International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

A Cost-Benefit Analysis of Accessibility Testing in Agile Software Development

Results from a Multiple Case Study

Aleksander Bai
Norwegian Computing Center,
Oslo, Norway
Email: aleksander.bai@nr.no

Abstract—It is important to include accessibility testing in
software development to ensure that the software developed
is usable by as many people as possible, independent of their
capabilities. Few guidelines exist on how to integrate accessibility
testing in an agile process, and how to select testing methods
from a cost-benefit point of view. The end result is that many
development teams do not include accessibility testing, since they
do not know how to prioritize the different testing methods
within a tight budget. In this paper, we present an evaluation
of nine accessibility testing methods that fits in an agile software
development process. We discuss the cost of each method with
regards to resources and knowledge requirements, and based on
a cost-benefit analysis, we present an optimal combination of
these methods in terms of cost and issues discovered. Finally, we
describe how accessibility testing methods can be incorporated
into an agile process by using the agile accessibility spiral.

Keywords—Accessibility testing; Agile software development;
Cost-benefit analysis; Usability;

I. INTRODUCTION

Accessibility testing in software development is testing the
software to ensure that it is usable by as many people as
possibly, independent of their capabilities. The past decade
have seen an increased interest in integrating usability in
the software development process. However, far to little at-
tention has been paid to the field of accessibility, and how
to incorporate accessibility testing in software development.
Earlier we have described a cost-benefit approach for selecting
accessibility testing methods [1]. In this paper, we further
investigate and develop this approach with an additional case
study.

There is an increased focus on accessibility from legislation
and the United Nations with “Convention on the Rights of
Persons with Disabilities” [2]. While usability focus on the
quality and ease of use for a product, accessibility focus on
letting people with the widest range of capabilities be able to
use a product [3]. However, both definitions are overlapping
and within the spirit of universal design: the design of products
and services to be usable by all people, to the greatest extent
possible [4].

Studies show that doing usability testing is costly and can
take around 8-13% of the project’s total budget [5]. Much
of the cost goes to recruiting participants and evaluators
in addition to the man-hours required for conducting and
evaluating the results [6]. For accessibility testing, the cost can
be even higher than usability testing, since recruitment and ac-
commodation of participants usually have more requirements.

Heidi Camilla Mork
Kantega AS,
Oslo, Norway
Email: heidi.mork@kantega.no

Viktoria Stray
University of Oslo,
Oslo, Norway
Email: stray@ifi.uio.no

However, by not doing accessibility testing at all or by
postponing testing until the end of the project, the cost can
be extremely high, and it might not even be possible to do
accessibility adjustments at a late stage [7] [8]. Many studies
show that software that is hard to use, or have features that
are hard to understand, make users find better alternatives [9].
There might also be legal requirements to provide accessibility,
like in the European Union and in the US.

Our approach is targeted towards agile software devel-
opment, since it has become the mainstream development
methodology [10]. According to a recent survey [11], more
than 70% of developers work in agile software projects. Agile
software development emphasise delivery of working software
in short development iterations [12], active customer engage-
ment [10], frequent communication through daily stand-up
meetings [13] and integration of development and testing [14].
All these principles make it feasible to integrate accessibility
testing in the whole development process.

We argue that developers, testers and designers in agile
software teams can take more responsibility for accessibility
testing, and thus lower the total testing cost of the project and
at the same time deliver a better product that is both more
usable and accessible. Jurca et al. [15] found that one of the
major problems with integration of Agile methods and User-
centered design (UCD) was that interaction designers are often
overworked and distributed across several projects. Thus, it is
beneficial that developers and testers in agile software teams
also take responsibility for accessibility testing.

During our evaluations, we have investigated different ac-
cessibility testing techniques, and we discuss the cost-benefit
aspect of these in an agile development process. We argue
that accessibility testing does not necessarily require a high
cost. We describe where in the process the methods can
be used and how they can be combined in optimal ways.
Consequently, the impact from accessibility testing towards
the end of the project will be minimized, and thus reduce
the cost of retrofitting [7]. Our suggested approach is not a
substitute for doing user testing, but an addition, incorporated
into the agile development process, to reduce the overall cost
and increase the usability and accessibility of the software.

The remainder of this paper is organized as follows. Section
IT summarizes related work, and Section III gives an overview
of accessibility testing methods. Section IV describes the
evaluation setup and the two case studies, and the results from

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

96



the studies are presented in Section V. Section VI reports our
cost-benefit analysis of the accessibility testing methods and
Section VII discusses the results and implications. We have
presented limitations in Section VIII, before we summarize
and conclude in Section IX.

II. RELATED WORK

Zimmermann and Vanderheiden [16] have proposed a
method for integrating accessible design and testing in the
development of software applications, both iterative and non-
iterative processes. However, the proposed method’s main
focus is on how to gather accessibility requirements and does
not contain much details on how to actual perform testing in
an iterative process. There has been some focus on integrating
an agile development process with usability testing [17], and
in recent years, there has been an increasing interest in Agile
UX (User Experience) [18]. Bonacin et al. [19] propose how
to incorporate accessibility and usability testing into an agile
process, but do not discuss which accessibility testing methods
that are optimal to use or how to combine them in an efficient
setup. Horton and Sloan [20] have proposed a accessible user
experience framework for organizations on how to integrating
accessibility in the design and development process.

There has been research on how to conduct a cost-benefit
analysis of universal design of ICT [21], but there is a lack
of case studies to verify the concepts. The research focus has
also primarily been on the overall effect of universal design,
and not the testing methods.

A recent systematic review of usability testing methods for
software development processes [9] requests more research
into evaluating the different testing methods and how they
affect the testing outcome. To the best of our knowledge, there
are no evaluations of accessibility testing methods in an agile
process, and there are no studies of which accessibility testing
methods that are most effective compared to resources and
knowledge available in a agile team. We address the latter
issue in this paper by showing a cost-benefit approach on how
to select accessibility testing methods in an agile process.

Most agile team members have good knowledge and focus
on both testing and usability, but it is much rarer to consider
accessibility as part of the development cycle. This is probably
caused by little knowledge and experience with accessibility
testing, cost and time constraints associated with accessibility
testing, and available resources to perform accessibility testing.
According to [22], who surveyed participants involved in web
development projects, only 20% consider accessibility aspects
in their projects and nearly half said that they do not use any
accessibility evaluation methods.

III. BACKGROUND

Nowadays there is a widespread application of agile meth-
ods in software projects. Agile software development is a set
of principles for developing software iteratively, in order to
react rapidly and flexible to changing requirements [12]. Agile
development teams have given more attention to the impor-
tance of usability the last decade, and interaction designers are

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

often part of the agile teams. User-centered design (UCD) is a
design process where the needs, requirements and capabilities
of the end-users are considered throughout the entire design-
and development life cycle. The integration of agile principles
with those from UCD is called Agile-UX. In recent years,
there has been an increasing interest in Agile UX [18], but
little attention has been paid to the field of accessibility.

Accessibility is often divided into two parts; fechnical
accessibility and usable accessibility [23]. Technical acces-
sibility is to follow good technical standards when developing
software, like giving alternate text to images or use the correct
heading tag. Usable accessibility is to ensure that the solution
is usable to the widest range of users as possible in the
sense that users can understand, navigate and interact with
the solution. Software can be technical accessible but still not
usable if the user does not understand how to interact with
the system in order to solve a task. Note that there is rarely
a clean separation between technical and usable accessibility
and the issues are often overlapping.

There are several methods for testing usability [9] and ac-
cessibility [16] in software development: automated checkers,
guidelines, expert walkthrough, interviews and user testing, to
name a few. The different testing methods uncover different
kinds of issues. Automated checkers cover technical accessi-
bility, whereas methods closer to user testing cover more of
the usable accessibility.

Automated checkers are tools that a developer or tester
can run to get an evaluation of issues regarding the technical
accessibility. There are numerous alternatives out there [24],
like the NetBeans accessibility module [25] that integrate
directly into the developer’s tools, or tools that can be used as
a step in continuous integration. However, automated checkers
only check issues that can be detected programmatically, i.e.,
issues related to technical accessibility.

There are many different tools, kits or wearables that a
person can use to simulation various types of disabilities. The
motivation is to let a person experience an impairment so the
person might be able to gain some insight into the issues that
an impairment might have with a certain design or solution
[26]. It is important to note that the intention of a simulation
kit is not to simulate the disability in itself, which is highly
criticized [27]. Simulation with wearables, also refered to as
screening techniques [28], will uncover issues mainly in the
area of usable accessibility, but it will also find issues with
technical accessibility, for instance low color contrast between
text and background.

Testing with assistive technology like a screen reader or
computers’ high contrast mode will make issues with the
technical accessibility very obvious as assistive technology is
highly dependant of proper coding to function properly.

Checklists and guidelines provide the evaluator with a set
of instructions and criteria to evaluate, and the WCAG (Web
Content Accessibility Guidelines) 2.0 standard [29] is the
de facto choice. Checklists cover both technical and usable
accessibility.

Persona walkthrough or persona testing approach [30],

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

97



is where an expert simulates or play-acts a persona while
carrying out tasks. The more knowledge the expert has about
the disability that a particular persona has, the easier it is to
do a realistic and credible acting while testing the solution. A
persona walkthrough will usually cover usable accessibility.

There are many approaches on how to group accessibility
testing methods [31], and we have chosen to group the testing
methods into five groups as shown in Table I. The table
shows different groups of testing methods with an indication
of whether the group mainly discovers technical or usable
accessibility issues, or issues of both types.

TABLE I. ACCESSIBILITY TESTING GROUPS.

# | Group Technical Usable
accessibility  accessibility

1 | Automated checkers X

2 | Checklist and guidelines X X

3 | Simulation kits X

4 | Assistive technology X

5 | Walkthrough X

The best approach for accessibility testing is user evaluation,
since the actual users are involved and the testers does not
have to do any approximation of impairments or mental states
[32] [33]. However, it is also an expensive method because
it requires much planning, recruitment and management [6].
It is also particular important to find as many problems as
possible before involving users. Examples of user evaluation
involve user testing, interview and focus groups. The focus of
our study was to investigate testing methods that members of
an agile team can use themselves during the various phases of
the development process. User testing is therefore outside the
scope of this paper.

IV. CASE STUDIES

To conduct a cost-benefit study, we at least need to consider
resources requirements of the methods, including knowledge
requirements. We also need to consider what kind of issues
the different accessibility testing methods can discover, and
how the test methods differ from each other. A further goal
is to investigate where in an agile development process the
different accessibility test methods might be most valuable.

We conducted two case studies with two different software
solutions. After the first case study we performed a cost-benefit
analysis, and the result of this analysis was used to suggest
which methods to use and when to apply the different methods
in an agile development process. In the second case study we
wanted to further investigate the most valuable testing methods
found in the cost-benefit analysis from the first case.

In each case we did a selection of accessibility testing
methods, where each selected method was tested by at least
two persons, and the results were aggregated. One person
performing one test method is called an evaluation. Each
evaluation had a coordinator who wrote down the issues re-
ported by the tester, and the coordinator also made notes when
difficulties, that were not verbally expressed, were observed.
The registered issues were then classified as critical, cognitive,
both or none of them. We defined a critical issue as an issue

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

that prevents the participant from continuing or completing
a task; e.g., difficult to read images or text because of poor
contrast or resolution. A cognitive issue was an issue caused by
confusing or missing information for the given context; e.g.,
not understanding the purpose of a screen or not understanding
how to operate a controller. A problem can thus belong to both
the critical and cognitive category, as it was often the case. The
number of issues for each of the testing methods, together with
the number or critical and cognitive issues, formed the basis
for further analysis.

For the case studies, we selected methods from all the
groups in Table I. From Group 1 we used the WAVE Web
Accessibility Evaluation Tool [34], which is an online tool
that evaluates the website of any given available URL. The
user provides the URL and the tool gives a report on the
errors on the web page. We selected the WCAG (Web Content
Accessibility Guidelines) 2.0 standard [29] and the VATLab
checklist [35] from Group 2. From Group 3 we used Cam-
bridge inclusive design glasses [36] for simulating reduced
vision, and the Cambridge inclusive design gloves [36] to
simulate dexterity reduction. The gloves are typically used for
testing a physical product, but they were included in the first
case since there was a card reader involved. From Group 4,
we used the screen reader NVDA [37] and the built-in high
contrast mode in Windows. We used dyslexia and old male
for persona walkthrough from Group 5.

In the first case study we had two participants with the nec-
essary knowledge and experience to do persona walkthrough
with one persona as old male and one with dyslexia.

The total set of methods used in the case studies is shown
in Table II.

TABLE II. SELECTED METHODS FOR CASE STUDIES.

Method Case A Case B

M1 | Automated checker X
M2 | Simulation kit reduced vision X X
M3 | Simulation kit reduced dexterity X

M4 | Assistive technology screen reader X X
M5 | Assistive technology high contrast X X
M6 | Manual WCAG X X
M7 | VATLab checklist X X
M8 | Persona dyslexia X

M9 | Persona old male X

The different testing methods vary in how much resources
and knowledge it takes to use them. In each case study we
categorized the methods as either low, medium or high in
required amount of resources and knowledge. In terms of
resources, low means that none or little prerequisites (tools,
setup, administration) are required to conduct the method;
medium means that some prerequisites are required, and they
are relatively cheap (under $1000); high means that the method
requires considerable investments in terms of setup, purchase,
administration or maintenance. In terms of knowledge, low
means that no or very little prior knowledge is required;
medium require some prior knowledge, either technical (usage,
commands) or domain (knowledge or experience with the
impairment); high means that extensive or expert training is

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

98



required to conduct the evaluation. These categories will be
used for the cost-benefit analysis in Section VI.

A. Case A: e-ID

The solution used for evaluation in case A was a pilot
for electronic identification, developed during the EU project
FutureID [38]. The pilot uses a software certificate or an ID
card with a card reader for the authentication process. The pilot
uses both a Java client and a web front end, and consists of
around ten different user interfaces with varying complexity.

1) Selected Methods: We used eight of the methods from
Table II and labelled them with the categories low, medium
and high with regard to the requirements of resources and
knowledge.

Almost all methods are labelled as low with regard to
resources. The only methods with prerequisites were the
simulation kits because some hardware must be purchased
ahead of testing. This is usually a one-time purchase, but it
must also be stored and assembled before usage, so we think
it qualifies as medium resource demanding compared to the
others.

Most of the methods require very little prior knowledge.
Method M4 involves using a screen reader, which requires
knowledge on how to operate it, but almost everyone can learn
how to use a screen reader in a reasonable amount of time, and
therefore we labelled it medium. However, our level of using
screen readers cannot compare with the expert level of people
that use screen readers daily and are dependent on them.

The persona walkthrough is informal and relatively quick
to do but is heavily dependent on the selected personas
and the experience that the expert has with the particular
type of disability. The persona walkthrough methods require
expert knowledge, and is thus marked with high knowledge
requirements. However, there are few resource requirements
for persona walkthrough methods, and this is why they are
labeled with low for resource requirements.

Table III gives the summary of the selected methods, and
more details can be found in [1].

TABLE III. OVERVIEW THE SELECTED METHODS

Method | Resources Knowledge
requirements — requirements
M2 Medium Low
M3 Medium Low
M4 Low Medium
M5 Low Low
M6 Low Low
M7 Low Low
M8 Low High
M9 Low High

2) Participants: Five different participants performed the
evaluations, where the participants’ knowledge on accessibility
testing ranged from beginner to expert. All the participants had
technological background, their age ranged from 35 to 61, and
there were both males and females in the group. Two of the
participants where recruited based on their experience with
persona testing and their knowledge on dyslexia and aging.
The participants performed a total of 17 evaluations.

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

TABLE IV. PARTICIPANTS P1 — P5 AND THE METHODS THEY EVALUATED

Method
M2

Pl P2 P3

X

P4 PS5

I~
E I I
E I I

3) Procedures: All the evaluations were conducted on the
same machine with the same setup to ensure an equal test
environment. A short initial test was conducted before the
evaluations started, in order to verify that the overall setup,
the scenarios, and the ordering of them were best possible.
The goal of all the scenarios was to successfully log into the
solution. Each participant performed five different scenarios in
the same order:

1) Invalid digital certificate

2) Valid digital certificate

3) Invalid smart card

4) Valid smart card, but incorrect PIN code
5) Valid smart card and correct PIN code

The participants were unaware that they were given invalid
certificate, invalid smart card and invalid PIN (Personal Iden-
tification Number) code. The scenarios were also executed
in the listed order to avoid biasing the participants as they
should gradually progress a little further in the login process.
Each method took under two hours to complete for a single
participant for all the scenarios.

B. Case B: pension

The solution used for evaluation in Case B is a Norwegian
public available website, Norsk Pensjon [39], used by citizens
to get an overview of their personal pension schemes. The
key functionality of the website is a calculator where one can
estimate future pension payments based on parameters like
current salary and the expected year of retirement. The com-
pany behind the website is concerned with universal design
and accessibility. The website has recently been evaluated by
accessibility experts, and there is a plan to improve the site
accordingly. The website is developed by the IT consultancy
company Kantega, and current members of the development
team were participants in the evaluation. The focus of this
second case was to further verify the results of the first Case
A and see how the testing methods worked for participants in
agile teams. An important aspect with Case B was to evaluate
the key findings from case A in real environments with actual
developers and testers.

1) Selected Methods: The methods for this second case
was chosen based on the cost-benefit analysis of the first
case and the agile accessibility spiral [1] that fits in an agile
development process. We also chose to include an automated
checker that were not included in Case A, since automated
tools in general require fewer resources than other methods.
We hypothesised that an automated checker could be a natural

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

99



first choice for any agile team, even though they only discover
issues that are detectable programmatically. The selected tool,
WAVE [34] is free to use, and thus low in required resources.
WAWE gives reports with explanations to the operator, hence
very little prior knowledge is required and we labelled it low.

We used the Cambridge inclusive design glasses [36] to
simulate reduced vision, but we did not test with the simulation
kit for reduced dexterity since no extra device, like a card
reader, was involved. The testing methods assistive technolo-
gies screen reader and high contrast were also selected. All
these methods were labelled with the same knowledge and
resource requirements as in Case A. We also included the
manual WCAG evaluation and the VATLab chekclist, based
on how they scored in Case A. However, we experienced that
the checklists were more difficult to use than expected, and
we therefore decided to label them as medium in knowledge
requirements in Case B. We chose to not include persona
testing in this second case since none of the participants or
teams had experience with this type of testing.

TABLE V. OVERVIEW OF THE SIX METHODS

Method | Resource Knowledge
requirements — requirements
Ml Low Low
M2 Medium Low
M4 Low Medium
M5 Low Low
M6 Low Medium
M7 Low Medium

2) Participants: There were in total six participants. The
participants were a designer and a developer of the current
development team for the website, along with other developers
and technologists. Their age ranged from 25 to 37, and there
were both males and females in the group. The participants
performed a total of 22 evaluations.

TABLE VI. PARTICIPANTS P1 — P6 AND THE METHODS THEY EVALUATED

Method | P1 P2 P3 P4 PS5 P6
M1 X X X X

M2 X X X X

M4 X X X X

M5 X X

M6 X X X X X X
M7 X X

3) Procedures: The evaluations with methods from the
simulation group were conducted with a coordinator, and
one or two observers who registered issues. The participants
performed five scenarios in the same order:

1) Calculate the pension payment at age 80 if you retire at

age 63 and currently have a salary of 500 000 NOK

2) Send the payment plan by email in the case where you

retire at age 70 and have a salary of 500 000 NOK
3) Find the estimated payment at age 68 if you take partial
retirement at age 66 with 50% work position and you
want to take out 40% of the pension. You have a salary
of 500 000 NOK and take full retirement from age 70

4) Find the payment at age 70 given in percentage of your
current salary, when you retire at age 63 and have a salary
of 500 000 NOK

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

100

5) Find information about contractual pension (AFP)

The scenarios were ordered so that it gradually revealed
more of the functionality in the solution. After completing an
evaluation, the participant was asked how it was to perform
the evaluation and to reflect on the use of the test method.

The selected methods from the checklist group, manual
WCAG and VATLab checklist, were conducted individually
and remotely by the participants. The participants received a
checklist with success criteria to meet, together with instruc-
tions to mark a criteria in the checklist as failed if they could
find an example which did not meet the criteria, otherwise
mark it as passed. If the criteria was evaluated as not applicable
or relevant for the solution, the criteria was marked n/a.

V. EVALUATION RESULTS

The evaluation results from the case studies in Section IV
are presented here, together with a comparison on how the
testing methods performed in the two cases.

A. Results from Case A

As can be seen from Table VII, a high number of critical
issues were discovered with most of the methods. It should be
noted that a critical issue might only be critical in the context
of a given disability. For instance, incorrect HTML tags can be
critical for blindness, but may not be relevant for impairments
like reduced dexterity. However, for the solution as a whole, all
critical issues are equally relevant since an issue might exclude
some users if nothing is done to improve the problem.

TABLE VII. ISSUES FOUND IN CASE A.

Method | Issues  Critical — Cognitive
M2 54 14 9
M3 4 0 0
M4 33 26 0
M5 10 4 0
M6 32 7 5
M7 19 17 0
M8 34 15 15
M9 27 13 9
213 96 38

The simulation kit methods (M2, M3) found a lower
percentage (25.9%) of critical issues compared to the other
methods. The main reason was that most of the issues reported
by these methods were visual problems that were annoying at
best, and in some cases problematic, but not marked as critical
since it did not hinder further progress. Of the critical issues
discovered with simulation kits, almost all were also marked
as cognitive. Note that a relative few number of issues were
found when simulating reduced dexterity, and we believe this
is mainly because the application did not require much motoric
precision. This is of course very dependent on the software that
is evaluated.

Manual WCAG (M6) also reported relative few critical
issues (21.9%), and this was mostly because the WCAG
evaluations criteria are high level. For instance did a single
criteria in WCAG cause over 17 critical issues to be reported
in the screen reader method (M4) since it has a much finer

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



granularity. The WCAG evaluations also reported few cogni-
tive issues for the same reason.

The screen reader testing method (M4) identified the most
critical issues (78.8%), and many of the issues were related
to poor compatibility with screen readers. We suspect that
more issues could be found if there had not been so many
critical problems that made further investigations in many
cases impossible. High contrast testing method (M5) did not
find many issues, and even fewer critical issues, and this is
mainly because contrast was not a big problem in the solution.
VATLab checklist (M7) found a very high number of critical
issues, and this is because the focus is on compatibility with
screen readers, and as already explained the support for screen
readers was poor.

Persona testing methods (M8, M9) found the most cognitive
issues, and this is not unexpected since the persona used in the
evaluations focused on usability and understanding the context.
Most of the issues reported by persona testing were directly
related to the participant not understanding the context of a
page and what was expected from the participant. A high
number of the cognitive issues were also marked as critical
since it is impossible for the participant to complete his task,
and this explains the high number of critical issues discovered
by persona testing.

B. Results from Case B

The results from Case A guided us in choosing the methods
to investigate further in Case B. We chose automated checker,
simulation kit reduced vision, screen reader, high contrast and
checklists, as can be seen in Table VIII. Also here it must be
noted that a critical issue might only be critical in the context
of a given disability. This is discussed further in Section VIII.

TABLE VIII. ISSUES FOUND IN CASE B.

Method | Issues  Critical — Cognitive
Ml 27 0 0
M2 58 8 17
M4 16 7 5
M5 16 2 5
M6 25 5 6
M7 15 8 0
157 30 33

All methods found a reasonable amount of issues, but
relatively few critical issues, at least compared to what was
found in Case A. This was partly expected since the solution
used in Case B were in production and less complex than
the solution in Case A. However, more cognitive issues were
found in Case B. In Case A, only 17.8% of the issues reported
was considered cognitive while 21.0% of the issues in Case
B were considered cognitive. This is probably because the
domain (pension) in Case B was more complex than Case A
(login), and thus more cognitive issues were found. It should
be noted that few of the cognitive issues were marked as also
being critical.

The simulation kit with reduced vision (M2) found con-
siderably more issues compared to the rest, and this is mainly
because of visual problems that were annoying, but not critical

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

101

since it did not prevent progression. This testing method also
found most cognitive issues, and this is because reduced
vision caused the tester to miss or misunderstand important
information.

WCAG (M6) found many issues and managed to identify a
large number of cognitive issues in addition to some critical.
WCAG in Case B found considerably more cognitive issues
than in Case A, and this was partly due to a revaluation of
the WCAG checkpoints as explained in Section IV, but also
because correct delivery of content and error messages are
even more critical in a complex domain such as pension.

The automated checker (M1) found many issues, but none
that were considered critical or cognitive. This is because the
identified issues were only trivial issues like minor contrast
problems and not fundamental problems. It was also a problem
that the automated checker could not be used for a solution
that uses a secure connection and two-factor authentication,
and could thus only be used on the static pages and not the
more complex pages. We suspect more issues would be found
otherwise, but not necessarily more critical or cognitive.

Both the screen reader (M4) testing method and high con-
trast (M5) method found a reasonable amount of issues, but of
very different types. The screen reader testing method revealed
poor support for screen readers, while the high contrast found
issues connected to poor contrast mode in essential images in
the solution. The VATLab checklist (M7) found many of the
same issues as the screen read method.

In Case B, external experts had evaluated the accessibility
of the solution. The findings from the experts and the findings
from our case study with internal developers and testers
showed that we found more or less the same type of issues.
This further indicates that doing internal accessibility testing
is crucial and worth the investment.

C. Comparison of both cases

Four of the testing methods were the same for Case A and
B, and it is interesting to see which of these four methods that
identified most issues in total, most critical issues and most
cognitive issues. A heat map of the issues found is shown
in Figure 1, where green indicate high percentage and red
indicate low percentage.

Total Critical Cognitive
M2  40,3%  22,4% 55,3 %
M4 17,6 % 33,7 % 10,6 %
M5 9,4 % 6,1 % 10,6 %
M6  20,5%  12,2% 23,4 %
M7 12,2 % 25,5% 0,0 %

FIGURE 1. HEAT MAP OF ERRORS FOUND WITH SHARED METHODS IN
BOTH CASES.

It is apparent from the heat map in Figure 1 that the testing
method simulation kit with reduced vision (M2) identified
most issues in both case studies. This method also found most

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



cognitive issues, which might be unexpected at first glance.
However, many cognitive issues are linked to poor descriptions
or lack of explanations, and this often makes it even harder
for the person to understand the purpose of a particular step
or page. The WCAG testing method (M6) also found many
cognitive issues, but had more trouble finding critical issues.
This is most likely because most of the WCAG criteria are
high level and too general.

A high coverage of critical issues was found by the screen
reader testing method (M4) and the VATLab checklist (M7)
in both cases, and this is not unexpected since both try to
find problems with screen reader support. As both test cases
show, if a solution is not created with screen readers in mind,
then the solution is usually not possible to use properly with
a screen reader and thus many critical issues are identified.

The high contrast testing method (M5) found generally few
issues, and also few critical or cognitive. It is worth mentioning
that most of the issues found with high contrast were also
found by other methods (over 75%).

Total Critical Cognitive
Automated tools 7,3 % 0,0 % 0,0 %
Checklists 24,6 % 29,4 % 15,5 %
Assistive Technology 20,3 % 31,0% 14,1 %
Simulation kit 31,4% 17,5 % 36,6 %
Expert walkthrough 16,5 % 22,2 % 33,8%

FIGURE 2. HEAT MAP OF ERRORS FOUND WITH THE VARIOUS TESTING
METHOD GROUPS.

Figure 2 shows a heat map of testing method groups for
both cases. The heat map supports the notion that some testing
method groups are better at finding critical issues, while others
are better at finding cognitive issues. As can be seen from
Figure 2 both simulation kit and expert walkthrough have a
high discovery rate for cognitive issues, while checklists and
assistive technology testing methods have a high discovery rate
for critical issues.

D. Testing time usage

During the evaluations, we noted the time used per tester,
and the average time per testing method can be found in Table
IX. The numbers in Table IX is the average for both Case A
and B, and as the table shows, most methods use between 20
and 60 minutes, with the exception of method 3 and 5. The
reason for such low numbers for M3 is because the solution
was not very depended on dexterity as explained in Section V.
Method M5 also gave very quick test times, mostly because
it was fairly obvious what was standing out and what was
difficult to see with a high contrast mode.

The used time recorded is depending both on scenario, expe-
rience and solution that is being tested. Some testing methods
were not tested with scenarios, like automated checker (M1),
WCAG (M6) or VATLab checklist (M7), but used in an open
exploratory testing approach. We saw on average higher testing
times for most methods in Case A compared to Case B, and
this is most likely because Case A was more complex with

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

102

more pages than Case B. However, the average time per testing
method is representative for both cases. More important is that
the relative difference between the methods were similar for
both cases.

TABLE IX. AVERAGE TIME PER METHOD.

Method Time Issues Case A Issues Case B
M1 ~ 20 min - 27
M2 ~~ 45 min 54 58
M3 =~ 10 min 4 -
M4 =~ 30 min 33 16
M5 =~ 10 min 10 16
M6 =~ 60 min 32 25
M7 ~ 45 min 19 15
M8 ~ 60 min 34 -
M9 ~~ 60 min 27 -

It is interesting to see the number of issues found compared
to average time used per method. This is shown in the two
columns to the right in Table IX. In general, more issues are
found with a longer average testing time per method, but there
are exceptions like the screen reader testing method (M4) that
finds many issues in a short amount of time. This is also very
apparent for the automated checker (M1) which finds many
issues in a very short amount of time. However, most of those
issues are more trivial as explained in the previous sections.

VI. COST BENEFIT ANALYSIS

Based on the evaluation results in Section V, we performed
a cost-benefit analysis (CBA) of which combinations of ac-
cessibility testing methods that identified most issues with
regards to resources and knowledge. The motivation for doing
a CBA is to get a more objective evaluation of the different
testing methods, so it is easier to decide when to include a
testing method in the process. CBA is a systematic approach
for comparing strengths and weaknesses for different options
[40]. It is a well-known technique used in many fields [41],
but to our knowledge we are the only ones that have used it
for comparing accessibility testing methods [1].

In order to do a CBA we must first create a cost function.
We have defined the cost function to be the product of
resources and knowledge (explained in III) where resources
and knowledge € {1,2,3 } and low corresponds to 1, medium
to 2 and high to 3. This makes sense since both variables
contribute equally to the cost of executing a testing method.
We argue that the most beneficial accessibility testing methods
are those that find a high number of issues, and also many
critical and cognitive issues. We can then define the benefit
function as the sum of found, critical and cognitive issues.
Based on the definition of cost and benefit we can then define
the cost-benefit relationship accordingly:

OB — Ltotal2 + critical® + cognitive? 0

Vvn  resources X knowledge
Where total is the total number of issues for n methods,
cognitive is the total number of cognitive issues for n method,
critical is the total number of critical issues for n method
and n is the number of methods. We have included squared

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

103

TABLE X. COST BENEFIT RESULTS CASE A. TABLE XI. COST BENEFIT RESULTS CASE B.
# Methods Cost Issues  Critical ~ Cognitive # | Methods Cost Issues  Critical ~ Cognitive
1 M2, M4, M6, M7 6 64.8% 66.7% 36.8% 1 M2 2 36.9% 26.6% 51.5%
2 M2, M4, M6 5 55.9% 49.0% 36.8% 2 M1, M2 3 54.1% 26.6% 51.5%
3 M2, M6 3 40.4% 21.9% 36.8% 3 M1, M2, M5 4 64.3% 33.3% 66.6%
4 M2, M6, M7 4 49.3% 39.6% 36.8% 4 M1, M2, M6 5 70.0% 43.3% 69.7%
5 M2, M4, M6-M8 9 80.8% 82.3% 76.3% 5 M2, M5 3 47.1% 33.3% 66.6%
6 M2, M4, M6, M8 8 71.8% 64.6% 76.3% 6 M1, M2, M5, M6 6 80.3% 50.0% 84.8%
7 M2, M4, M5-M7 7 69.4% 70.8% 36.8% 7 M2, M5 4 52.9% 43.3% 69.7%
8 M2, M4, M6-M9 12 93.4% 95.8% 100% 8 M1, M2, M4 5 64.3% 50.0% 66.6%
9 M2, M4, M7 5 49.8% 59.4% 23.7% 9 M2, M5, M6 5 63.1% 50.0% 84.8%
10 M2, M4, M6, M7, M9 9 77.5% 80.0% 60.5% 10 | M1, M2, M4, M5 6 74.5% 56.6% 81.9%
20 M2, M4-M9 13 98.1% 100.0% 100.0% 18 | M1, M2, M4-M7 10  100.0% 100.0% 100.0%
52 | M2-Mo9 15 100.0% 100.0%  100.0%
2 4 M3, M X 4.2 . . . . . .
225 Mi > ; ?SZ OOZZ 883; combination that requires expert knowledge by including the

weighting of both cognitive and critical issues since we argue
that these issues are more important to discover than minor
issues. We used /n instead of n as a penalty for the number
of evaluations, since using only n gave a too big penalty when
using multiple methods.

A. Analysis from Case A

For Case A we calculated CB for all permutations of the
different accessibility testing methods to identify the combina-
tions that give most benefit compared to cost. The top results
in addition to some selected results are shown in Table X,
ordered by CB.

Combining all methods (except M3) gives a very high
coverage (almost 100%), but comes at a high cost, as shown
with #20. The CB found 19 better alternatives when con-
sidering the costs. The optimal combination of methods that
maximize benefit compared to cost is using methods M7,
M6, M4 and M2 (#1). This combination has a relatively low
cost and discovered almost 65% of all issues in addition to a
high number of both critical and cognitive issues (66.7% and
36.8%).

It is not surprising that if more methods are combined then
the results are better, but at a higher cost, as for instance
shown with combination #5 and #8 in Table X. However,
a combination of two methods (#3) gives reasonable good
results of discovering around 40% of the known issues, and a
large number of both critical and cognitive issues (21.9% and
36.8%).

With a small increase in cost using three testing methods,
around 50% of all issues were discovered, as shown with
combination #2 and #4. Combination #2 finds 55.9% of all
issues, and almost half the known critical issues. It is also
worth noting that this testing method combination uses three
different accessibility testing method groups (simulation Kkit,
assistive technology and checklist) to discover many different
issues.

The first method combination that discover over 80% of
known issues is combination #5. This is also the first combi-
nation where the persona testing method (M8, M9) is included,
but the consequence is high cost. This is the first method

persona testing method. It is impossible to achieve a very
high discovery rate for Case A without including one of the
persona testing evaluations, but the downside is that the cost
for persona testing is much higher than the rest.

As shown in Table VII, the method simulation kit with
reduced dexterity (M3) reported a low number of issues, and
this is why there are few combinations in Table X that includes
M3. The first method that includes M3 is #53, and here all
the methods are included. The two last combinations (#254
and #255) are also based on M3, and this clearly shows that
testing method M3 was not very useful for accessibility testing
in Case A.

B. Analysis from Case B

For Case B we also calculated CB for all testing method
permutations to identify the combinations that gives most
benefit compared to cost. The top 10 results in addition to
the result which use all the methods are shown in Table XI
ordered by CB.

The optimal approach based on Case B is to use only
method M2, which is the disability kit with reduced vision.
This has a very low cost, but does not give a high discovery of
issues (36.9%). By including more methods, the discovery of
issues increases, but naturally so does the cost, as in Case A.
It is not until combination #18 that all methods are combined
to give a 100% coverage at a high cost.

If only two methods are combined as shown in combination
#2, over half the known issues are found (54.1%), but few
critical issues are identified. The best combination to find over
half the critical issues is with combination #6, where four
testing methods are combined to discover 80.3% of known
issues and 50.0% of known critical issues. Note that all top
10 results discover at least 51.5% of known cognitive issues.

VATLab checklist (M7) is not part of any top 10 combina-
tions, and this is because of a low ratio of found issues versus
cost. This is very different from Case A where the M7 method
was part of top 10 multiple times. However, in both Case A and
Case B almost the same number of issues were identified, but
in Case A many more critical issues were identified compared
to Case B.

From Table XI we can also see that the general cost is much
lower compared to Table X, and this is because persona testing

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



methods (M8, M9) were not part of Case B. Persona testing
has a very high cost in terms of knowledge requirements, and
that is the main reason for higher costs in Case A.

C. Comparison of both cases

From X and XI we see that some methods are prioritized
in both top 10 results. Both simulation kit with reduced vision
M2), WCAG (M6) and screen reader (M4) testing methods
are the most popular testing methods according to the CB
analysis. Two testing methods are a little more difficult to
compare since we have upgraded the knowledge requirement
from Case A to B. This includes WCAG (M6) and VATLab
checklist (M7) as indicated in Table V. Because of this, we
have calculated the CB for Case A with the updated knowledge
requirement values from Table V to get better comparison data.

In Table XII the best combination for Case A and Case B is
presented. The updated calculation for Case A is also included
(A updated). The best combination is determined by counting
the occurrences of the testing methods in the top 10 results.
In general all methods are part of the best combinations, with
the exception of simulation kit with reduced dexterity (M3),
but the ordering is a little different depending on the original
Case A or the updated Case A.

TABLE XII. COMBINATION OF CASE A AND B.

Best combination
M2, M6, M4, M7, M1/M5, M8, M9
M2, M4/M6, M1/M5/M8, M7, M9

Case
A+B
A updated + B

Simulation kit with reduced vision (M2) is the clear winner
in both case studies, while WCAG (M6) and screen reader
(M4) battle for second place. The other testing methods (M1,
M5, M7, M8) compete for the remaining 4th to 7th places
while M9 is in the last place for both A and B.

VII. DISCUSSION

Based on the results in Section VI we found that the
combination of several methods gives good results compared
to the investment. Our CBA from Case A and Case B shows
that the testing methods simulation kit with reduced vision,
WCAG and screen reader gives good results in both cases
with a moderate cost, and yet, the combination of these
methods discover a large number of issues with the solutions
we evaluated. In addition, the automated checker from Case
B showed good issue discovery with very little resource and
knowledge requirements, while persona testing from Case A
showed great issue discovery, particular for finding cognitive
issues, but with high knowledge requirement. Based on an
overall assessment from both cases, these five methods gives
the best combination of methods. However, the results do not
say anything about when to apply the different methods during
a development process.

In Figure 3 we have illustrated how to prioritize the different
accessibility testing methods in an agile development process,
and we call this the agile accessibility spiral [1]. The circular
layers represent the testing methods, and start from the center
with simulation kit using reduced vision and expand outwards

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

104

to show the priority of the testing methods. The outer layers
illustrate an agile process that covers four common activities
(design, development, test, review) in successive iterations.
The activities are not necessarily clearly separated as shown
in the illustration, and they often happen in parallel. The
motivation behind the agile accessibility spiral is that the
different testing methods can be included in all activities in
an agile process. The total cost increases as more testing
methods are included during testing, but the number of issues
discovered also increases, as indicated with the spiral arrow
circling outwards from the center.

We have primarily based the ordering of the accessibility
testing methods in the spiral on Table XII, but with some
exceptions. Testing accessibility using simulation kit with
reduced vision is the only method which is always part of
top ten results in both cases, and is thus a natural first choice
as a testing method. Not only does the method discover
most issues, but it is also low on knowledge requirements.
Furhermore, the method is exciting to use according to the
testers that were part of both studies. Or, as one designer said:

I greatly appreciated using the glasses because they
made me feel the error.”

The statement is also supported by the results in Section VI.
Finally, the simulation kit for reduced vision is a method that
can be performed many times without affecting the bias of the
tester, since it is a wearable gadget that is used by the tester
and not so much a mental testing approach.

GQ,

FIGURE 3. AGILE ACCESSIBILITY SPIRAL.

The second accessibility testing method that should be
used is the automated checker, since this require very little
investment or prior knowledge. Some automated checkers can
also be part of the developer IDE or build cycle, and we argue
that using an automated checker should be prioritized after
simulating reduced vision. Automated checker was only part

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of the top 10 results 6 times, but both the low average testing
time and low requirements (resources and knowledge) are
strong indications that the testing method could be done before
both the WCAG and screen reader testing methods. Feedback
from the tester during the case studies support that automated
checker is something they prefer over most methods, and one
developer summarized the first two testing method in this
manner:

T think the automated checker revealed most errors,
and I liked that tool the most because it was quick
and easy to use. For example, it quickly revealed the
high number of contrast errors. That said, it was not
until I had the glasses on that I actually understood
how severe the errors were. So maybe it is best to
use WAVE to reveal the errors and then the glasses
to feel them on the body.”

Checklists like WCAG is part of the top 10 a total of 13
times, and we therefore place this method as the third testing
method in the agile accessibility spiral. It should be noted that
VATLab checklist was part of top 10 a total of 3 times, but
the method had much overlap with other methods (over 75%),
and we therefore decided to drop the VATLab checklist from
the agile accessibility spiral. We argue that WCAG covers
most of the VATLab criteria, but discovers more issues and is
thus a natural choice. In addition, WCAG is an international
standard and legislation that most developers and testers are
familiar with.

However, we found that the use of WCAG and VATLAB
checklists were perceived as tedious and somewhat difficult,
and this is another reason why we place WCAG as the third
method instead of the second testing method. One developer
commented:

I found the WCAG guidelines cumbersome to use.
The success criteria was not very explanatory which
made it hard for me to take an objective decision
whether the criteria was fulfilled or not. I also found
it too time-consuming, I would much rather use
automated tests or glasses.”

Our findings are similar to Farrelly [42], who found that
WCAG was perceived by web developers as overwhelming,
confusing and with an obtuse and too technical language.
While Freire et al. [22] found in their study that nearly 40%
of the web developers did not have any knowledge about the
WCAG, our findings suggest that developers have knowledge
of the guidelines, but that it is too difficult and tiresome to
use them regularly.

Screen reader is part of top ten a total of 11 times, and is
an obvious choice as the fourth testing method. As Figure 2
shows, this method discovers the highest amount of critical
errors of all the methods. The last testing method in the spiral
is persona testing, which should be performed less often since
the cost is quite high, but also because it is a mental process
which might be biased if performed too often by the same
person. However, if the team has experience with persona
testing or is willing to invest in training, then persona testing

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

105

is a very good accessibility testing method that we strongly
recommend.

We have not included more methods in Figure 3, since these
five methods cover over 82.7% of known issues as shown in
Table VII and Table VIII. As a minimum at least two different
testing method should be included during testing [43].

A. Use of the testing methods

We argue that it is important to do accessibility testing at
early stages in the development of a user story to avoid costly
adjustment at a later stage [7]. It is well worth the investment
to make sure that a solution works well for both screen readers
and for people with reduced vision, since this will benefit all
end-users [9].

During the up-front analysis and design, sketches and wire-
frames are created by hand or by tools. The motivation of
making these sketches is to create something visual that
can be discussed and explained to developers, testers and
product owners. There are limited accessibility testing methods
that can be used on such sketches, but we argue that both
simulation kit with reduced vision and high contrast testing
method may be used with success. It will, of course, depend
on the quality of the sketches, but bad contrast and use of too
small font sizes are typical issues that will be discovered with
these methods. Besides, some elements of the WCAG checklist
can be used for assessing logic, flow and common general
errors. One designer expressed interest for doing accessibility
testing early on:

”I would probably have used the glasses once a
week, and I would also have used them early in the
projects. For example, if I were deciding on fonts
and colours I would put the glasses on to check how
someone with reduced vision would experience the
solution.”

Once a prototype is implemented, then more testing methods
can be used naturally. The idea behind a prototype is to verify
concepts of sketches and maybe try different interactions
or ideas. In addition to the testing methods that can be
applied during the design, elements from VATLab checklist
and persona testing can be used. It depends on how good the
prototype is, but some parts of the VATLab checklist can be
used to test for screen reader support, and persona testing can
be used to identify cognitive issues already in the prototype
stage. An automated checker can be used at a prototype,
depending on the product, to detect design issues like poor
color contrast.

While simulation kits for reduced vision can be used early
in the development and testing of a user story, other testing
methods,for example screen readers and persona testing, need
a more stable version of the code in place before the methods
can be used successfully. The reason for this is that screen
readers require elements to be marked so that the screen
readers can find the required information. Persona testing is
most suitable at the end of an implementation of a user story,
since entire features should have been implemented for this

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



testing method, and the testers should use the real software
product.

B. Implications for practice

Our findings have implications for software organizations
wanting to build more usable and accessible software. Prac-
titioners can use the agile accessibility spiral to assess the
appropriate tools to test accessibility early and frequently in
the agile development cycle.

While there exist many accessibility testing methods, they
are not that known to agile team members. Companies should
strive to inform their employees about what techniques they
can use and how to use them during the development cycle.
A survey on accessibility awareness among web development
project members [22] finds that the main reasons for not
considering accessibility issues in the development process
were the lack of formal requirements from the organization,
lack of customer requirements and lack of training.

Based on the evaluation results and the cost-benefit anal-
ysis, we strongly suggest that all agile software projects buy
glasses for simulating reduced vision and make them easily
available for their employees to get hold of. Using the glasses
was undoubtedly the tool that revealed the most errors, and
additionally it was an eye-opener for many of the developers.
However, while all participants claimed they would use the
glasses if they had them at their desk, they said they would not
order them themselves. This barrier for use must be removed
by the project leaders. Both designers and developers should
use automated checkers, such as WAVE, as early as possible
in the projects and as often as possible. Use of automated
checkers to quickly get an overview of errors and then using
the glasses to get a feeling of how the errors would be
perceived by a person with reduced vision creates new insights
and the iterative use of these two methods complement each
other.

In order to make software as accessible as possible, all mem-
bers of an agile software team should have basic knowledge
of accessibility testing and universal design, and norms and
practices should be incorporated into the development process
to ensure that the software developed is accessible. Norms are
an integral aspect of how agile teams work [44], and promoting
the right norms in the team may influence how developers
think of accessibility testing. For example, promoting norms
that simulation kits are frequently used and that accessibility
issues are discussed in team meetings.

Our findings suggest that checking for accessibility issues
with the use of automated checkers and simulation kits will
make developers and designers in agile projects more positive
towards continuous accessibility testing than the use of manual
guidelines. Use of guidelines and checklists was perceived as
tedious and boring.

VIII. LIMITATIONS

We only covered a limited selection of possible methods and
tools for accessibility testing in our study, and other methods
could prove to be more beneficial. We have, however, selected

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

106

methods from a wide range with respect to what they cover
of technical and usable accessibility.

The cost-benefit analysis was calculated based on the re-
quirements in resources and knowledge of each method. The
classification of methods as low, medium or high in demands
for resource and knowledge could be further validated. One
should also consider other factors contributing to cost in the
analysis. For example, the amount of time spent in performing
a test method is a cost. Besides, satisfaction and ease of use
could also be possible beneficial criteria to include.

The categorization of issues as critical or cognitive is
subjectively performed by the authors and future research
should try to standardize the classification of issues. However,
each evaluation was observed and reported by at least two,
sometimes three, observers and most of the testing methods
where used in both case studies. These conditions should result
in a reduced number of errors.

Our study of accessibility testing methods was limited in
number of participants and the size of the evaluated ap-
plications. Hence, future work should explore the different
accessibility testing methods for other software solutions.
Additionally, more studies should be performed to validate
the cost-benefit relationships and the agile accessibility spiral.

IX. CONCLUSION

In this study, we investigated methods for accessibility
testing in agile projects. Based on evaluations from two case
studies and a cost-benefit analysis we proposed the agile
accessibility spiral. We included five of the tested methods
in the spiral. The cost and knowledge of testing methods
increase from the center of the spiral and outwards, but the
discovery of issues also increases when moving outwards from
the center. We recommend to choose methods from the center
and gradually apply more testing methods.

The different testing methods should be adjusted to the
software solution and the expertise of the team, so they fit into
the agile process. The more knowledge and experience an agile
team gains, the smaller the circles in the agile accessibility
spiral will become. We argue that developers and testers
can contribute more with accessibility testing to deliver a
better end product as shown with our two case studies. We
also believe they will be more positive towards testing for
accessibility with the use of simulation kits for reduced vision
and automated checkers instead of only using guidelines such
as WCAG.

More research on evaluations of accessibility testing should
be carried out, and it would be interesting to evaluate other
testing methods than those used in this study and incorporate
them into the agile accessibility spiral. Further work should
also investigate whether other factors such as time, satisfaction
and ease of use should be included in the cost-benefit analysis.

REFERENCES

[11 A. Bai, H. C. Mork, and V. Stray, “A Cost-benefit Evaluation of Acces-
sibility Testing in Agile Software Development,” in ICSEA 2016 : The
Eleventh International Conference on Software Engineering Advances,
2016, pp. 62-67.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

[2]

[3]
[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

United Nations. Convention on the Rights of Persons with Disabilities.
[Online]. Available: https://www.un.org/development/desa/disabilities/
convention-on- the-rights- of- persons- with-disabilities.html  [Accessed:
2017-05-26].

H. Petrie and N. Bevan, “The evaluation of accessibility, usability and
user experience,” The universal access handbook, 2009, pp. 10-20.

R. Mace, “What is universal design,” The Center for Universal Design
at North Carolina State University. Retrieved Retrieved, vol. 19, 1997,
p. 2004.

J. Nielsen, “Return on investment for usability,” Jakob Nielsen’s Alert-
box, January, vol. 7, 2003.

L. C. Cheng and M. Mustafa, “A reference to usability inspection
methods,” in International Colloquium of Art and Design Education
Research (i-CADER 2014). Springer, 2015, pp. 407-419.

M.-L. Sénchez-Gordén and L. Moreno, “Toward an integration of web
accessibility into testing processes,” Procedia Computer Science, vol. 27,
2014, pp. 281-291.

B. Haskins, B. Dick, J. Stecklein, R. Lovell, G. Moroney, and J. Dabney,
“Error Cost Escalation Through the Project Life Cycle,” in Incose -
Annual Conference Symposium Proceedings- Cd Rom Edition; 2004,
2004.

F. Paz and J. A. Pow-Sang, “A systematic mapping review of usability
evaluation methods for software development process,” International
Journal of Software Engineering and Its Applications, vol. 10, no. 1,
2016, pp. 165-178.

T. Dingsgyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of
agile methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, 2012, pp. 1213 — 1221.
V. Stray, N. B. Moe, and G. R. Bergersen, “Are daily stand-up
meetings valuable? A survey of developers in software teams,” in Agile
Processes in Software Engineering and Extreme Programming: 18th
International Conference, XP 2017, Cologne, Germany, May 22-26,
2017, Proceedings, H. Baumeister, H. Lichter, and M. Riebisch, Eds.
Cham: Springer International Publishing, 2017, pp. 274-281. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-57633-6_20 [Accessed:
2017-06-01].

K. Schwaber and M. Beedle, “Agile Software Development with Scrum”.
Upper Saddle River, NJ: Prentice Hall, 2002.

V. Stray, D. I. K. Sjgberg, and T. Dyba, “The daily stand-up meeting:
A grounded theory study,” Journal of Systems and Software, vol. 85,
2016, pp. 101 — 124.

J. Highsmith and A. Cockburn, “Agile software development: The
business of innovation,” Computer, vol. 34, no. 9, 2002, pp. 120 — 127.
G. Jurca, T. D. Hellmann, and F. Maurer, “Integrating agile and user-
centered design: a systematic mapping and review of evaluation and
validation studies of agile-ux,” in Agile Conference (AGILE), 2014.
IEEE, 2014, pp. 24-32.

G. Zimmermann and G. Vanderheiden, “Accessible design and testing
in the application development process: considerations for an integrated
approach,” Universal Access in the Information Society, vol. 7, no. 1-2,
2008, pp. 117-128.

J. C. Lee and D. S. McCrickard, “Towards extreme (ly) usable software:
Exploring tensions between usability and agile software development,”
in Agile Conference (AGILE), 2007. IEEE, 2007, pp. 59-71.

D. Salah, R. F. Paige, and P. Cairns, “A systematic literature review
for agile development processes and user centred design integration,”
in Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’14. New
York, NY, USA: ACM, 2014, pp. 5:1-5:10. [Online]. Available:
http://doi.acm.org/10.1145/2601248.2601276 [Accessed: 2017-03-01].
R. Bonacin, M. C. C. Baranauskas, and M. A. Rodrigues, “An agile
process model for inclusive software development,” in Enterprise infor-
mation systems. Springer, 2009, pp. 807-818.

S. Horton and D. Sloan, “Accessibility in practice: a process-driven
approach to accessibility,” in Inclusive Designing. Springer, 2014, pp.
105-115.

T. Halbach and K. Fuglerud, “On assessing the costs and benefits of
universal design of ict.” Studies in health technology and informatics,
vol. 229, 2016, p. 662.

A. P. Freire, C. M. Russo, and R. P. M. Fortes, “A survey on the
accessibility awareness of people involved in web development projects
in Brazil,” in Proceedings of the 2008 international cross-disciplinary
conference on Web accessibility. ACM, 2008, pp. 87-96.

C. Paddison and P. Englefield, “Applying heuristics to accessibility

[24]
[25]

[26]

[27]

(28]
[29]

[30]

(31]

[32]
(33]
[34]

[35]

[36]
[37]
(38]
(39]

[40]

[41]

[42]

[43]

[44]

107

inspections,” in Interacting with Computers, vol. 16, no. 3, 2004, pp.
507-521.

Web accessibility evaluation tools list. [Online]. Available: https:
/Iwww.w3.org/WAI/ER/tools/ [Accessed: 2017-02-01].

NetBeans. Accessibility Checker. [Online]. Available: http:/plugins.
netbeans.org/plugin/7577/accessibility-checker [Accessed: 2017-05-26].
C. Cardoso and P. J. Clarkson, “Simulation in user-centred design: help-
ing designers to empathise with atypical users,” Journal of Engineering
Design, vol. 23, no. 1, 2012, pp. 1-22.

A. M. Silverman, J. D. Gwinn, and L. Van Boven, “Stumbling in
their shoes disability simulations reduce judged capabilities of disabled
people,” Social Psychological and Personality Science, vol. 6, no. 4,
2015, pp. 464-471.

S. L. Henry, “Just ask: integrating accessibility throughout design”.
Lulu. com, 2007.

W3C. Web Content Accessibility Guidelines. [Online]. Available:
https://www.w3.org/TR/WCAG20/ [Accessed: 2017-03-01].

T. Schulz and K. S. Fuglerud, “Creating Personas with Disabilities,”
in Computers Helping People with Special Needs, ser. Lecture Notes
in Computer Science, K. Miesenberger, A. Karshmer, P. Penaz, and
W. Zagler, Eds., vol. 7383. Linz, Austria: Springer Berlin / Heidelberg,
2012, pp. 145-152.

A. Bai, H. C. Mork, T. Schulz, and K. S. Fuglerud, “Evaluation of
accessibility testing methods. which methods uncover what type of
problems?” Studies in health technology and informatics, vol. 229, 2016,
p. 506.

J. S. Dumas and J. Redish, “A practical guide to usability testing”.
Intellect Books, 1999.

R. G. Bias and D. J. Mayhew, “Cost-justifying usability: An update for
the Internet age”. Elsevier, 2005.

Wave web accessibility evaluation tool. [Online]. Available: http:
/lwave.webaim.org/ [Accessed: 2017-02-01].

K. S. Fuglerud, S. E. Skotkjerra, and T. Halbach. (2015) Handbok i
testing av websider med hjelpe-middel-program-vare, Virtuell hjelpe-
middellab.

Cambridge. Inclusive Design Toolkit. [Online]. Available: http:
/Iwww.inclusivedesigntoolkit.com [Accessed: 2017-02-01].
NV Access. NVDA Screen Reader. [Online]. Available: https:

/lwww.nvaccess.org/ [Accessed: 2017-02-01].

Futureid. [Online]. Available: http://www.futureid.eu/ [Accessed: 2017-
03-01].

Norsk pensjon. [Online].
[Accessed: 2017-03-01].
M. M. Mantei and T. J. Teorey, “Cost/benefit analysis for incorporating
human factors in the software lifecycle,” Communications of the ACM,
vol. 31, no. 4, 1988, pp. 428-439.

A. E. Boardman, D. H. Greenberg, A. R. Vining, and D. L. Weimer,
“Cost-benefit analysis: concepts and practice,” 2006.

G. Farrelly, “Practitioner barriers to diffusion and implementation of
web accessibility,” Technology and Disability, vol. 23, no. 4, 2011, pp.
223-232.

K. S. Fuglerud, “Inclusive design of ICT: The challenge of diversity”.
Dissertation for the Degree of PhD, University of Oslo, Faculty of
Humanitites, 2014.

V. Stray, T. E. Fegri, and N. B. Moe, “Exploring norms in agile
software teams,” in Proceedings of the International Conference on
Product-Focused Software Process Improvement. Springer International
Publishing, 2016, pp. 458—467.

Available: https://www.norskpensjon.no/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



