software in comprehensible and reusable units.
Further, a software component (SC) combines DCs to larger
units for delivery and deployment. The DCs are modeled by
components and SCs by modules.

Traditionally, various metrics have been used to assess
the quality of the MDG. Most popular metrics for coupling
and cohesion are used as optimization criteria for metric-
based refactoring. Coupling of a module m [5, p. 520] is
the degree of dependence between m and other modules
of the MDG and is represented by the number of afferent
and efferent dependencies. Cohesion of the module m [5, p.
524] is the measure of the strength of structural connections
of components inside m and is calculated as the number
of actual dependencies divided by the number of maximal
possible dependencies within a module. The module, that
has only one component, has a cohesion value equal to one.

III. RELATED WORK

Several techniques for automating the decomposition of
software systems into subsystems and improving their struc-
ture exist. In this section, categories of techniques, concrete
techniques, and their fields of application are presented.
Tool-driven reengineering techniques are aimed at architec-
ture reconstruction and software restructuring. Architecture
reconstruction captures component recovery and program

understanding of single systems and product lines [6]. Soft-
ware restructuring aims at improving the physical design of
existing code [7]. Due to the high number of software ele-
ments and relations among them, maintaining and improving
the structural quality must be supported and automated by
tools. As we are interested in improving the structure of
software systems, we are focusing on software restructur-
ing techniques in the following. Design structure matrices
[8] and reflexion models [2] provide means to model the
structure of software systems and thereby gain insights
to support their maintenance and evolution. Furthermore,
(semi-)automated techniques exist, that extract abstractions
from software artifacts to make software systems more un-
derstandable, e.g., Storey et al. [9] developed the interactive,
visual tool Rigi that helps understanding software systems.

Beyond modeling the structure of a software system,
subsystem decomposition techniques help to provide pro-
posals for improving its structure. Respective techniques are
categorized by their underlying technologies into cluster-
ing techniques, graph-based techniques, and multi-approach
techniques [10]. Clustering techniques utilize similarity mea-
sures for components and modules to group the most similar
ones. Graph-based techniques model relevant properties of
subsystems as graph properties and optimize them. Multi-
approach techniques use a mixture of techniques from the
aforementioned categories.

Concerning clustering techniques, Hutchens and Basili [7]
proposed an algorithm that clusters procedures by measuring
the interaction between pairs of procedures. Schwanke’s
tool Arch [11] clusters similar software elements based on
their common and distinct references. Girard, Koschke, and
Schied [12] extended Schwanke’s similarity metric to cluster
functions, types, and variables into atomic elements.

K-cut modularization proposed by Jermaine [13] is an ex-
ample for a graph-based technique. This method decomposes
a software system into modules in such a way as to attempt
the minimization of inter-module connections. As a result,
modules with high cohesion and low coupling are identified.
The problem of software decomposition is formulated as the
k-cut problem in graph theory. The computation of the k-
cut of a graph is an NP-hard problem, however, efficient
approximations exist [14]. K-cut modularization is most
appropriate for monolithic procedural systems.

Regarding multi-approach techniques, Mitchell and Man-
coridis [15] developed Bunch, a tool that identifies subsys-
tems based on maximizing cluster cohesion, while minimiz-
ing inter-cluster coupling. Tzerpos and Holt [16] developed
the algorithm ACDC that recognizes subsystem patterns and
places software elements based on lowering coupling.

However, none of the mentioned techniques was ex-
plicitly developed for providing restructuring advice for
misplaced components. There is no technique that detects
subsystem patterns to preserve existing structures. ACDC
detects subsystem patterns to create a skeleton, but the

137

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

System Model

Extraction Tool

Restructuring

Toolkit

(two-phase

restructuring

approach)

1

2

3

6

7

8

5

read files

extract

dependencies,

modules,

components

read create

restructuring

advice

read

manual

validation,

selection of

eligible

restructuring

advice

adapt

restructuring

rules

repeat

restructuring

implement selected

restructuring proposals

4

Artifacts

System

Expert

MDG MDG

Rules

9

Figure 2. Reengineering Process

identified subsystems are not restricted to the given configu-
ration. Furthermore, a subsystem decomposition technique
is needed that also resolves cyclic module dependencies.
This need is based on the Acyclic Dependency Principle,
a design principle formulated by Robert C. Martin [17] that
indicates that dependencies between software elements of
the granularity of release must not form cycles. Applied to
the MDG, this design principle stipulates that any cyclic
dependencies between modules have to be resolved. Our
empirical investigation shows that, although this design
principle is widely accepted, the most systems lack of proper
structure.

Techniques that are merely based on maximizing cluster
cohesion and minimizing inter-cluster coupling cannot create
acceptable results because the proposed configuration often
requires too many component moves. High cohesion and
low coupling are commonly agreed to be attributes of good
design. Although, a configuration with optimal metric values
does not inevitably imply an optimal design. Furthermore,
clustering techniques based solely on similarity cannot rea-
sonably place all software elements because of too low
similarity values.

In the following section we will introduce our reengineer-
ing process that detects and preserves constructs that have
been consciously placed together.

IV. REENGINEERING PROCESS

Figure 2 shows the steps and their sequence within a sim-
plified version of the entire reengineering process. (1) The
process starts with analyzing the physical artifacts (e.g.,
source code, deployment descriptors, configuration files) of
a software system. (2) Tools automatically extract data about
the software elements and the dependencies among them to
create a system model in the form of an MDG. (3) The

Figure 3. The Two-phase Restructuring Approach

created MDG is the input data for the used restructuring
techniques. (4) Rules can be defined to limit possible restruc-
turing proposals that contradict intended design decisions.
Such rules comprise modification suppressions for software
elements. By this means a component can be bound to a
module in such a way that it cannot be moved into another
module. (5) Finally, graph theory and clustering techniques
are applied to propose restructuring advice. (6) Not all
proposals might be suitable to the intended design. Therefore
the proposals must be validated and selected by a system
expert. (7) If the restructuring proposals are not satisfying,
the rules can be adapted. (8) After changing the rules, the
analysis can be repeated. (9) The process is finished when
the approved restructuring proposals are implemented.

The detailed activities of the two-phase restructuring
approach step that is proposed in this paper are shown in
Figure 3. The restructuring approach comprises a number
of individual graph-based techniques as well as clustering
techniques that are applied one after another to the MDG.
The selection and order of these techniques depend on the
intended purpose, which is in our case restructuring of an
existing software system in order to improve the overall
structure.

(1) In the first step, all cyclic dependencies on compo-
nent level are detected in the form of strongly connected
components (SCCs). One separate or several overlapping de-
pendency cycles constitute a strongly connected component.
Cyclic dependencies are useful information for restructuring
insofar as placing all components of an SCC into the

138

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

same module reduces the inter-modular coupling. (2) In the
second step, the detected component SCCs are collapsed
and placed into appropriate modules. Collapsing SCCs pulls
together all interconnected components. By this means the
dependency structure becomes acyclic at component level.
Further, cyclic module dependencies are resolved if the inter-
connected components were originally in different modules.
(3) Next, cyclic module dependencies are detected. Even if
the dependency graph is acyclic on component level after
collapsing all SCCs, cyclic module dependencies can exist.
Cyclic dependencies among modules are architectural flaws
that have to be detected and removed. (4) Cyclic module
dependencies are resolved by moving components from one
module to another. (5) For dominance analysis, redundant
edges have to be labeled. (6) Dominance subgraphs can then
be detected and collapsed without introducing new cyclic
dependencies. (7) In the last step of the preprocessing phase,
similar components are unified by clustering them within the
same module.

(8) In the second phase, component moves between differ-
ent modules are proposed by heuristic restructuring in order
to improve metric values. (9) At the end a metric report
is created that compares the original configuration with the
proposed configuration based on metrics.

(10) Detection of dominance mavericks shows misplaced
components based on dominance analysis. The results of
dominance mavericks detection are not integrated into the
final restructuring advice as the number of false positives
is high according to our experiments. Nevertheless, these
results should be reviewed by an expert of the analyzed
system and integrated manually if applicable. (11) Similarity
mavericks detection analyzes components that are misplaced
based on similarity. Results are not part of the final restruc-
turing advice, either, but should be reviewed by an expert
as they might reveal further structural improvement.

In the following section, more detail about the steps within
the preprocessing phase is provided.

V. PREPROCESSING PHASE

The purpose of the preprocessing phase is to (1) resolve
cyclic module dependencies and to (2) identify cohesive
structures with dominance analysis and intra-modular simi-
larity clustering.

Removing cyclic dependencies in a software system in-
creases maintainability and extensibility as will be explained
in this section. Additionally, acyclic graphs are a prerequisite
for the dominance analysis in the following step.

The goal of identifying cohesive structures is to dis-
tinguish between thoughtfully intended and unaware deci-
sions to position components in order to improve the final
reengineering results. Dominance analysis detects connected
components, and similarity clustering identifies elements
with similar structure.

Table I
ANALYZED PROJECTS

Name Source

Apache Ant 1.7.1 http://ant.apache.org/
CruiseControl 2.7.3 http://cruisecontrol.sourceforge.net/
Eclipse Ganymede SR1 http://www.eclipse.org/ganymede/
Apache Geronimo 2.1.2 http://geronimo.apache.org/
Hibernate 3.3.0 http://www.hibernate.org/
JBoss 4.2.3 jdk6 http://www.jboss.org/
JDepend 2.9 http://clarkware.com/software/

JDepend.html
J2SE 5.0 JDK 1.5.0 09 http://java.sun.com/javase/
JRuby 1.1.4 http://jruby.codehaus.org/
JUnit 4.5 http://www.junit.org/
Apache Logging Services
for Java 1.2.15 http://logging.apache.org/
Apache Maven 2.0.9 http://maven.apache.org/
NetBeans 6.1 (Base IDE) http://www.netbeans.org/
PicoContainer 2.5.1 http://www.picocontainer.org/
Saxon 9.1.0.1 http://saxon.sourceforge.net/
Spring Framework 2.5.5 http://www.springsource.org/
Apache Tomcat 6.0.18 http://tomcat.apache.org/
Xalan-j 2.7.1 http://xml.apache.org/xalan-j/

The examples given in this paper are selected after per-
forming an analysis of 18 open source Java projects. The
usefulness of the approach is exemplified by statistics. The
list of the selected projects is given in Table I.

To automate the analysis, a tool has been implemented.
The tool uses Classycle[18] to extract runtime dependencies
among Java classes. JAR files are analyzed by Classycle
and, as a result, the MDG is created in XML format.
The algorithms used in the proposed approach have been
implemented to work with the MDG in this format.

A. Resolving Cyclic Module Dependencies

Cyclic dependencies form SCCs. An SCC of a digraph G
is a maximal strongly connected subdigraph of G. A digraph
is strongly connected if there is a directed walk from each
vertex to each other vertex [19].

The components of an SCC can be part of several mod-
ules. If this is the case, cyclic module dependencies are
created. To resolve these cyclic module dependencies, the
SCCs are collapsed. Possible locations of a collapsed SCC
are the modules that contain at least one component that is
part of the SCC. The module that implies the lowest coupling
is chosen.

Even if the dependency graph is acyclic on component
level after collapsing all SCCs, cyclic module dependencies
can exist. Alternative modifications to remove these pseudo-
cyclic dependencies are component moving, module split-
ting, and module merging.

As the name states, in component moving a component is
moved from one module to another to resolve the pseudo-
cycle. Component moving may result in an empty module,
which has to be deleted. In module splitting a selected
module is split into two separate modules in such a way

139

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Pseudo-cyclic Dependencies on Component Level

that the pseudo-cyclic dependencies are removed. However,
not every module that is part of the cycle can be split so
that the intended effect occurs. Module splitting can be
interpreted as a special case of component moving, as it
requires the movement of components into a newly created
or existing module. Consequently, the conditions under
which this strategy is applied are the same as in component
moving. Module merging is the reverse modification of
module splitting. Modules are unified with the objective
of turning their undesired inter-modular dependencies into
intra-modular dependencies. Module merging is not selec-
tive, i.e., modules are merged in their entirety. Therefore,
component moving and module splitting are far more fine-
grained than merging.

To determine which components are part of a cycle on
module level that is not cyclic on component level, the
order of the modules has to be determined and which
components are the cause of it. Each module in a cycle has
the role of a successor and predecessor to another module.
Therefore, for each module pair (p, s) two component sets
called predecessor subset P and successor subset S are
defined, where p is the predecessor and s the successor.
“→” denotes dependencies between components. The sets
are defined as follows:

P (p, s) := {v | v ∈ p ∧ ∃t ∈ s :
∃{r1, ..., rn} ⊆ p : v → r1 → ...→ rn → t}

S(p, s) := {v | v ∈ s ∧ ∃r ∈ p :
∃{t1, ..., tn} ⊆ s : r → t1 → ...→ tn → v}

The predecessor subset contains all components v ∈ p
that directly or indirectly depend on a component t ∈ s not
considering paths including other modules. Similarily, the
successor subset is the subset of s containing components v
that are directly or indirectly referenced by the components
in p.

The algorithm for resolving pseudo-cyclic dependencies
is based on the fact that the inter-component dependencies
are acyclic. Consequently, there exists at least on non-empty
set of components that can be moved to resolve the cyclic
dependencies on module level.

Figure 4 shows an example containing pseudo-cyclic
dependencies on module level. To determine which com-
ponent subsets can be moved to resolve these dependencies,
predecessor subset and successor subset are analyzed for

each of the modules, see Table II.
If the predecessor subset of a module overlaps with

its successor subset, then neither the predecessor nor the
successor subset can be moved to break the pseudo-cyclic
dependencies. In the example, only C1 and C5 could ef-
fectively be moved. Hence, we can identify the following
options:

• Moving {C1}: The component subset {C1} is the
predecessor subset of M1 with regard to M2. If {C1}
is moved to M2, the dependencies on module level
become acyclic.

• Moving {C5}: The successor subset of M1 with regard
to M3 is {C5}. Moving this subset to M3 is another
valid solution.

• Splitting M1: One of the identified disjoint subsets can
be moved into a separate module.

If multiple solutions exist, the solution is chosen that
requires the smallest number of component moves and
creates the configuration with the lowest coupling. Typically,
software systems contain a large number of cycles [20].
If several cycles overlap, the algorithm has to be applied
iteratively.

According to Fowler [21], cycles in dependency structures
should be avoided as they provoke situations, where every
change of one module breeds other changes that come
back to the original module entering a vicious circle of
change propagation. Systems become tightly coupled by
cyclic dependencies and fiercely resist decomposition.

Drawbacks of cyclic dependencies are: (1) higher com-
plexity, since modules cannot be understood independently.
The goal of modularization is to divide a complex system
into simpler modules that can be independently developed,
maintained, and understood [22], whereas tight coupling,
caused by cyclic dependencies diminishes the ability to
understand modules in isolation [23, p. 85]; (2) less flex-
ibility and extensibility is a result of cyclic dependencies as
the program is harder to understand because of increased
complexity, and coupled components can be affected by
changes. Cycles make it harder to accurately assess and
manage the impact of changes to the system.

Cyclic dependency analysis is an important aspect of the
proposed approach because 31.5% of the components and
53.7% of the modules in the analyzed projects are involved
in cyclic dependencies. Melton and Tempero’s empirical
study [20] confirms the high amount of cyclic dependencies
between classes and packages, which was also discovered
in our analysis: 52% of the component level SCCs remain
inside a module. Consequently 48% of the component level
SCCs are distributed over more than one module and cause
cyclic dependencies among modules.

A large number of cyclic dependencies requires many
component movements to resolve cycles, which results in
complex refactorings at the beginning of the process. In

140

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Module Predecessor subset Successor subset Intersection of subsets

M1 P (M1, M2) = {C1} S(M3, M1) = {C5} Ø
M2 P (M2, M3) = {C2} S(M1, M2) = {C2} {C2}
M3 P (M3, M1) = {C3, C4} S(M2, M3) = {C3, C4} {C3, C4}

Table II. Predecessor subset, succes-
sor subset and subset intersections of
the example given in Figure 4

this case, human intervention is needed to continue with
the reengineering process.

B. Dominance Analysis

Components often reference underlying components that
provide specific functions, which cannot be understood
or reused individually. If an underlying component is an
essential part of the referencing component, then referenced
and referencing components must not be separated by any
restructuring attempt.

Figure 5 (A) shows a client using a facade, a unified
interface hiding a complex subsystem. The facade and the
covered components must be reckoned as one unit to prevent
dispersing this coherent structure.

Figure 5 (B) shows two clients depending on some
utility components. When Client2 was developed, its
common utility functions were extracted to the component
CommonUtil. Client1 can use CommonUtil with-
out referencing Client2. The component SpecialUtil
emerged when the developers of Client1 decided to
encapsulate some functions. But no other component de-
pends on SpecialUtil. Client1 and SpecialUtil
belong together and must not be separated. Nevertheless, if
SpecialUtil was developed as a reusable component,
a rule could be defined to enable the separation of both
components.

Figure 5. Examples of Dominance Subgraphs

Dominance analysis is the process of identifying intra-
modular subgraphs that can be collapsed without introducing
cyclic dependencies. The first step, is collapsing all SCCs
as mentioned above. This step is common to other proposed
approaches [24], [25], because the algorithms for transitive
closure used for dominance analysis require acyclic graphs
as input. Next, all redundant dependencies are removed. An
edge e part of a directed graph G is said to be redundant
iff e can be removed without changing the transitive closure
of G [26]. Then, the algorithm goes through all vertices v

and examines whether v qualifies as dominated vertex. The
vertex v is said to be dominated iff there exists exactly one
vertex d that is linked to v by an edge (d, v). Dominator
vertex and dominated vertex form a dominance pair if they
are part of the same module. One separate or several overlap-
ping dominance pairs constitute a dominance subgraph. The
dominance subgraph detection is repeated until no further
dominance pairs can be detected.

Figure 6 shows an example of dominance analysis. The
SCC {e, f} detected in part (A) is collapsed in part (B).
The dotted edges in part (B) denote redundant dependencies.
In part (C) the redundant dependencies are filtered and
three dominance pairs are found that form two collapsed
dominance subgraphs in part (D).

Figure 6. Steps of Dominance Analysis

Only components within the same module should be
united, otherwise too many components would be pulled
together. Since dominance subgraphs are not spread over
multiple modules, subsequent restructuring attempts must
either move complete subgraphs or keep them unchanged
in their modules.

Other proposed dominance analyses [16], [24] are re-
stricted to rooted (sub-)trees and unsuitable to detect nested
dominance subgraphs due to redundant edges.

During preprocessing 32.1% of the analyzed classes
could be assigned to dominance subgraphs. There are 1.82
dominance subgraphs per package. Based on a manual
review, the identified dominance subgraphs are accurate
and expedient without exception. Figure 7 shows an intra-
modular dominance subgraph detected in the J2SE JDK. The
Java classes Timer, TimerThread, TaskQueue, and
TimerTask, which are part of the java.util package,
form a dominance subgraph. When the system is restructured
these classes should be kept together because Timer and

141

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TimerTask are always referenced together by classes posi-
tioned in other packages. TimerThread and TaskQueue
are only used by Timer, and therefore they should not be
separated from Timer.

Timer

TimerThread

TaskQueue

TimerTask

java.util

Timer

javax.management.timer

DGCAckHandler

sun.rmi.transport

Redundant

Dependency

Figure 7. Detected Dominance Subgraph

C. Intra-modular Similarity Clustering

Structural similarity clustering allows comparing com-
ponents based on afferent and efferent dependencies. Two
patterns can be distinguished: support library pattern and
facade pattern. Figure 8 (A) shows the support library
pattern. The gray component is a support library that is used
frequently. Figure 8 (B) shows the facade pattern. The gray
component is the facade depending on a number of other
components. In both cases, the white components resemble
one another structurally although the dependencies of the
support library and facade may be irrelevant for positioning.
Therefore, it can be useful to remove these dependencies
from consideration.

Clustering algorithms [27] group similar entities together.
In order to quantify the similarity of entities a similarity
measure is necessary. Schwanke [11] proposes a similarity
measure to compare two procedures. This measure is applied
to the MDG to compare components. By this means clusters
of similar components that are part of the same module can
be identified. These clusters are cohesive structures that are
sustained during restructuring.

Figure 9 shows the similar components b and c that
would be separated by metric-based restructuring techniques
without similarity clustering. Part (A) shows the initial
MDG. The similarity cluster {b, c} is marked by a shaded
oval. Without this cluster, b an c would be separated to
improve metric values as shown in part (B). The metric
values for the original configuration are: Coupling(M1 and
M3) = 2, Coupling(M2) = 4, Cohesion(M1 and M3) = 1,
Cohesion(M2) = 0. The alternative configuration created by
a pure metric-based approach would have: Coupling(M1

Figure 8. Similarity Clustering Motivating Example

Figure 9. Intra-modular Similarity Clustering

and M3) = 2, Cohesion(M1 and M3) = 0.5. Part (C)
shows an alternative configuration with equal metric values.
Therefore, using structural clusters prevents pulling apart
similar components.

The similarity measure is based on features that are
derived from the afferent and efferent dependencies of the
components. Let a be a component that depends on the
component b, then a has the feature “is-predecessor-of-b”
and b has the feature “is-successor-of-a”. Important features
occur seldom, while common features emerge frequently.
For example, the dependencies to a logging component are
of little importance because they occur frequently throughout
the system. Schwanke proposes to use the Shannon infor-
mation content [28] from information theory as weighting
factor for features. The formula for the weight of a feature
used in this project is:

weight = −1 ∗ log2
#feature references

#components− 1

The components are clustered as follows: first an undi-
rected graph is created. Each component is represented
by a distinct vertex. At the beginning the graph has no
edges. Then pairs of similar vertices are connected if the
components they represent are part of the same module
and if the similarity value reaches the similarity threshold,
which has been detected in experiments as 0.8. At the
end, the connected components of the graph are detected.
Each connected component represents a cluster of similar
components.

The collapsed dominance subgraphs and SCCs can affect
the similarity of components. Therefore, similarity must be
measured based on graphs without collapsed subgraphs.

The experiments show that only 61.3% of the classes are
in the same package as their most similar peer. Therefore,
restructuring a system by means of clustering the most
similar components causes a high number of component
moves and is therefore not acceptable. Seen from a different
point of view, the positioning of 38.7% of the classes might
be justified by other arguments, which are not detectable by
similarity clustering.

Similarity clustering is a useful tool for detecting struc-
tures that should be maintained during restructuring. 12.3%
of the analyzed classes could be assigned to intra-modular

142

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

similarity clusters using a high similarity threshold to limit
the number of false-positive findings.

VI. RESTRUCTURING PHASE

Although the main focus of this paper is preserving
cohesive structures during the preprocessing phase, the ac-
curacy of the restructuring phase can be improved as well.
Besides using well known and widely accepted coupling
and cohesion metrics, this paper introduces a third metric
– coherence – as a further optimization criterion.

A. Coherence Metric Definition

Cohesion refers to the relatedness of a module’s internal
structure. We argue that an external viewpoint should also
be used to analyze how the elements of a module contribute
to a common purpose or objective. Therefore, we propose
the metric coherence, which characterizes the functional
cohesion of a module from an external viewpoint.

For a module m the function Clients defines the compo-
nents that are not part of m and that depend on components
in m.

Clients(m) := {c|c ∈ V ∧ c /∈ m ∧ ∃a ∈ m : (c, a) ∈ E}

Let m be a module and c a component not in m. The
function ref specifies the components in m, which are used
by c.

ref(c, m) := {a|a ∈ m ∧ (c, a) ∈ E}

The Jaccard Coeffcient [29, ch. 7] is used as a binary simi-
larity measure to compare the usage patterns of the module’s
external clients. Let A and B be sample sets by which two
entities are compared, then the Jaccard Coefficient is

SJaccard :=
|A ∩B|

|A ∩B|+ |A4B|
with the symmetric difference: A4B := (A\B)∪ (B \A).
Coherence for a module m is defined as the sum of Jaccard
Coeffcients applied to the module’s clients:

Coherence(m) :=∑
c |ref(a, m) ∩ ref(b, m)|∑

c |ref(a, m) ∩ ref(b, m)|+
∑

c |ref(a, m)4 ref(b, m)|

with c := {a, b} ⊂ Clients(m), a 6= b. Coherence quanti-
fies the similarity of usage patterns of the module’s external
clients. All clients of module m are pairwise compared using
sets of referenced components in m.

Figure 10 shows three modules with varying coherence.
The modules M1, M2, and M3 are equal, but are used
differently. Module M1 has two clients each referencing to a
different component in M1. By means of the above proposed
formula Coherence(M1) = 0/(0 + 2) = 0. The value
0 corresponds to our intuitive comprehension of coherence
because the clients use disjoint parts of M1. If all elements
of a module would contribute to one and the same purpose

or objective, the clients would depend on component subsets
with high intersection.

Module M2 has three clients. Client1 and Client3
depend on different components. Client2 depends on both
components from m. In this case, coherence has a low value,
but not zero, Coherence(M2) = (1 + 0 + 1)/((1 + 0 + 1) +
(2 + 1 + 1)) = 1/3.

Both clients of M3 have the same usage pattern. In this
case the module provides a coherent set of functions to other
elements in the system. Consequently, coherence has the
highest possible value, Coherence(M3) = 2/(2 + 0) = 1.

A similar idea of using clients of a module for measuring
the strength of its internal connections has been used in the
Lack of Coherence in Clients (LCIC) metric [30]. LCIC
has been used for identifying candidates for refactoring. The
main difference between the coherence metric presented in
this paper and LCIC is that LCIC uses the same approach
as the Lack of Cohesion on Methods (LCOM) metric [31]
while the coherence metric is based on a similarity measure.
We argue that in contrast to the LCIC our metric depend less
on the size of the module.

B. Coherence Metric Properties

This section validates the cohesion metric according to
a property set similar to the set of properties proposed by
Briand et al. [32] that must be satisfied by coupling and
cohesion metrics.

Non-negativity and normalization property requires the
existence of a real number Max such that the coherence
of a module belongs to an interval [0; Max]. The metric
coherence has the range [0; 1].

Zero value property requires coherence to be zero, if the
usage patterns of clients have nothing in common. Coher-
ence is not defined for modules without clients. If a module
has one client, the coherence is 1 per definition. Let us as-
sume a module m has n clients, where n = |Clients(m)| ≥
1. If all clients depend on different components in m, then
|∀a, b ∈ Clients(m), a 6= b : ref(a, m) ∩ ref(b, m) = ∅
and consequently Coherence(m) = 0.

Monotonicity property means that the coherence of a
module is not decreased by adding an inter-modular de-
pendency between a client and a component that is already

Figure 10. Illustration of Coherence Metric

143

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

referenced by one ore more other clients of this module. Let
Γ = (V,E,M) be an MDG, m ∈ M a module, and t ∈ m
a component. Let c1, c2 ∈ Clients(m) be two different
clients of m. (c1, t) /∈ E, (c2, t) ∈ E,E′ := E ∪ {c1, t)},
and Γ′ = (V,E′, M) is a second MDG. This property is
satisfied, if the coherence of m in Γ is not greater than the
coherence of m in Γ′. If in Γ the coherence of m is a/b
with a ≥ 0 and b > 0, then in Γ′ the coherence of m is
(a + x)/b with x ≥ 1 because there is at least one more
common dependency leading to t. Adding a dependency
(c1, t) increases the similarities of the usage patterns of the
clients of m.

Coherent modules property means that the coherence
of a module created by merging two other modules having
different clients is not greater than the maximum coherence
of the two original modules. Let Γ = (V,E, M) be an MDG.
Let m1, m2 ∈ M be two different, non-empty modules,
m1 6= m2, |m1|, |m2| > 0. Further, there is a module
m = m1 ∪m2, m /∈ M . Let M ′ := M ∪ {m} \ {m1, m2}
be a set of modules and Γ′ = (V,E, M ′) an MDG. The
coherence of m1 and m2 is:

Coherence(m1) =
r1

r1 + d1
Coherence(m2) =

r2

r2 + d2

where r1, d1, r2, d2 ∈ N and r1 + d1, r2 + d2 > 0. In order
to validate this property we have to show:

max{Coherence(m1), Coherence(m2)} ≥ Coherence(m)

Let us assume

Coherence(m1) ≥ Coherence(m2)

⇔ r1

r1 + d1
≥ r2

r2 + d2

⇔ r1(r2 + d2) ≥ r2(r1 + d1)

Let x ≥ 1 be the number of usage difference of the
clients that were added when merging m1 and m2. If
Coherence(m1) ≥ Coherence(m2), then it is sufficient
to show that

Coherence(m1) ≥ Coherence(m)

⇔ r1

r1 + d1
≥ r1 + r2

r1 + r2 + d1 + d2 + x

⇔ r2
1 + r1r2 + d1r1 + d2r1 + r1x ≥ r2

1 + r1r2 + d1r1 + d1r2

⇔ r1(r2 + d2) + r1x ≥ r2(r1 + d1)

C. Coherence Metric Values

A manual inspection of the coherence metric val-
ues confirmed its plausibility. For example, the package
org.apache.tools.ant.taskdefs is a conglomer-
ation of different, partially related classes. This package has
no clearly defined function, but containing all Ant tasks.
The coupling is 978, cohesion 0.01, coherence 0.08. Other
packages such as org.apache.tools.tar include a set
of related classes. Its coupling is 8, cohesion is 0.2, and
coherence is 0.62.

The Spearman’s rank correlation coeffcient, p, was used
to measure the pairwise correlation between the module size
and coherence, and between cohesion and coherence. There
is a very significant (p-value � 0.05), medium negative
correlation between size and coherence (p = –0.52). Further,
there is a very significant (p-value � 0.05), medium
positive correlation between cohesion and coherence (p =
0.42).

The distribution of the cohesion and coherence values of
the analyzed Ant projects is provided in Figure 11. The
coherence metric shows a wider spectrum than cohesion. As
a result of this stronger distinction of the projects regarding
their coherence value, we argue, that although both metrics
correlate, coherence can complement coupling and cohesion
as a further optimization criteria.

VII. THE AUTOMATIC RESTRUCTURING TOOLKIT

As a basis for the validation of our proposition, we devel-
oped a framework called “Automatic Restructuring Toolkit”
(ART). This section comprises a short description of ART
and its characteristic implementation aspects.

ART is a framework providing a collection of individual
restructuring techniques, e.g. “detect SCCs” or “resolve
component cycles” as introduced above. Figure 12 gives an
overview of the most important modules within ART. All
artifacts needed to analyze the structure of a software system
are provided as XML documents, which are transferred
into the internal format by the XML Handler and the Data
Loader. The ArtGraph is an MDG that has been created from
source code with the help of external tools, e.g., Classycle
in case of Java code. The core engine of ART contains the
restructuring techniques, which can be combined with each
other via tasks to create restructuring proposals according to
specific restructuring processes such as the process shown
in Figure 3. The output of each task is the input of its
following task. Intermediate results are stored, since they
can be helpful to understand the final results.

The task-based approach allows changing the execution
order of techniques without re-compilations. Therefore, tech-
niques can be added or replaced, and configured with
diverse parameters leaving the entire process of restructuring
flexible. The composition of techniques can be accomplished
through the exposed Java API, or by Ant scripting.

Figure 11. Cohesion and Coherence Metric Values

144

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. ART Architecture Overview

VIII. CONCLUSION AND FUTURE WORK

Instead of radical changes, manageable changes are pro-
posed by the presented approach. Existing cohesive struc-
tures are identified in the preprocessing phase and preserved
during restructuring.

Eighteen Java open source projects have been analyzed
for this work. The analysis shows that each module could be
split on an average into 3.1 modules without introducing new
inter-modular dependencies. 76% of all dependencies are
inter-modular. Consequently, pure metric-based techniques
would propose many component moves and split up those
modules not changing the values for coupling, but improving
the cohesion values.

Since only 61.3% of the components are in the same
module with their most similar peer, pure similarity-based
techniques would also propose comprehensive changes.

The results verify the usefulness of the proposed ap-
proach. During preprocessing 32.1% of the analyzed classes
could be assigned to dominance subgraphs and 12.3% could
be assigned to similarity clusters for preserving these struc-
tures during restructuring, thereby proposing less radical
change.

The approach, however, does not include statements about
the actual usage during runtime. Cases may exist where the
usage patterns implying components to be similar on the
basis of a structural analysis seldom or never occur during
the runtime of the system. Runtime analysis and validating
the above techniques from this point of view is a stream for
future work.

More empirical research is necessary to analyze to what
extent preserving cohesive structures supports or impedes
finding better configurations. Future tests will show whether
size and quality of the intra-modular similarity clusters can
be improved with an extended similarity measure [12].

In future work the restructuring rules will be extended
and combined with logical architectures mapped onto the
physical artifacts of the analyzed systems to reduce the level
of uncertainty of restructuring proposals.

A similar approach can be used during development of
new software to identify positions for a new component
while the rest of the system is kept unchanged.

Another field of future work lies in assessing different
versions of a software system with our proposed approach,
hereby validating the approach and the design decisions
made during the evolution of the system.

Although no empirical evidence about the usefulness of
the coherence metric has been investigated in this paper, we
believe that introducing this additional criteria will allow
preserving more cohesive structures. An experiment to test
this hypothesis is part of future work.

Our results show that pure structural analysis can sig-
nificantly contribute to the improvement of source code
structure. From our point of view including analysis of the
components’ semantic meaning may even lead to further
enhanced restructuring results. The validation of this as-
sumption is subject of future work.

ACKNOWLEDGMENTS

We thank Pieter Bloemendaal and Jakob Spies for their
insightful inputs and suggestions concerning this work.

REFERENCES

[1] K. Spichale, O. Panchenko, A. Bog, and A. Zeier, “Pre-
serving Cohesive Structures for Tool-based Modularity Re-
engineering,” in Proceedings of the Fourth International
Conference on Software Engineering Advances, ICSEA’09,
Porto, Portugal, September 2009.

[2] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software
Reflexion Models: Bridging the Gap between Design and Im-
plementation,” IEEE Transactions on Software Engineering,
vol. 27, no. 4, pp. 364–380, 2001.

[3] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner,
“Bunch: A Clustering Tool for the Recovery and Maintenance
of Software System Structures,” in Proceedings of the IEEE
International Conference on Software Maintenance. Wash-
ington, DC, USA: IEEE Computer Society, 1999, p. 50.

[4] “SAP – Business Managemant Spftware Solutions Applica-
tions and Services,” http://www.sap.com, accessed July 1st,
2010.

[5] H. Zuse, A Framework of Software Measurement.
Hawthorne, NJ, USA: Walter de Gruyter & Co., 1997.

145

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] R. Koschke, “Atomic Architectural Component Recovery for
Understanding and Evolution,” Ph.D. dissertation, University
of Stuttgart, 2000.

[7] D. H. Hutchens and V. R. Basili, “System Structure Anal-
ysis: Clustering with Data Bindings,” IEEE Transactions on
Software Engineering, vol. 11, no. 8, pp. 749–757, 1985.

[8] S. Huynh, Y. Cai, Y. Song, and K. Sullivan, “Automatic
Modularity Conformance Checking,” in Proceedings of the
International Conference on Software Engineering. ACM,
2008, pp. 411–420.

[9] M.-A. D. Storey, K. Wong, H. A. Müller, P. Fong, D. Hooper,
and K. Hopkins, “On Designing an Experiment to Evaluate a
Reverse Engineering Tool,” in Proceedings of the 3rd Working
Conference on Reverse Engineering. IEEE CS Press, 1996,
pp. 31–40.

[10] J.-F. Girard, “ADORE- AR: Software Architecture Recon-
struction with Partitioning and Clustering,” Ph.D. dissertation,
Univ. of Kaiserslautern, CS Dept., 2006.

[11] R. W. Schwanke, “An Intelligent Tool For Re-engineering
Software Modularity,” in Proc. of the Int. Conference on
Software Engineering. IEEE CS Press, 1991, pp. 83–92.

[12] J.-F. Girard, R. Koschke, and G. Schied, “A Metric-Based
Approach to Detect Abstract Data Types and State Encapsu-
lations,” Automated Software Engineering, vol. 6, no. 4, pp.
357–386, 1999.

[13] C. Jermaine, “Computing Program Modularizations Using the
k-cut Method,” in Proceedings of the 6th Working Conference
on Reverse Engineering. Los Alamitos, CA, USA: IEEE CS
Press, 1999, pp. 224–234.

[14] O. Goldschmidt and D. Hochbaum, Polynomial algorithm for
the k-cut problem. Los Alamitos, CA, USA: IEEE Computer
Society, 1988, vol. 0.

[15] B. S. Mitchell and S. Mancoridis, “On the Automatic Modu-
larization of Software Systems Using the Bunch Tool,” IEEE
Transactions on Software Engineering, vol. 32, no. 3, pp.
193–208, 2006.

[16] V. Tzerpos and R. C. Holt, “ACDC: An Algorithm for
Comprehension-Driven Clustering,” in Proceedings of the 7th
Working Conference on Reverse Engeneering. IEEE CS
Press, 2000, pp. 258–267.

[17] R. C. Martin. (2000) Design Principles and Design Patterns.
http://www.objectmentor.com.

[18] “Classycle: Analysing Tools for Java Class and Package
Dependencies,” http://classycle.sourceforge.net, accessed July
1st, 2010.

[19] J. L. Gross and J. Yellen, Handbook of Graph Theory. CRC
Press, 2004.

[20] H. Melton and E. Tempero, “An Empirical Study of Cycles
among Classes in Java,” Empirical Software Engineering,
vol. 12, no. 4, pp. 389–415, 2007.

[21] M. Fowler, “Reducing Coupling,” IEEE Software, vol. 18,
no. 4, pp. 102–104, 2001.

[22] D. L. Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM, vol. 15,
no. 12, pp. 1053–1058, 1972.

[23] E. Yourdon and L. L. Constantine, Structured Design: Fun-
damentals of a discipline of Computer Program and Systems
Design. Raleigh, NC, USA: Prentice-Hall, Inc., 1979.

[24] J.-F. Girard and R. Koschke, “Finding Components in a
Hierarchy of Modules: A Step Towards Architectural Under-
standing,” in Proceedings of the International Conference on
Software Maintenance. IEEE CS Press, 1997, pp. 58–65.

[25] A. Cimitile and G. Visaggio, “Software Salvaging and the
Call Dominance Tree,” Journal of Systems and Software,
vol. 28, no. 2, pp. 117–127, 1995.

[26] A. V. Aho, M. R. Garey, and J. D. Ullman, “The Transitive
Reduction of a Directed Graph,” SIAM Journal, vol. 1, no. 2,
1972.

[27] T. A. Wiggerts, “Using Clustering Algorithms in Legacy Sys-
tems Remodularization,” in Proceedings of the 4th Working
Conference on Reverse Engineering. IEEE CS Press, 1997,
pp. 33–43.

[28] R. G. Gallager, Information Theory and Reliable Communi-
cation. John Wiley & Sons, Inc., 1968.

[29] M. Falk, F. Marohn, and B. Tewes, Foundations of Statis-
tical Analyses and Applications with SAS. Basel, Swiss:
Birkhäuser, 2002.

[30] S. Mäkelä and V. Leppänen, “A Software Metric for Coher-
ence of Class Roles in Java Programs,” in Proceedings of the
5th international symposium on Principles and practice of
programming in Java. New York, NY, USA: ACM, 2007,
pp. 51–60.

[31] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[32] L. C. Briand, S. Morasca, and V. R. Basili, “Property-Based
Software Engineering Measurement,” IEEE Transactions on
Software Engineering, vol. 22, no. 1, pp. 68–86, 1996.

146

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

