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ABSTRACT

Computing the irreducible and primitive polynomials
under GF(3) is a computationally intensive task. A
hardware implementation of this algorithm should prove
to increase performance, reducing the time needed to
perform the computation. Previous work explored the
viability of a co-designed approach to this problem and
this work continues addressing the problem by moving the
entire algorithm into hardware. Handel-C was chosen as
the hardware description language for this work due to its
similarities with ANSI C used in the software
implementation. A hardware design for the algorithm was
developed and optimized using several different
optimizations techniques before arriving at a final design.

Optimization; Handel-C; Galois Fields

1. INTRODUCTION

The performance of many software systems can be
improved by the creation of custom hardware circuits that
are capable of performing some or all of a software
systems processing in a native hardware environment
[8,9,10,11]. One major reason that software is
implemented in hardware is the core features that a
hardware implementation offers a system designer. The
most important of these features is the inherent parallelism
that is found in hardware systems such as Field
Programmable Gate Arrays (FPGA).

The work presented in this paper is a continuation of
work started in [1] and centers around the creation [14] of
migrating a software system for the computation of
irreducible and primitive polynomials over GF(3)
completely to hardware, the issues that surrounded the
migration and optimizations that were applied to the final
hardware design using an automated parallelism extraction

tool. The original work [1] concentrated only on
implementing the computation intensive multmod function
of the GF3 algorithm in hardware.

Further work presented includes further optimization
of the design described in [14] and a discussion of several
optimization techniques that were used to perform these
optimizations.

This paper begins by presenting a brief background
on some of the subject matter deemed relevant to the
proper understanding of this paper. Following this the
original research that lead to this project is presented, as
well as work from another project on automated extraction
of parallelism from Handel-C hardware definitions. The
full hardware design is then presented followed by a
discussion of the different optimization techniques used to
optimize the design, as well as benchmarking results for
each of the techniques.

2. BACKGROUND

This section will discuss the background information
that is necessary for understanding this paper. This
discussion includes Handel-C [2], Galois Fields [3] and
the previous work that was completed.

2.1 HANDEL-C

The hardware implementation for this work was
implemented in Handel-C [2]. Handel-C is a high level
hardware description language that bears much
resemblance to the ANSI C programming language. While
Handel-C is very similar to ANSI C in many respects,
there are some major differences between the two
languages. Handel-C does not support the entire ANSI C
specification. One of the more important features removed
from Handel-C is support for runtime recursion. Handel-C,
along with support for a subset of the ANSI C
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specification, includes extra support for hardware
descriptions. Included in this extended support are
constructs for input and output, communications, and
control flow constructs for controlling the parallelism of a
design. Parallelism in a Handel-C program is defined by
using the par{} and seq{} statement blocks. Sequential
instructions wrapped in a par{} statement will be
executed in parallel, while statements wrapped in a
seq{} statement will be forced to execute sequentially.
Example 1 shows par and seq statements in a simple
Handel-C design.

The absence of runtime recursion support in Handel-C
proved to be one of the more challenging aspects of this
work. In most cases recursive algorithms can be easily
converted to a non-recursive, loop based algorithm. This
would prove to be problematic during the course of this
work as several of the recursive functions written in the C
algorithm proved to be resistant to conversion loops.

int 8 a,b,c,d,e,f,g,h;

a = 1; b = 2; c = 3; d = 4;

seq {

d = a + b;

e = c + d;

}

par {

f = d+e;

g = d*e;

}

Example 1: Example of par and seq Statements

2.2 GALOIS FIELDS AND THE ALGORITHM

A Galois Field is a finite order denoted by GF(p),
where p is a prime or a power of primes [3]. A Galois
Field of order p has only p elements, 0 though p-1. The
focus of the algorithm implemented for this paper is
Galois Fields of the order GF(3). These fields are of
interest due to their application in pairing based
cryptographic systems [4].

The C algorithm discussed in this paper describes the
problem of enumerating all of the primitive and
irreducible polynomials of a given order [5]. Irreducible
polynomials are polynomials such that p(x) in F(x) is
called irreducible over F if it is non-constant and cannot
be represented as the product of two or more non-constant
polynomials from F(x) [3]. A primitive polynomial is a
polynomial such that F(X), with coefficients in GF(p) =
Z/pZ, is a primitive polynomial if it has a root α in

GF(pm) such that is the

entire field GF(pm), and moreover, F(X) is the smallest
degree polynomial having α as root [3].

The C algorithm consists of a number of functions
that will now be detailed. Where applicable functions that
are recursive are noted.

Add: Adds two polynomials under GF(3).
Subtract: Subtracts two polynomials under GF(3).
Mod: Takes the modulus of two polynomials under
GF(3).
GCD: Find the greatest common divisor of two
polynomials under GF(3) (recursive).
Multmod: Multiplies two polynomials under mod p.
Powmod: Finds the result of one polynomial raise to the
power of another polynomial under GF(3).
Minpoly: Finds the minimum polynomial given a
necklace.
Gen: Controls execution of the algorithm by cycling over
all possible necklaces (recursive).

2.3 THE CO-DESIGNED SOLUTION

The previous implementation of the C algorithm did
not attempt to migrate the entire software algorithm into a
hardware system. Instead it was decided to explore a co-
designed approach [1] where only a portion of the
software would be translated into a hardware design and
this hardware module would be called from the software
running on a general purpose CPU.

2.3.1 THE CO-DESIGN

The first task was to determine how to partition the
hardware and software for this project. Timing analysis of
the original software showed that the multmod function,
which computes multiplication between polynomials, is
the most processing intensive portion of the software. It
was found that 80% of the total processing time was spent
in the multmod function. It was decided that a suitable
solution to improve the performance of the system would
be to implement the multmod function in hardware.

The design of the hardware was created based on
careful analysis of the operations that are performed in the
multmod function. These operations were then placed in a
module called the Arithmetic Computation Unit (ACpU).
Figure 1 shows a flowchart of the operations performed
when executing a call to the multmod function.

The hardware partition also contains a module
responsible for controlling the execution of calls to the
multmod hardware. This module is called the Arithmetic
Control Unit (ACtU). The ACtU is a finite state machine
that is responsible for sequencing the operations that take
place in the ACpU. The main requirement of this state
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machine is to increase the performance of the hardware
module by leveraging as much parallelism as is possible in
the multmod operation. The design of the state machine
for the ACtU can be seen in Figure 2.

Two different implementations of this co-designed
hardware were then created. The first implementation was
designed to be housed on an FPGA located on a board
connected to its host computer via a PCI bus. Using this
configuration software running on the host machine
communicates with the hardware device via the PCI bus.
One of the issues with this design, however, was
communication delays between the hardware and software.
In order to remove this communications gap, it was
decided to explore another option using a System-on-chip
architecture. In this design the FPGA is very closely
integrated with an embedded processor. This allows the
software partition to communicate with the custom
hardware directly, without the use of the time costly PCI
bus.

Figure 1: Arithmetic Computation Unit

Figure 2: Arithmetic Control Unit

2.3.2 THE PCI-BASED SOLUTION

For the PCI-based solution the reconfigurable
hardware receives and sends data to the software partition
over a PCI bus. For this implementation the software was
running on a Windows 2000 PC with a 1.8 Ghz Intel Xeon
processor with 1 GB of RAM. The FPGA development
board used for this project is an APEX PCI Development
board with an Altera Apex 20KC1000CF672 FPGA [15]
supporting 32 and 64 bit PCI communications at 33 and
66 Mhz [16]. The software running on the host machine is
a modified version of the original software
implementation. The modifications allow the software to
call the hardware when necessary for completing
computations. A high level view of the structure of this
loosely coupled co-designed system can be seen in Figure
3.

Figure 3: Overview of loosely coupled system
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In order to interface the software partition with the
hardware device it was necessary to develop a PCI device
driver for the system [17].

The modifications to the original C code allowed all
calls made to the multmod function to be redirected to the
hardware device. In order to do this, input data for the
calls to the multmod function are redirected to the PCI
device driver. The device driver is then responsible for
initiating communications with the FPGA and sending all
required data for the call. In this implementation the
configuration is static and must be downloaded to the
FPGA before runtime. This configuration contains four
modules: the ACpU, ACtu, PCI Core and PCI control unit.

The hardware implementation of the multmod
algorithm was implemented in Verilog and was targeted to
an Amirix AP1000 development board [6]. This
development board was chosen as the target platform
because of its on-chip PowerPC processor that is directly
connected to the FPGA fabric. This feature allowed the
software to be executed on a platform that is more tightly
coupled with the FPGA and removed the need to create a
PCI bus driver for the work. Figure 4 shows an overview
of the co-designed system and Table 1 shows the
benchmarking results for this implementation.

Figure 4: Co-Designed System Overview[1]

While a performance increase was realized by moving
to the co-designed system, it was found that several factors
severely limited the overall performance of the system.
The slow speed of the embedded processor running the
software portion of the system was one issue that arose.
The 200mhz clock speed of this processor simply was not
fast enough to hold pace with the faster general purpose
processors that would normally run the full software
implementation [1].

Also a major problem, more so than the slow clock
rate of the embedded processor running the software
portion of the system, is the communications between the
hardware and the software system. Communications prove
to be the Achilles heel of this work, as well as many other
co-design works [7]. The amount of data communications
that is necessary between the hardware and the software is
so great that it limits the maximum throughput of the
system, which has a huge impact on performance.

The only solution to this problem is to move the entire
system into hardware, completely eliminating the
communication channels. This will allow the system to
operate at full speed, only having to access communication
channels when retrieving jobs and reporting results.

2.4 AUTOMATED EXTRACTION OF
PARALLELISM

Identification of simple parallelism, that is sequential
blocks of hardware code that can be executed in parallel,
can have a huge impact on the performance of the
hardware system that is being designed. The tool that will
be used to apply optimizations for the purpose of this
paper can be found in [12].

Given a HandelC source file, this tool is capable of
parsing and extracting simple parallelism from the source
file. This information is then relayed to the hardware
designer who can implement the proposed changes in
order to build a more optimized version of the original
hardware design.

Figure 5 shows an overview of the operation of the
automated parallelism extraction tool. The tool operates
by taking, as input, a HandelC hardware definition file
provided by a software programmer or hardware designer.
From this source file the tool creates an abstract syntax
tree, annotated with additional information that is required
to compute the dependency graph from the source file.
Upon completion of the syntax tree, it is used to generate a
dependency graph structure for the hardware design. This
dependency graph structure is then used to determine
which individual lines of source can potentially be
executed in parallel. Currently the tool then applies a
greedy algorithm which builds as large and as many
parallel blocks as possible from the remaining available
lines of source code. This approach generates large
parallel blocks which in turn reduce the overall run time of
computations on the hardware.

Once the tool has determined where parallel blocks
may be added to the source hardware design, it produces a
report for the developer that details the necessary
modifications that must be performed in order to exploit
the available parallelism. Table 2 illustrates the report
output of the tool. After potentially several iterations with
the tool, the developer can then input their HandelC
specification into the typical tool flow starting with the
Agility DK tool suite [2].
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Deg
ree

SFW
@1.8GHz

(sec)

Altera
@66MHz

(sec) %

Xilinx
@80MHz

(sec) %

2 0.00004 0.00002 37.6 0.00001 24.8

3 0.00018 0.00009 46.6 0.000056 30.7

4 0.00076 0.00034 44.2 0.000228 30.0

5 0.00298 0.00145 48.6 0.001005 33.7

6 0.01495 0.00519 34.7 0.003664 24.5

7 0.04043 0.02005 49.6 0.01439 35.6

8 0.14300 0.07123 49.8 0.051788 36.2

9 0.54600 0.25595 46.9 0.188174 34.5

10 1.89800 0.89412 47.1 0.663513 35.0

11 6.24000 3.08083 49.4 2.302203 36.9

12 22.30800 10.58020 47.4 7.963267 35.7

13 74.78900 35.12896 47.0 26.53804 35.5

14 263.53600 120.09697 45.6 91.323996 34.7

15 888.30300 400.77343 45.1 306.075094 34.5

16 2985.50200 1343.56091 45.0 1049.41517 35.9

17 10192.85900 4424.87400 43.4 n/a n/a

18 32658.34090 14642.10675 44.8 n/a n/a

Table 1: Co-designed Performance Results [1]

In testing, this tool has proven that it is capable of
finding, on average, 78% of the simple straight line
parallelism that exists in a hardware design. Tables 3 and
4 shows manual and automatic optimization benchmark
results for AES encryption and LZ77 decryption hardware
circuits optimized using this tool. [12]

Figure 5: Automated Parallelism Extraction

Source Line# Source Action
* Par { Add
1 Statement 1 None
2 Statement 2 None
3 Statement 3 None
7 Statement 7 Move -
8 Statement 8 Move –
* } Add
4 While Move +
5 Statement 5 Move +
6 Statement 6 Move +
9 Statement 9 Move +

Table 2: Tool Report [12]

Test Par Blocks

LZ77 5
AES 13

Table 3: Manual Benchmark Statistics [12]

Test Par Blocks Found % of Total

LZ77 4 80%
AES 10 76%

Table 4: Automated Benchmark Statistics [12]

3. THE HARDWARE SOLUTION

In order to alleviate the performance degradation
caused by communications between the hardware and
software in the co-designed system, as well as the low
performance of the general purpose processor, a full
implementation was created in hardware. This
implementation was written in Handel-C which allowed
the hardware implementation to very closely mimic the
software algorithm wherever possible.

Much of the ANSI C code that was created for the
algorithm was capable of being directly translated into
Handel-C. The code that was directly translated required
only minimal modification to make it compatible with the
Handel-C language. Some of these changes included re-
definition of storage elements such as arrays to use static
sizes instead of being dynamically allocated. Another
trivial modification that was required in several places was
the un-nesting of function calls. Handel-C does not

Source
Parsing

Dependence
Analysis

Parallelism
Extraction

Reporting

CAD Tools
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support the usage of nested function calls of the form
foo( bar(x,y),z). This necessitated rewriting some
C code to call these functions sequentially using temporary
variables to store the return value of the nested function
call.

3.1 REMOVING RECUSION FROM THE
ALGORITHM

Once the code was converted to Handel-C syntax all
that remained was removing the recursion that exists in
several of the functions in the software. The functions that
required modification to remove recursion were the Gen
and GCD functions. Both functions were translated to their
loop based variants. Example 1 shows how the recursive
function definition for the GCD was transformed into a
loop.

Poly_GF3 gcd(Poly_GF3 a, Poly_GF3 b){

if(!b.top && !b.bot) return a;

return gcd(b, mod(a, b));

}

Example 1 (a): Recursive GCD Definition

Once the recursion was removed from the software
functions they were implemented in Handel-C. Following
the implementation in Handel-C, each function required
verification to ensure that the hardware versions were
equivalent to their software counterparts.

Poly_GF3 gcdx(Poly_GF3 a, Poly_GF3 b )

{

Poly_GF3 c,zero;

zero = {0,0};

while (a.top || a.bot)

{

c = a;

modx(b,a);

a = modxResult;

b = c;

}

return b;

}

Example 1 (b): Non Recursive GCD Definition

One of the larger challenges for this project was the
removal of recursion from the Gen function. Example 2
shows the Gen function with a manual stack.

inline void Push(int *pos, int t, int
p, int j, int s) {

stack[*pos][0] = t;

stack[*pos][1] = p;

stack[*pos][2] = j;

stack[*pos][3] = s;

(*pos)++

}

void Gen(unsigned t, unsigned p) {

unsigned int j, top, state;

top = 1;

Push(top, 1, 1, 0, 0);

top--;

while (top > 0) {

top--;

t = stack[top][0];

p = stack[top][1];

j = stack[top][2];

state = stack[top][3];

if (t > N) {

if (p == N) CheckIt();

}

else {

switch (state) {

case 0: {

a[t] = a[t-p];

Push(top, t, p, 0, 1);

Push(top, t+1, p, 0, 0);

break;

}

case 1: {

j = a[t-p] + 1;

if (j <= 2) {

a[t] = j;

Push(top, t, p, j, 2);

Push(top, t+1, t, 0, 0);

}

break;

}

case 2: {

j++;

if (j <= 2) {
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a[t] = j;

Push(top, t, p, j, 2);

Push(top, t+1, t, 0, 0);

}

break;

}

default: { break; }

}

}

}

}

Example 2: Non Recursive Gen Function

In order to remove recursion from the Gen function to
make it compatible with hardware it was necessary to
express the recursion in the form of a loop. One of the
issues with recursion in hardware is the requirement for
virtually unlimited memory within which the recursion can
grow. It was found through careful analysis that the depth
of the recursive calls to the Gen function was bounded by
the input value N. Because of this upper bound it became
possible to express the recursion as a loop by creating a
stack on which the state of each “recursive call” would be
saved.

Each iteration of the loop would emulate a recursive
call to the Gen function, pushing the previous state onto
the stack and then beginning computation on the new state.
Once computation is finished in the final recursive call,
the result is computed by tracing back through the states
stored on the stack to compile the final result.

This method provides a means to implement the Gen
function in hardware, but it does have some limitations. In
order for this method to work it is necessary to have a
bound on the size of the computation. In this case the input
value N is known at compile time, allowing the size of the
stack to be sufficiently large. In some cases, however, the
input size may also be limited by the available hardware
resources, as a very large input value may cause the stack
to consume all available resources, or more resources than
are actually available for the design. For this particular
application, the stack size grows to a rather small size, N,
where the algorithm is exponentially bound by the same N.
Thus, for this application we can easily fit the stack in the
dedicated memory bits that are available on the FPGA
device.

3.2 HARDWARE VERIFICATION

In order to verify that the hardware functions,
especially the functions that were transformed from
recursive to non-recursive, behaved as intended it was
necessary to perform some verification tests. Test cases
included boundary cases as well as a large number of
randomly generated inputs to the functions.

Verification of the transformed recursive functions
was performed in two stages. In the first stage, the non-
recursive algorithm was tested as a software algorithm.
Test cases were run against both the recursive and non-
recursive versions of the functions and their return values
were compared. Following running the test cases on both
the recursive and non-recursive functions it was deemed
that the recursive and non-recursive functions were both
functionally equivalent and so passed verification.

Verification of the Handel-C hardware code was
slightly more involved than testing software code against
software code. The Handel-C hardware code was again
tested using the same set of test cases used for testing the
recursive functions. These test cases were first ran in the
software version of the system, recording the results for
each test. The same tests were then performed on each
hardware function individually, running the hardware in a
simulation environment. The results were also recorded
and compared to those produced by the software for the
same tests.

Following verification of the hardware definition it
was deemed that the hardware definition is equivalent to
the software algorithm so the work could proceed to
benchmarking.

4. BENCHMARKING

In order to benchmark the hardware design of the
GF(3) algorithm, it was necessary to synthesize the
hardware definition to produce a hardware programming
file. It was decided that the hardware would not be
programmed onto a physical device for testing, but tests
would be performed in a simulation environment in order
to facilitate the gathering of statistics.

The Handel-C definition was first compiled using the
Agility Handel-C compiler to produce both an executable
simulation file as well as a synthesizable VHDL
description file [2]. The execution simulation kernel was
used to gather timing results for the hardware system and
the VHDL description file was used to gather resource
usage and clock speed statistics. Resource usage and clock
speed statistics were gathered by synthesizing the VHDL
specification in Xilinx ISE [18] targeting a Virtex II
FPGA (XC2VP100). This FPGA is the same device used
for gathering the results for the co-designed GF(3)
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algorithm. The results in Table 5 show the resource usage
and clock frequency for the design.

Clock Speed Slices Flip flops

68.523 23952 14579

Table 5: Resource Usage and Clock Frequency

Runtimes for the hardware were gathered by running
the simulation kernel on different degrees ranging from 3
to 12. Cycle statistics were gathered for each run, and
using the clock rate gathered from the Xilinx synthesis
tool a run time was calculated. These run times are
compared to the runtimes of the software in Table 6.
Software run times were gathered on a 1.8 Ghz Pentium .

N Cycles HW Time
(Seconds)

SW Time
(Seconds)

3 15158 0.000212 0.061

6 899241 0.0131 0.075

8 13052272 0.1905 0.241

10 170959343 2.4949 2.102

12 2072543280 30.2495 26.603

Table 6: Runtime Comparison

On inspection of the results, it can be clearly seen that
the hardware version of the algorithm, in its current form,
does not surpass the performance of the software
algorithm. While the hardware algorithm does not perform
better than the software, the performance gap between the
two is negligible when taking into account the speed grade
difference between the hardware running at 68.523 Mhz
and the software running on a 2.8 Ghz processor.

Taking this into account it was decided to attempt to
improve the hardware design further by attempting to
optimize the design for a hardware environment. Until this
point the software had been converted to a hardware
definition almost verbatim, ignoring any of the traditional
hardware specific features such as parallelism.

5. OPTIMIZATION

The optimization that was chosen for this design was
the addition of parallelism. The software design did not
take into account any of the areas of parallelism that might
lead to greater performance for the hardware system. For
the purpose of this work, only simple optimizations were
attempted. Individual statements that were capable of
parallel execution were grouped into parallel blocks using
the Handel-C par construct.

The parallel blocks were identified using a
combination of both an automated parallelism detection
tool [12] as well as manual optimization. This tool allows
for the automatic identification of code that can potentially
be executed in parallel. Currently the tool does not modify
the Handel-C source directly and requires intervention
from the designer to take advantage of code that is
identified as parallel. The automated tool found a large
portion of the available parallel blocks, and then manual
code inspection was used to find more parallel blocks that
the tool was unable to identify.

Clock Speed Slices Flip flops

68.909 23603 14383

Table 7: Resource Usage and Clock Frequency

The design was then simulated to gather clock cycle
statistics for running the design at several different input
values. These clock cycles were used, along with the clock
rate statistic from Table 7 to generate the final runtime
statistics for the new hardware which can be found in
Table 8.

N Cycles Percent
Reduction

HW
Time
(Secs)

SW
Time
(Secs)

3 10916 27.9% 0.000158 0.061

6 581396 42.4% 0.00843 0.075

8 8319569 36.3% 0.1207 0.241

10 108497030 36.5% 1.5745 2.102

12 1312560988 36.7% 19.0477 26.603

Table 8: Parallel Runtime Comparison

In order to emphasize the impact of using automated
software for identifying parallelism optimizations in this
hardware design it should be noted that the automated
optimization process took less than a second to complete.
Even in this case where it was found that several parallel
blocks that were identified did not compile correctly the
amount of time saved from doing a completely manual
optimization is quite high. It was found in [13] that
manually optimizing this design, with no previous
knowledge of the available parallel blocks takes a skilled
hardware designer approximately 8 hours of testing and
refining. Even taking into account approximately one hour
of testing to identify the two parallel blocks that did not
behave properly after compilation, a time savings of
approximately 7 hours was achieved.

After automated optimization of the hardware
algorithm was complete, a brief manual inspection of the
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remaining code was performed. This inspection yielded 8
more parallel blocks that were not found by the automated
tool for a total of 32 par blocks of two or more sequential
statements. This additional manual optimization took
approximately two hours to complete. Parallel execution
statements (par{}) were added to the design and the
design was recompiled, again producing both a simulation
kernel and a VHDL definition file for hardware synthesis.
Table 9 shows the synthesis results gathered from the
Xilinx ISE, again targeting the Virtex II FPGA
(XC2VP100).

Clock Speed Slices Flip flops

68.813 23348 14245

Table 9: Resource Usage and Clock Frequency

Using the clock speed from Table 9 and the cycle
statistics gathered from the simulation kernel the runtime
statistics for the hardware algorithm can be calculated.
Table 10 shows the new runtime statistics for the parallel
hardware design. Also shown in Table 10 is the percentage
reduction of clock cycles between the original non-parallel
design and the parallel design.

Table 9 shows that a small increase, 0.290 Mhz, in
clock speed was realized when moving from the non-
parallel to the parallel design. The number of slices and
flip flops utilized by the design was also reduced slightly.
This is explained by the manner in which the handelC
specification is synthesized. During synthesis the handelC
code is transformed into a datapath and a finite state
machine controller. By using par{} statements, states
within the FSM controller are merged, thus reducing the
size of the circuit. Contrary to some thoughts, the par{}
statement does not add redundancy, multiple
computational units, unless a shared function is used.
Thus, exploiting parallelism typically gives the benefit of
both faster computation and a smaller circuit. Figure 6
shows a comparison of the parallel and non-parallel
hardware against the software implementation.

N Cycles Percent
Reduction

HW
Time
(Secs)

SW
Time
(Secs)

3 8621 43.1% 0.000125 0.061

6 548189 39.0% 0.0079 0.075

8 8089562 38.0% 0.1176 0.241

10 106849548 37.5% 1.5527 2.102

12 1352768511 34.7% 19.6586 26.603

Table 10: Parallel Runtime Comparison

It can be seen in Figure 6 that the parallel version of
the hardware outperforms the software implementation of
the algorithm at all data points gathered for this work. It
also appears that the hardware will continue to outperform
the software even when computing orders higher than 12.
Figure 7 illustrates the trend in the percentage difference
between the hardware and software algorithms. This figure
clearly shows that the rate of convergence between the
hardware and software run times is slowing and that the
hardware will continue to outperform the software.
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5.1 Further Optimizations

After completion of benchmarking of the parallelized
design it was decided that an attempt would be made to
identify any other optimizations that were possible in the
design. After careful analysis of the design source code it
was determined that there were two such types of
optimizations that were suitable for this design.

The first optimization that was performed modified
the method used to return values from function calls. In
the original version of the hardware design, returns from
non-recursive functions were stored in global variables,
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and then assigned to the local variables as a result upon
returning from the function call. This was done initially to
reduce the amount of logic that was required in order to
allow some functions to be called in parallel. Performing
this modification entailed simply rewriting the function to
return a value instead of writing it into a global variable.

The second optimization that was performed was also
a side effect of applying the return value optimization.
Changing the return from a global variable to an actual
return value caused many function calls that could
possibly be made in parallel to break. In order to fix this
all of these functions were changed to inline functions.
What this means is that instead of the compiler
synthesizing control logic for a single logic core for each
function, it creates a new instance of the logic for each
function every time that function is called. This
optimization has the effect of increasing the resource
usage of the design, but decreasing the overall runtime of
the design by reducing the amount of steps required to
perform a function call.

Upon completion of these new optimizations the
design was once again benchmarked, and the resource
usage and clock rate statistics shown in Table 11 were
gathered.

Clock Speed Slices Flip flops

58.998 Mhz 35991 34945

Table 11: Resource Usage and Clock Frequency

A simulation of the newly optimized hardware design
was then performed, and cycle statistics for several input
values were gathered. These cycle statistics, in conjunction
with the clock rate given in Table 11 provide the actual
runtimes shown in Table 12.

N Cycles Percent
Reduction

HW
Time
(Secs)

SW
Time
(Secs)

3 7339 14.87 0.000124 0.061

6 464256 15.31 0.00786 0.075

8 6776626 16.23 0.11486 0.241

10 88118822 17.53 1.49356 2.102

12 1089884747 19.40 18.4732 26.603

Table 12: Parallel Runtime Comparison

As can be seen in Table 12, the newly optimized
version of the hardware does indeed increase the
performance of the design by an average factor of 1% over
the parallelism only design.

Table 11 shows a comparison of the hardware run
time of all four version of the hardware. This table
illustrates the differences in performance gains along with
the large amount of performance that was gained through
the final round of optimizations.

N Original Automated
Parallelism

Manual
and

Automated
Parallelism

Final

3 0.000212 0.000158 0.000125 0.000124

6 0.0131 0.00843 0.0079 0.00786

8 0.1905 0.1207 0.1176 0.11486

10 2.4949 1.5745 1.5527 1.49356

12 30.2495 19.0477 19.6586 18.4732

Table 13: Comparison of all Designs

5.2 Comparison of Multmod Software and
Hardware

This section will show a comparison of the hardware
implemented for the Multmod function against the original
software implementation. This section is meant to support
that findings of this paper by showing that not only does
the entire system outperform the software implementation
of the GF(3) software, but also outperforms the
implementation of the Multmod function which was
implemented in hardware originally in [1].

Figure 8 shows the results that were gathered for these
benchmarks. These statistics were gathered by adding
cycle accurate counters to the final optimized version of
the Multmod function, and then rerunning all of the
simulations used previously. Statistics from these cycle
counters were then gathered.
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Figure 8 clearly shows that while the optimized HandelC
design runs at a slower clock rate then the Xilinx
implementation, it still outperforms this implementation.
This highlights the speed improvements that can be
achieved by applying specific optimizations to a hardware
design, as well as the speed improvements from moving
from a co-designed environment to a full hardware
implementation.

6. Conclusion

Based on the results gathered after optimizing the
Handel-C design for the GF(3) primitive and irreducible
polynomials algorithm it can be said that this work is a
success. The entire algorithm was implemented in
hardware and verified to function correctly. The results
found in Section 5 highlight the performance of the
hardware system, which outperforms the software on all
test points up to order 12. It also appears that, based on
Figure 2, the software will continue to outperform the
hardware on higher orders. Figure 9 shows a comparison
of the final results gathered. This figure clearly shows that
the final optimized version of the hardware outperforms
the original software version at all collected data points.
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Figure 10 highlights the amount of user effort that
was required to complete each stage of the optimization
process. The figure displays improvements based on the
original, un-optimized version of the hardware, based on
percentage increase in performance per minute of
development time to achieve that performance increase.

Finally Figure 11 shows the increase in logic
usage between the original and optimized versions of the
hardware. This figure highlights how, while performance
has increased, in the case of the final optimized version so
have the resource requirements to implement the design in
hardware.
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7. Future Work

While the work can be considered a success, there is
still much work to be done to further improve the
performance of the system. At present only simple
parallelism has been identified in the system. While
parallelism between individual statements in a Handel-C
program can greatly increase performance, there can be
even greater performance gains from exploiting loop
based parallelism or parallelism between different
functional units.

Another optimization that may greatly benefit this
work is the identification and implementation of a
pipelined data path. A pipelined data path may increase
the throughput of the algorithm by increasing the amount
of work that is done per clock cycle by breaking the
algorithm down into functional units that can operate in
parallel much like an assembly line.
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