International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

A Model and an Implementation Approach for Event-Driven Service Orientation

Olga Levina, Vladimir Stantchev

SOA and Public Services Research Group
Berlin Institute of Technology
10578 Berlin, Germany
Email: olga.levina|vladimir.stantchev @tu-berlin.de

Abstract—Event-driven architecture is gaining momentum in
research and application areas as it promises enhanced respon-
siveness, flexibility and advanced integration. The combination
of event-driven and service-oriented architectural paradigms
and web service technologies provide a viable possibility to
achieve these promises. This article is an extended version of
an ICIW 2009 conference paper and introduces several aspects
that can facilitate such combination. It presents an event
model, outlines an architectural design and proposes sample
implementation technologies. The ongoing evaluation in real-
world scenarios confirms the applicability of the approach for
the realization of web services-based event-driven architecture.

Keywords-web services; event-driven architecture; service-
oriented architecture; business events; business rules

I. INTRODUCTION

Physical systems supporting business processes are in-
creasingly coping with the effects of external changes and in-
puts. This information is used to monitor and control the pro-
cess flow but it also creates new requirements for underlying
network and application system structure. Asynchronous
and data-centric communication in a distributed system is
an approach followed by designers promoting event-driven
and service-oriented architectures. Ubiquity and functional
independence are some of the value adding characteris-
tics of Service-Oriented Architecture (SOA). Asynchronous
communication, interest-based message delivery using the
publish/subscribe principle and event orientation by provid-
ing event sensors and event processing components are the
characteristics of an Event-Driven Architecture (EDA). This
article is an extended version of our ICIW 2009 conference
paper [1] and motivates the implementation of a holistic
architecture: Event-driven service-oriented architecture (ED-
SOA) for combing function- and data-centric views on IT
systems and enterprise as a whole. The combination of
the two approaches is an actively discussed topic among
information systems researchers, IT architects and vendors.
This paper provides needed definitions and structures to
promote common understandings and terms. Furthermore,
reference architecture of an ED-SOA is proposed. Web
services are suggested as the realization technology. This
decision is confronted with the ongoing research and devel-
opment results for enterprise event-driven systems.

The remainder of this article is organized as follows: in

Section II we provide the definitions of EDA, SOA and web
services. We introduce a reference architecture of an ED-
SOA in Section III and present a realization approach based
on web services and Quality-of-Service (QoS) assurance
(Section 1V). Related work on technology for the imple-
mentation of enterprise event-driven systems is provided in
Section V. Discussion of our approach and outlook to future
working areas complete the article.

II. DEFINITIONS

This section introduces some definitions that we use
throughout the article.

A. Service-Oriented Architecture

Service-oriented architecture is one of the most discussed
topics in the IT these days. Since there is no common SOA
definition yet, the term is used as a combination of elements
of software architecture and enterprise architecture. It is
based on the interaction with autonomous and interoperable
services that offer reusable business functionality via stan-
dardized interfaces. Services can exist on all layers of an
application system (business process, presentation, business
logic, data management). They may be composed of services
from lower layers, wrap parts of legacy application systems
or be implemented from scratch [2]. Service-orientation
as a design paradigm roots in several already known ap-
proaches such as object-orientation, aspect-oriented pro-
gramming (AOP), enterprise application integration (EAI)
and business process management (BPM) [3]. Following
service-orientation approach a system is decomposed in its
functionalities. A service is hence an element that encapsu-
lates a business function and cannot be further decomposed
without harming its functionality. Services can be defined
as autonomous, platform-independent entities that can be
described, published, discovered and assembled [4]; they are
technologically neutral, loosely coupled and support loca-
tion transparency encapsulating business functionality [5].
There are different ways to implement distributed services
into IT architecture. They can be implemented using data-
based [6], object-oriented (e.g. CORBA and Java RMI)
or service-oriented approaches. Since the data-oriented ap-
proach applies only to structured data [6] and object-oriented
approaches do not necessarily enable loose coupling and

288

ubiquitous services access [7], service implementation today
is often done using web services. Service orientation and
SOA can be used best, when processes or their parts are
standardized, when they are often repeated without changes,
or when multiple users need the same process component
to complete their tasks. Service invocation (consumption) in
an SOA is realized remotely using RPC-like procedure and
on request of the service consumer. This approach allows an
explicit request for a WSDL-defined service interface to be
invoked using SOAP message exchange.

B. Event-Driven Architecture

An event-driven architecture is a structure in which ele-
ments are triggered by events. An event in the enterprise
context is a change in the state of one of the business
process elements that influences the process outcome. Being
abstract constructions, events are captured as event objects.
An event object allows a machine to process, calculate and
manipulate the event. Main components of an EDA are:
event sources or generators, event recipients or consumers,
event sensors and event processors. Event source(s) and
event consumers are connected either directly (point-to-
point) or via a middleware or broker (bus). Event source
might be an application, business process, internal or exter-
nal stakeholder or any other abstract data change [8]. Event
recipients are all interested subscribers. Event capturing and
delivery must be guaranteed by compatibility standards and
can be processed in an extra component — the event agent.
The logic of collecting and routing of events is captured in
the event processor. Incoming event(s) are processed and
forwarded to event consumers in (predefined and "soft")
real-time. An event consumer reacts to received events by
performing its functionality or publishing an alert. There are
three types of events that need to be processed: single event,
event stream and complex event(s). The difference between
an event stream and a complex event can be described as
event stream being a temporal sequence of event objects in
the "first come-first-serve" manner [9] and complex events
being a group of events that contains elements from dif-
ferent contexts or different time points. Processing events
means performing operations on event objects like creating,
transforming, reading or deleting. Algorithms for processing
of multiple or interlaced events are summarized in complex
event processing (CEP) technique. It allows identification
and extraction of structured information from message-based
systems. CEP includes event analysis and correlation deliv-
ering a decision triggering information. CEP uses business
rules as well as patterns, maps and filters to specify relation-
ship between events [10]. Event monitoring is facilitated by
business activity monitoring (BAM) tools. These tools are
often a part of a business process management suite and are
currently more focused on detecting events and visualizing
them on a dashboard than on automated decision making,
therefore requiring less computational intelligence. Event-

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

driven systems provide real-time visibility of the observed
processes and allow almost real-time reaction.

In this article we show that a SOA can provide suitable
conceptual structure for an EDA. Contrary to communication
in SOA, EDA components interact asynchronously, event
processor being a connector with high intelligence. In EDA
event sources and event recipients do not know anything
about each other, neither does event source know whether
and what kind of reaction was caused by its appearance.
Figure 1 shows an exemlary EDA architecture.

For further event processing and capturing during the
requirements analysis or modeling phase, an event structure
is needed. Figure 2 shows our proposed event model that
allows a distinct description of any generic event. In this
article we focus on business events, i.d. state changes of a
business entity. This definition differs from the one in the
context of event-driven distributed information systems like
CORBA, where an event is defined as the occurrence of
some interaction point between two computational objects
in a system [11]. This kind of event or event description
languages will not be considered for modeling, since state
changes of business objects are our primary concern.

Event
) 1
-Timestamp
-Type
1 -State .
Event Source Event Sink
-Desciption -Description
LD D
+Trigger() +Process()
Figure 2. Structured Event Model

The event structure shown in Figure 2 shows the main
components involved into event creation and processing. In
the context of an event-driven architecture there are system
elements that act according to the changes in states of
other objects. That means that the event sources are being
observed by the event sinks considering their change of
states. The event source is described by its unique ID and a
description, e.g., the name of the source, in natural language.
Possible operation that can be performed by the source is
triggering the event when the change of the state occurs.
Here the main assumption is that an event, i.e. a state change,
can originate only from one source. An event is identified by
a unique ID, timestamp, event type and the current state of
the event source. Timestamp is needed to compute the time

289

Event Event
generators sensors

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

Event sensor
Event agent
taking

Event pocessing: event filtering,
correlation, rules mapping, decision

Notification c
L o 9
s (2 || &
Notiicationy) & 8 >
)] ' Q
X 0 2
%) 3] 5
= 0 :
3 (18] %
Notificationgy 5 E‘j
INotification N

Figure 1.

model of the incoming events and to provide information for
composition of complex events. Event type corresponds to
the event type mentioned above: single event, complex event
or event stream. This information can be processed by the
sink in order to react to the incoming data. Event sink is an
architectural object or element that is interested in the state
change of the event source it is subscribed for, i.e. its actions
are triggered by the state changes of the event source. Event
sink description in natural language as well as an ID are
used as its attributes. Event sink can also provide the first
processing step of the incoming events. These processing
can include queuing the events that are part of the event
stream or combining the events to a complex event.

Our event model consists of the following formal ele-
ments:

e S is the set of event sources included in the model.

e S, is the set of event sinks included in the model.

e Z is the set of the object states, while Z, is the set of
the object states Z of the source s.

o F is the set of events considered in the model.

o« T is the set of possible event types, with: T' =
single, complex, stream.

Event-Driven Architecture

e T'S is the set of the timestamps, with: TS =
day, month, year, hour, minute, second.

These aspects can be captured and modeled using a
modeling eclipse Plug In, called Visual Event, Figure 3
shows the stand-alone event including event source, sink,
and the event itself including its attributes and the data types
of the attributes. It is also possible to comment on the model
elements.

Using Visual Event Plug-in, it is possible to model all
the events that are needed to trigger an action of the event
sink using the annotation at the control flow. Additional
information spaces are included in the diagram properties
to take account of the sequence number of the event,
timestamp, data type, etc. when modeling event sinks and
sources. The Visual Event plug-in is comprised of an event,
with event name, attributes and description, and an event
trigger. The event trigger is the source that changes its states
and thereby triggers an event. Event sinks are subscribers for
a specific event occurrence in a publish/subscribe implemen-
tation paradigm.

290

Event 1

4 Data Typel 4 Atrbute 1.1 g
¢ Event_sink1
4 Attribute 1.2
I 2
<>
Event Relations
Figure 3. Event Modeling Plug-In

III. COMBINING EDA AND SOA

Both SOA and EDA have characteristics that complement
each other. Both use services but differ in the way they
addressed a service to be invoked. SOA provides loosely
coupled techniques like web services but its functionality
is tightly coupled to the Request/Respond mechanism while
EDA provides an asynchronous communication and loose
coupling [12].

While SOA offers EDA a suitable design approach by
providing a distributed environment for separating business
logic, processes and technical functions, it benefits from
another service invocation technique that loosens the rigor
of the RPC-style calls. When observing these characteristics
the merged structure of the three concepts provides, one can
realize multiple synergy aspects. Service-orientation allows
to capture and store events as services. Integration of legacy
systems into service-oriented architecture may be done using
the derived business rules the systems are using, or by using
event-driven architecture. SOA is based on a remote access
principle allowing a distributed environment, necessary for
both event-driven architecture and business rules. EDA has
a decoupled, asynchronous structure that complements loose
coupling and synchronous communication of SOA [13].
Implementing SOA-suitable environment means implement-
ing an environment where events can operate on their best
and many architectural interactions are already standardized.
Further synergies come up with communication and process
management in a distributed system, which can be assured
by adopting a business rules oriented ED-SOA. Often having
a highly distributed architecture, enterprises create benefits
from the real-time information availability. EDA provides
a structure that allows a fast reorganization of business
processes without affecting application or technical struc-
tures. Fast reaction to environmental changes in is possible
without the need to adapt technical infrastructure. Functional
decomposition on a high-granularity level, that is crucial

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

for robustness to change of a system, is provided by SOA.
Merging these concepts results in an enterprise architecture
that is more flexible while being robust to changes. Its
components are loosely coupled and can be accessed in any
business situation.

The major aim of enterprise architecture is realized in
the ED-SOA concept by SOA combining business functions
and IT, and EDA focusing on data as well as business
relevant event orientation; both SOA and EDA concepts can
be used for application and legacy systems integration [14].
Covering the aim and component spectrum of enterprise
architecture as described above, ED-SOA can be regarded as
its evolution. Figure 4 shows a proposed ED-SOA reference
architecture including security aspects, business rules pro-
cessing and business data integration. Components that can
be encapsulated as services are named. They were identified
according to the main principles of service-orientation: their
granularity is can be easily identified and discovered while
being reusable by different components in different points
of time. The concrete integration infrastructure into the
application systems landscape depends on the technology
used to realize ED-SOA. Here an enterprise service bus
(ESB) is a suitable solution as the architecture is to be
realized using web services.

IV. ENABLING ED-SOA

After modeling the event and defining its specific struc-
ture, it can be realized technically using web service technol-
ogy. Web services are currently the most promising service-
oriented technology [15]. They use the Internet as the
communication medium and open Internet-based standards,
including the Simple Object Access Protocol (SOAP) for
transmitting data, the Web Services Description Language
(WSDL) for defining services, and the Business Process
Execution Language for Web Services (BPEL4WS) for
orchestrating services.

The Visual Event diagram (Figure 2)also delivers a XML-
structure. Event content and its processing components such
as sinks and sources can be derived from the event model
as shown in figure 3 and implemented as a event service in
a service-oriented architecture. This approach, first defining
and modeling events for their further implementation using
Web Services, allows a structured way to design and manage
EDA conserving its main principle of agility and loose
coupling. Modeling plug-in developed and presented here
supports the easy implementation generating a XML-code
of the event content. SOA provides important standards and
tools, like WSDL and UDDI, for describing, storing and
finding of the events within the architecture.

This section provides an overview of implementation
technologies that we used in our proof-of-concept and is
structured according to the elements presented in Figure 4.

Software components that call (consume) services can be
developed in a variety of languages on a variety of platforms.

291

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

Event Event Event Event Event-Driven
generators sensors agent pocessing Action
o
. Invocation o
Rule Service . o5
Service 2 @
o -2
E ?
, Invocation 2
s Rule Service Senvi = c
% ervice 2 S
@ € 8
9 | $ g8
i Enterprise | | BrMS Analytical © <
Data F’rOCESSIng 81
= % 9
—) (&J'}
£ 0
Security Modul c% g

v

Figure 4. Event-Driven Service-Oriented Architecture

Typical integrated development environments (IDEs) allow
this interaction without the need to code SOAP messages.
They generate a proxy stub object on the local machine
that marshals calls to the actual web service. Therefore,
from a software engineering point of view a single service
interaction is not much different from the interaction of
COM (Component Object Model) or CORBA components.
Important new aspect of web services is the promise of
automatic composition going beyond the binary integration
of COM and CORBA. Such flexible processing infrastruc-
ture can adapt more easily to changes in the functional
requirements of an event-driven business process.

A. Platforms

The complexity involved in providing a single web service
is often underestimated. A look at hardware platforms, even
commodity hardware, reveals complex microprocessors and
processing architecture. Standard OSs are far away from
microkernel designs [16] such as Mach [17] and contain a
large number of OS extensions. These are called modules in
a Linux system [18] and drivers in a Windows system. [19].
Beside typical device drivers, extensions include network

protocol implementations, file systems and virus detectors.
Extensions are more than 70% of the Linux source code [20],
while Windows XP includes over 35,000 drivers with over
120,000 versions [21]. Typical component frameworks such
as .NET and J2EE often serve as the middleware for pro-
viding web services [22]. Therefore, we selected the .NET
Framework as platform. A more detailed look at the appli-
cation programming interfaces of these environments [23]
and [24] reveals their complexity.

B. Quality of Service and Nonfunctional Properties

The nonfunctional properties (NFPs) of a software sys-
tem are those properties that do not describe or influence
the principal task / functionality of the software, but are
expected and can be observed by end users in its runtime
behavior [25].

QoS encompasses important NFPs such as performance
metrics (for example, response time), security attributes,
transactional integrity, reliability, scalability, and availability.
Traditionally, QoS is a metric that quantifies the degree
to which applications, systems, networks, and other IT
infrastructure support availability of services at a required

292

performance level [4]. Web services environments are based
on flexible composition of services and therefore demand
greater availability of applications. Furthermore, they intro-
duce increased complexity in terms of delivering, accessing
and managing services.

The existing standards for specification of QoS charac-
teristics in a service-oriented environment can be grouped
according to their main focus: software design/process de-
scription (e.g. UML Profile for QoS and QML - QoS
Modeling Language [26], service/component description
(e.g. WS-Policy) and SLA-centric approaches (e.g. WSLA -
Web Service Level Agreements [27], WSOL - Web Service
Offerings Language [28], SLAng - Service Level Agreement
definition language [29] and WS-Agreement [30].

Extensive research concerning NFPs also exists in the
field of CORBA (Common Object Request Broker Archi-
tecture), particularly in the areas of real-time support [31],
[32], replication as approach for dependability [33], [34],
[35], [36], adaptivity and reflection [37], [38], as well as
mobility [39], [40].

The approach we apply to formalize and control NFPs is
called architectural translucency [41] — the ability to con-
sider reconfiguration options at different system levels and
understand their effects on the performance-related NFPs of
a system. It allows us to specify service level objectives [42]
and to enforce them by replication at different architectural
levels, e.g., operating system [43] or service framework [44].

C. Implementing Rule and Decision Services

Our sample implementation uses the .NET Framework
as a serviceware and the Microsoft Workflow Foundation
(included in .NET 3.0) as basis for the rule and decision
services. The workflow foundation supports different types
of workflows (see Figure 5) and facilitates particularly
the implementation of rules-based activities. Using it, we
can map rules defined at the business level to any .NET
programming language in a straightforward way.

Sequential Workflow State Machine Workflow

Step Sequential External

W structure [Event [](Gtatet events drive

ooy | Prescribes)| processing
processingorder order

«Reactive, event-driven
«Skip/re-work, exception handling
«Graph metaphor

«Prescriptive, formal
+Automation scenarios
«Flowchart metaphor

Rules-driven Activities

[ﬂ] Rules + data state
drive processing

«Data-driven
«Simple Conditions, complex Policies
«Constrained Activity Group

order

Figure 5. Support for Rules and Events in Microsoft Workflow Foundation
(Source: Microsoft)

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

D. Implementing Invocation and Notification Services

Any step in our workflow (as implemented in the Mi-
crosoft Workflow Foundation) can call operations on other
objects on the same machine, invoke other workflows or di-
rectly invoke web services. Events that trigger a state change
(next step) of a workflow range from sensor information
(e.g., RFID) through changes in data sources (e.g., relational
databases) to web service outputs or fault messages. There
are several integration depths that we regard as relevant for
events:

« Events at the data level — here we differentiate between
events originating from database management systems
(DBMS), e.g., relational databases, and events originat-
ing from sensors, e.g., RFID readers and scanners.

« Events at the object level — these are typically state
changes in class instances which we regard only if they
are manifested by public methods.

« Events at the service level — a call, or a response of a
service.

Generally, we can map the "lower level" events (data
and object) to the service level using web service wrappers.
Furthermore, we can combine events to complex events (e.g.,
a delivery has arrived and a warehouse is full) by using
composite services. In the context of this composition we
particularly regard the NFPs of the composed service, as
described in [25].

E. Integration Aspects

An already agreed-upon SOA strategy greatly facilitates
our approach as we can then expect that critical software
functionality will be provided as web services in the spec-
ified timeframe. If our approach has to be integrated in
more heterogeneous environments we can benefit from the
capabilities of .NET 3.0 to interact with diverse remote
components, such as other .NET objects, SQL servers and
web technologies.

F. Application Scenarios

One application scenario that can greatly benefit from ED-
SOA is logistics. Our demo application in this domain (more
particularly contract logistics) differentiates between several
states of a shipment that is being transported (see Figure 6).
It begins with an initial event (Container sent) and goes
through the following statuses: Fetched, Accepted, Loaded,
Unloaded, in Delivery, and Delivered. Business users can
define rules related to these statuses and corresponding
events (e.g., a longer delay or a missed deadline) using a
web-based user interface. We then use this rule specifications
in our implementation to trigger next (or additional) steps in
the workflow according to incoming events. Events can be
propagated in a variety of ways: RFID-based communication
in a warehouse system, e-mail notifications, changes in
inventory databases, as well as other components or web
service calls and responses. This makes our approach highly

293

flexible to changing business requirements — they can be
submitted to our system as a new rule set via the user inter-
face. Figure 7 shows an overview of our architecture on a
given site (e.g., intermediate warehouse or point of delivery).
It integrates an event processing component, components
for event sensing, a supply-chain-management system, as
well as to engines — the rules engine and the architectural
translucency (AT) engine. The AT engine is responsible for
service level enforcement with respect to NFPs.

One other specific domain that can greatly benefit from
ED-SOA is healthcare. We have applied our approach in
the area of clinical processes and their optimization based
on localization techniques [45]. The requirements of the
scenario — localization of a large number of mobile devices
(10,000) within a refreshing interval of five seconds, make
the architectural integration a challenging task. The scenario
is described in details in [45], aspects of the service-oriented
integration and service level assurance in [46].

G. System Evaluation

We conducted our evaluation twofold — using empirical
evaluation methods as well as system-oriented performance
evaluation. Our empirical evaluation follows the usablity
evaluation methodology presented in [47]. In our healthcare
scenario we used questionnaires and expert interviews as
usability evaluation test methods. These were addressed at
clinicians that use our system. An overview of the surveyed
group is given in Table I, a summary of results is presented in
Table II. Overall, there is a substantial (A > 50%) increase
in usability.

To ensure QoS aspects in our application scenarios we
apply the method of architectural translucency [41], [46].
In this article we present excerpts from the performance
evaluation at one site of our logistics scenario. The specific
replication configuration used is shown in Table III.

The results of our performance evaluation are shown in
Table IV. We anonymized the names of the web services
due to non-disclosure requirements.

Test results show that replication at the OS level im-
proves performance by approx. 25%, while replication at
the serviceware level leads to improvement by 5-7%. Dual
replication led to improvement by 7-15%.

1) Confidence Intervals: Results in Table IV are average
results from six consecutive test runs. Each test run included
tests of every replication setting for 120 minutes with 1
second think time before a request. This corresponds to some
7200 requests that were sent to each setting.

All tests for Web Service 1 resulted in 7200 requests
served for all replication settings, so here the confidence
interval is clearly 100%. All other confidence intervals are
between 99% and 100%.

V. RELATED WORK

Distributed event processing and event-driven systems
became popular in recent years as the technology needed

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

to provide and support these systems is rapidly evolving. In
the 1980s and 1990s message-oriented middleware was used
to facilitate integration of various application systems within
an enterprise. Basic event-processing can be regularized by
inclusion of Java Message Service and message-driven beans
in Java Enterprise Edition (J2EE) [48]. Message-oriented
middleware allows a push-based, publish-subscribe data-
centric communication through message brokers or queued
messages. As for the embedded, real-time systems based on
event-orientation, they are often written in languages such
as C or C++, with real-time services provided by CORBA
(Common Object Request Broker Architecture) [48], [31].
CORBA also provides a publish-subscribe mechanism by
the CORBA/IIOP (Internet Inter-ORB Protocol) [49].

Composition of applications from web services is gov-
erned by different requirements than typical component-
based software development and integration of binary com-
ponents. Application developers and users do not have
access to documentation, code or binary component. In-
stead, they rely only on a rudimentary functional description
offered by WSDL. Services execute in different contexts
and containers, they are often separated by firewalls and
can be located practically everywhere. This leads to a set
of specific requirements a composition mechanism must
satisfy as identified in [50]: connectivity, NFPs, correctness,
automatic composition and scalability.

Every composition approach must guarantee connectiv-
ity. With reliable connectivity, we can determine which
services are composed and reason about the input and
output messages. However, since web services are based
on message passing, NFPs, such as timeliness, availability,
and performance must also be addressed. Correctness of
composition means that the NFPs of the composed ser-
vice must be verified. Automatic composition is the ability
to automatically perform goal-based composition. Finally,
composition of services within SOA must scale with the
growth of business services that are based on composed
technical services.

With the native capabilities of web services fully devel-
oped, several approaches for service composition started to
emerge. The first generation composition languages were
Web Service Flow Language (WSFL), developed by IBM,
and Web Services Choreography Interface (WSCI), devel-
oped by BEA Systems. However, these proposals were not
compatible with each other, and this led to the development
of second generation languages. The most popular of them is
BPEL4WS [51], which is a joint effort of IBM, Microsoft,
SAP, Siebel and BEA. It originates in the combination of
first generation languages (WSFL and WSCI) with Mi-
crosoft’s XLANG specification.

SWORD is an approach, together with a tool set, for rule-
based service composition. Here a service is represented by
a rule that expresses that given certain inputs, the service
is capable of producing particular outputs [52]. A rule-

294

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

Status Informations and Events

Final Event: Container arrived

-D livered

- in Belivery
-Unload ed

Initial Event: Container sent

Rules Recommendations
Marmsagstate (&) s [pasiee | — o S S
. === e Ll
P Hoget
a8 o Fogmim ety
F— - Zamats [1 —
Fanal ~ _.*; Machache an = | ._:,
:m::”'r_ e I | F— _—
R :
Figure 6. Application Scenario in Contract Logistics
Group Characteristics No. of Participants | Percentage
Nurses 10 33.33
Surgeons 6 20
Anesthetists 3 10
Management 1 3.33
Other 10 33.33
Total 30 100

Table 1
PROFILE OF TARGET GROUP FOR THE EMPIRICAL EVALUATION OF OUR HEALTHCARE SCENARIO

based expert system is then used to automatically determine
whether a desired composite service can be realized using
existing services. If so, this derivation is used to construct a
plan that when executed instantiates the composite service.

Typically, SWORD does not require wider deployment of
emerging service-description standards such as WSDL and
SOAP.

Authors claim that although SWORD’s expressive ca-
pabilities are weaker, the abstractions it exposes capture
more appropriately the limited kinds of queries supported
by typical web services which leads to simplicity and higher
efficiency.

EFlow [53] is a platform for specification, composition
and management of composite services. It uses a static
method for workflow generation. Hereby a composite service

is modeled by a graph that defines execution order of
participating nodes. Graph creation is done manually, but
subsequent graph updates can be automated. A graph may
include service, decision and event nodes. Service nodes
represent the invocation of atomic or composite services.
Decision nodes specify workflow alternatives and decision
rules. Event nodes allow services to send and receive certain
types of events. Graph arcs show the execution dependency
among nodes.

VI. DISCUSSION AND OUTLOOK

In this article we introduced the concept of an event-
driven service-oriented architecture (ED-SOA) and proposed
several aspects for its realization, such as an event model and
a reference structure. Furthermore, we provided technology

295

Handheld

< d Device

Composed
custom applications

WS Interfaces

WS Wrapper WS Wrapper

Event
Sensing

Event
Processing

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

-
(s

Information Portal:
Reports, Statistics, QoS

WS Wrapper

Figure 7. General Site Architecture for ED-SOA Implementation in Logistics: SCM denotes the Supply-Chain-Management System, AT Engine denotes
the architectural translucency engine

Dependent Variables before | after

Average Patient Preparation Time (min.) 31.20 16.30

Avg. Additional Preparation Tasks Needed (Nr.) 12 7

Avg. Number of Process Errors (perioperative) 6 2

Avg. Number of Process Errors (postoperative) 5 2

Clinicians: User Satisfaction (percent) 46 83

Patients: User Satisfaction (percent) 52 89

Table II
SUMMARY OF USABILITY EVALUATION RESULTS

and element definitions and outlined possible advantages of
combining service-oriented and event-driven approaches for
which we proposed a reference architecture. We regard our
holistic approach as an important contribution that builds on
many related concepts currently under development in this
area.

The article also presented two application scenarios. Our
application scenario in contract logistics used web services
and the .NET Framework as enabling technologies and
demonstrated major benefits of the approach. The empirical
evaluation of our approach demonstrated increased user sat-
isfaction, while its performance evaluation provided results

that show its applicability for the assurance of QoS aspects
within ED-SOA. Our future work lies in the areas of incor-
poration of predefined rule sets for specific domains (e.g.,
environmental conservation, privacy and security, healthcare
applications) in the approach. This will allow us to provide
a generic rule set that can be customized and extended ac-
cording to the specific user requirements. The customization
will be supported by a reference process for projects we
are currently designing. We are also working on the further
integration of various high-assurance techniques [41], [46]
into the approach.

296

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Setting: Replication OS | Replication S
Setting 1: No Replication n n
Setting 2: Replication at OS y n
Setting 3: Replication at S n y
Setting 4: Dual Replication y y

Table III

REPLICATION SETTINGS FOR QOS ASSURANCE

Setting / Call Web Service 1 | Web Service 2 | Web Service 3 | Web Service 4
Setting 1: 7200 4176 4245 3578
Setting 2: 7200 5342 5418 4120
Setting 3: 7200 4424 4312 3692
Setting 4: 7200 4861 4803 3711

Table IV

TEST RESULTS AT DIFFERENT ARCHITECTURAL LEVELS - .NET AND WINDOWS ENVIRONMENT.

REFERENCES

O. Levina and V. Stantchev, “Realizing Event-Driven SOA,”
in ICIW °09: Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services.
Los Alamitos, CA, USA: IEEE Computer Society, May 2009,
pp. 37-42.

H. Krallmann, C. Schropfer, V. Stantchev, and P. Offermann,
“Enabling autonomous self-optimization in service-oriented
systems,” in Proceedings of The 8th International Workshop
on Autonomous Systems - Self Organisation, Management and
Control. Berlin, New York: Springer, 10 2008, pp. 127-134.

T. Exl, Soa: principles of service design. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2007.

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.

M. P. Papazoglou, “Service-oriented computing: concepts,
characteristics and directions,” Web Information Systems En-
gineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pp. 3—12, 2003.

C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative
analysis of methodologies for database schema integration,”
ACM Comput. Surv., vol. 18, no. 4, pp. 323-364, 1986.

Y. Baghdadi, “A business model for deploying web services:a
data-centric approach based on factual dependencies,” Infor-
mation Systems and E-Business Management, vol. 3, no. 2,
pp. 151-173, 2005.

H. Herbst, G. Knolmayer, T. Myrach, and M. Schlesinger,
“The specification of business rules: A comparison of selected
methodologies,” in Proceedings of the IFIP WG8.1 Working
Conference on Methods and Associated Tools for the Infor-
mation Systems Life Cycle. New York, NY, USA: Elsevier
Science Inc., 1994, pp. 29-46.

B. Michelson, “Event-driven architecture overview- event-
driven soa is just part of the eda story,” Patricia Seybold
Group, Tech. Rep., 2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. C. Luckham and B. Frasca, “Complex event processing in
distributed systems,” Stanford University, Tech. Rep., 1998.

C. Ma and J. Bacon, “Cobea: a corba-based event architec-
ture,” in COOTS’98: Proceedings of the 4th conference on
USENIX Conference on Object-Oriented Technologies and
Systems. Berkeley, CA, USA: USENIX Association, 1998,
pp- 9-9.

J. van Hoof, “How eda extends soa and why it is important,”
2.10.2008 2006.

J. Pick, Geo-Business: GIS in the Digital Organization.
Wiley, 2007.

A. Kumar Harikumar, R. Lee, C.-C. Chiang, and H.-S.
Yang, “An event driven architecture for application integration
using web services,” Information Reuse and Integration, Conf,
2005. IRI -2005 IEEE International Conference on., pp. 542—
547, Aug. 2005.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. Ferguson, Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall PTR Upper Saddle River,
NIJ, USA, 2005.

B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. Mc-
Namee, P. Pardyak, S. Savage, and E. G. Sirer, “Spin -
an extensible microkernel for application-specific operating
system services,” SIGOPS Oper. Syst. Rev., vol. 29, no. 1,
pp- 74-77, 1995.

R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin,
D. Golub, and M. Jones, “Mach: a system software kernel,”
COMPCON Spring ’89. Thirty-Fourth IEEE Computer Soci-
ety International Conference: Intellectual Leverage, Digest of
Papers., pp. 176-178, 27 Feb-3 Mar 1989.

D. Bovet and M. Cesati, Understanding the Linux Kernel.
O’Reilly Media, Inc., 2005.

D. Solomon and M. Russinovich, Inside Microsoft Windows
2000. Microsoft Press Redmond, WA, USA, 2000.

297

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
empirical study of operating systems errors,” SIGOPS Oper.
Syst. Rev., vol. 35, no. 5, pp. 73-88, 2001.

M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving
the reliability of commodity operating systems,” ACM Trans.
Comput. Syst., vol. 23, no. 1, pp. 77-110, 2005.

G. Miller, “The web services debate: .net vs. j2ee,” Commun.
ACM, vol. 46, no. 6, pp. 64-67, 2003.

“Java 2 Platform, Enterprise Edition (J2EE),” SUN Mi-
crosystems, 4150 Network Circle, Santa Clara, CA 95054,
Specification.

The .NET Framework. Microsoft Corporation, 2004.
[Online]. Available: \url{http://www.microsoft.com/net/}

V. Stantchev, Architectural Translucency. Berlin, Germany:
GITO Verlag, 2008.

S. Frolund and J. Koistinen, “Quality of services
specification in distributed object systems design,” in
COOTS’98: Proceedings of the 4th conference on USENIX
Conference on Object-Oriented Technologies and Systems
(COOTS). Berkeley, CA, USA: USENIX Association, 1998.
[Online]. Available: http://www.usenix.org/publications/
library/proceedings/coots98/full_papers/frolund/frolund.pdf

H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web
Service Level Agreement (WSLA) Language Specification,”
IBM Corporation, 2002.

V. Tosic, K. Patel, and B. Pagurek, “WSOL-Web Service
Offerings Language,” Web Services, E-Business, and the
Semantic Web: CAISE 2002 International Workshop, WES
2002, Toronto, Canada, May 27-28, 2002: Revised Papers,
2002.

D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A Lan-
guage for Defining Service Level Agreements,” Proc. of
the 9th IEEE Workshop on Future Trends in Distributed
Computing Systems-FTDCS, pp. 100-106, 2003.

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web Services
Agreement Specification (WS-Agreement),” Global Grid Fo-
rum GRAAP-WG, Draft, August, 2004.

A. Polze and L. Sha, “Composite Objects: Real-Time Pro-
gramming with CORBA,” in Proceedings of 24th Euromicro
Conference, Network Computing Workshop, Vol.1l, pp.: 997-
1004. Vaesteras, Sweden: Humboldt University of Berlin,
Aug. 1998.

W. Feng, “Dynamic client-side scheduling in a real-time corba
system.” in COMPSAC. IEEE Computer Society, 1999, pp.
332-333.

P. Felber, R. Guerraoui, and A. Schiper, “Replication of corba
objects.” in Advances in Distributed Systems, ser. Lecture
Notes in Computer Science, S. Krakowiak and S. K. Shri-
vastava, Eds., vol. 1752. Springer, 1999, pp. 254-276.

(34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

V. Marangozova and D. Hagimont, “An infrastructure for
corba component replication.” in Component Deployment, ser.
Lecture Notes in Computer Science, J. M. Bishop, Ed., vol.
2370. Springer, 2002, pp. 222-232.

M. Werner, “Replikation in CORE, Bericht an das
Graduiertenkolleg "Kommunikationsbasierte Systeme",” Oct
1996.

P. Felber and P. Narasimhan, “Reconciling replication and
transactions for the end-to-end reliability of corba appli-
cations.” in CooplS/DOA/ODBASE, ser. Lecture Notes in
Computer Science, R. Meersman and Z. Tari, Eds., vol. 2519.
Springer, 2002, pp. 737-754.

P-C. David and T. Ledoux, “An infrastructure for adaptable
middleware.” in CooplS/DOA/ODBASE, ser. Lecture Notes in
Computer Science, R. Meersman and Z. Tari, Eds., vol. 2519.
Springer, 2002, pp. 773-790.

S. Gutierrez-Nolasco and N. Venkatasubramanian, “A reflec-
tive middleware framework for communication in dynamic
environments.” in CooplS/DOA/ODBASE, ser. Lecture Notes
in Computer Science, R. Meersman and Z. Tari, Eds., vol.
2519. Springer, 2002, pp. 791-808.

G. Biegel, V. Cahill, and M. Haahr, “A dynamic proxy based
architecture to support distributed java objects in a mobile
environment.” in CooplS/DOA/ODBASE, ser. Lecture Notes
in Computer Science, R. Meersman and Z. Tari, Eds., vol.
2519. Springer, 2002, pp. 809-826.

S. Adwankar, “Mobile corba,” in DOA ’01: Proceedings of
the Third International Symposium on Distributed Objects
and Applications. Los Alamitos, CA, USA: IEEE Computer
Society, 2001, p. 52.

V. Stantchev and M. Malek, “Architectural Translucency in
Service-oriented Architectures,” IEE Proceedings - Software,
vol. 153, no. 1, pp. 31-37, February 2006.

V. Stantchev and C. Schropfer, “Service level enforcement in
web-services based systems,” International Journal on Web
and Grid Services, vol. 5, no. 2, pp. 1741-1106, 2009.

V. Stantchev and M. Malek, “Addressing Web Service Per-
formance by Replication at the Operating System Level,”
in ICIW ’08: Proceedings of the 2008 Third International
Conference on Internet and Web Applications and Services.
Los Alamitos, CA, USA: IEEE Computer Society, June 2008,
pp. 696-701.

V. Stantchev, “Effects of Replication on Web Service Per-
formance in WebSphere,” International Computer Science
Institute, Berkeley, California 94704, USA, ICSI Tech Report
2008-03, February 2008.

V. Stantchev, T. D. Hoang, T. Schulz, and I. Ratchinski,
“Optimizing clinical processes with position-sensing,” IT Pro-
fessional, vol. 10, no. 2, pp. 31-37, 2008.

V. Stantchev and M. Malek, “Translucent replication for ser-
vice level assurance,” in High Assurance Services Computing.
Berlin, New York: Springer, 06 2009, pp. 1-18.

298

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http.//www.iariajournals.org/software/

[47]

(48]

[49]

(50]

(51]

[52]

(53]

[54]

V. Stantchev, “Enhancing health care services with mixed re-
ality systems,” in The Engineering of Mixed Reality Systems.
Berlin, New York: Springer, 09 2009.

R. Berry, P. McKenney, and F. Parr, “Responsive systems: An
introduction,” IBM Systems Journal, vol. 47, no. 2, pp. 197-
205, 2008.

D. Bauer, L. Garce’s-Erice, S. Rooney, and P. Scotton,
“Toward scalable real-time messaging,” IBM Systems Journal,
vol. 47, no. 2, pp. 237-251, 2008.

N. Milanovic and M. Malek, “Current solutions for web
service composition,” IEEE Internet Computing, vol. 8, no. 6,
pp- 51-59, 2004.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
et al., “Business Process Execution Language for Web
Services (BPEL4WS) 1.1,” Online: http://www-106. ibm.
com/developerworks/webservices/library/ws-bpel, May, vol.
139, p. 140, 2003.

S. R. Ponnekanti and A. Fox, “Sword: A developer
toolkit for web service composition,” 2002. [Online].
Available: http://www.citebase.org/abstract?id=oai:wwwconf.
ecs.soton.ac.uk:226

F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-
C. Shan, “eflow: a platform for developing and managing
composite e-services,” Research Challenges, 2000. Proceed-
ings. Academia/Industry Working Conference on, pp. 341—
348, 2000.

R. Meersman and Z. Tari, Eds., On the Move to Meaningful
Internet Systems, 2002 - DOA/CooplS/ODBASE 2002 Confed-
erated International Conferences DOA, CooplS and ODBASE
2002 Irvine, California, USA, October 30 - November 1,
2002, Proceedings, ser. Lecture Notes in Computer Science,
vol. 2519. Springer, 2002.

299

