
ViSiTR: 3D Visualization for Code Visitation Trail Recommendations

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

email: roy.oberhauser@hs-aalen.de

Abstract—The rapid digitalization occurring in our society
depends on massive amounts of data and software running on
various devices. This, in turn, entails the creation and
maintenance of an ever-increasing volume of computer
program code. This situation is exacerbated by a limited pool
of trained human resources that must quickly comprehend
various sections of program code. Thus, effective and efficient
automated tutor systems or recommenders for program
comprehension are imperative. Furthermore, advances in
game engine and PC performance have hitherto been
insufficiently utilized by software engineering tools to leverage
the potential that 3D visualization of code structure and
navigation can provide. This paper introduces ViSiTR (3D
Visualization of code viSitation Trail Recommendations), an
approach that utilizes program code as a knowledge base to
automatically recommend code visitation trails with visual 3D
navigation to support effective and efficient human program
code comprehension. A case study with a prototype
demonstrated the viability of the approach but found
scalability issues for large projects.

Keywords - program code comprehension; recommendation
systems; learning models; intelligent tutoring systems;
knowledge-based systems; software engineering; engineering
training; computer education; software visualization.

I. INTRODUCTION
This is an extended paper of [1]. The increasing demand

for and utilization of software throughout society and
industry results in soaring volumes of (legacy) program code
and associated maintenance activity. Although the total lines
and growth of program code worldwide is untracked and
unknown, it's been estimated that well over a trillion lines of
code (LOC) exist with 33bn added annually [2], while a
study of 5000 active open source software projects shows
code size doubling on average every 14 months [3].

This has ramifications on the amount of relatively
expensive labor involved in software development and
maintenance. Approximately 75% of technical software
workers are estimated to be doing maintenance [4].
Moreover, program comprehension may consume up to 70%
of the software engineering effort [5]. As an example, the
Year 2000 (Y2K) crisis [6] with global costs of $375-750
billion provided an indicator of the scale and importance of
program comprehension. Moreover, the available pool of
programmers to develop and maintain code remains limited
and is not growing correspondingly. This is exacerbated by
high employee turnover rates in the software industry, for
example 1.1 years at Google [7].

Thus, there is resulting pressure on programmers to
rapidly come up to speed on existing code or comprehend
and maintain legacy code (a type of knowledge) in a cost-
effective manner. It thus becomes imperative that
programmers be supported with automated tutors and
recommenders that efficiently and effectively support
program code comprehension. In this space,
recommendation systems for software engineering provide
information items considered to be valuable for a software
engineering task in a given context [8].

However, such recommenders often lack integrated
visualization support, hampering their ability to achieve
more comprehensive program comprehension support. This
relates to an essential difficulty of software construction
asserted by F. P. Brooks Jr., namely the invisibility of
software, since the reality of software is not embedded in
space [9]. The most common formats used for the
comprehension of program code include text or the two-
dimensional Unified Modeling Language (UML).

In prior work, we introduced ReSCU [1], a knowledge-
centric recommendation service and planner for program
code comprehension. This was enhanced with support for
cognitive learning models in C-TRAIL [10]. Separately, we
developed a 3D flythrough visualization approach called
FlyThruCode [11] that offers opportunities for grasping
software program structures utilizing information
visualization to support exploratory, analytical, and
descriptive cognitive processes.

This paper introduces ViSiTR (3D Visualization of code
viSitation Trail Recommendations), an approach for the 3D
visualization of automatically recommended program
comprehension code trails in alignment with various
cognitive learning model styles and the "holey quilt" theory
[12]. ViSiTR can be viewed as an intelligent tutor system
with a 3D visual interface, applying a practical form of
granular computing [13] and concepts like knowledge
distance [14] to automatically recommend knowledge
navigation as a Hamiltonian cycle [15], a special case of the
traveling salesman problem (TSP) [16], in an unfamiliar
knowledge landscape consisting of program code.

The paper is organized as follows: the next section
discusses related work. This is followed by Section III,
which provides background information. Section IV then
describes the solution concept that is followed by a
description of a prototype implementation. Section VI then
presents a case study, which is followed by a conclusion.

46

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK
An overview of recommendation systems in software

engineering is provided by [8]. In the Eclipse Integrated
Development Environment (IDE), NavTracks [17]
recommends files related to the currently selected files based
on their previous navigation patterns. Mylar [18] utilizes a
degree-of-interest model in Eclipse to filter our irrelevant
files from the File Explorer and other views. The interest
value of a selected or edited program element increases,
while those of others decrease, whereby the relationship
between elements is not considered. In support of developers
with maintenance tasks in unfamiliar projects, Hipikat [19]
recommends software artifacts relevant to a context based on
the source code, email discussions, bug reports, change
history, and documentation. The eRose plugin for Eclipse
mines past changes in a version control system repository to
suggest what is likely also related to this change based on
historical similarity [20]. To improve navigation efficiency
and enhance comprehension, the FEAT tool uses concern
graphs either explicitly created by a programmer [21] or
automatically inferred [22] based on navigation pathways
utilizing a stochastic model, whereby a programmer
confirms or rejects them for the concern graph. With the
Eclipse plugin Suade [23], a developer drags-and-drops
related fields and methods into a view to specify a context,
and Suade utilizes a dependency graph and heuristics to
recommend suggestions for further investigation. To support
the usage of complex APIs in Eclipse, the Prospector system
[24] recommends relevant code snippets by utilizing a search
engine in combination with Eclipse Content Assist.
Strathcona [25] analyzes structural facts of an incomplete
code selection and utilizes heuristic matches to determine the
most similar example. The Eclipse plugin FrUiT [26]
supports example framework usage via association rule
mining of applications that utilize a specific framework.
Codetrail [27] connects source code and hyperlinked web
resources via Eclipse and Firefox. Yin et al. [28] propose
applying coarse-grained call graph slicing, intra-procedural
coarse-grained slicing, and a cognitive easiness metric to
guide programmers from the easiest to the hardest non-
understood methods. Cornelissen et al. [29] survey work on
program comprehension via dynamic analysis.

Although we attempted to provide a more detailed
practical comparison with many of the above program
comprehension tools, we abandoned our effort since the tool
software was mostly either inaccessible or after download
we were unable to get it to successfully execute. Our
comparison is thus based on research paper descriptions. In
contrast to the related work above, various facets
differentiate the ViSiTR approach. ViSiTR is able to
recommend code region visitations and plan a code trail
order without necessitating an explicit context or prior
history, without requiring the intervention or confirmation of
a human expert. Furthermore, the approach is unique in
applying a conceptual mapping of geographical points of
interest (POI) and the traveling salesman problem/planning
(TSP) to source code and the generation of code trail

planning, with a Hamiltonian cycle to avoid unnecessary
revisitations.

With regard to 3D software visualization tools across the
various software engineering areas, an overview and survey
is given by Teyseyre and Campo [30]. Software Galaxies
[31] provides a web-based visualization of dependencies
among popular package managers and supports flying. Every
star represents a package that is clustered by dependencies.
CodeCity [32] is a 3D software visualization approach based
on a city metaphor and implemented in SmallTalk on the
Moose reengineering framework. Buildings represent
classes, districts represent packages, and visible properties
depict selected metrics. Wettel et al. [33] showed a
significant increase in terms of task correctness and decrease
in task completion time. Rilling and Mudur [34] use a
metaball metaphor combined with dynamic analysis of
program execution. X3D-UML [35] provides 3D support
with UML in planes such that classes are grouped in planes
based on the package or hierarchical state machine diagrams.
A case study of a 3D UML tool using Google SketchUp
showed that a 3D perspective improved model
comprehension and was found to be intuitive [36].

In contrast to the above work, ViSiTR supports visual
code trails that can be recommended, captured, and replayed
via 3D fly-thru visitation using multiple and dynamically
switchable metaphors, custom and automatic
annotation/tagging, and the display of localized contextually-
relevant program code data (code, metrics, UML) in a heads-
up display, thereby intermixing 2D data while flying through
the 3D space. Because the source code is transformed into an
XML description, various programming languages can be
easily supported. Its plugin architecture permits the
integration of program code data from various separate tools.

III. BACKGROUND
For our purposes, it may be helpful to view program code

comprehension from the holey quilt theory perspective [12],
based on [37] and [38]. According to this metaphor "novice
programmers' early comprehension models can be
characterized by a pattern of 'holey knowledge' (i.e., an
incomplete patchwork of fabric, with empty cells and
missing stuffing)" [38] quoted in [12].

For the programmer, her or his program comprehension
knowledge base can be viewed as a block model as shown in
Figure 1 both functionally (the "what" in green) and
structurally (the "how" in gold). Structure includes both the
text surface of the program (right column), including its
syntax, semantics, and style as well as its control structure
(middle column). Its function goals (left column) considers
its intent or goals at various levels. The finest granularity
considered is on the atom (bottom) row, considering
language elements and the result of any statement. The third
row is labeled block, and consists of grouping within some
region of interest (ROI). The second row labeled relations
deals with the relations between method calls. The top row
deals with the macro-structure of the overall program. The
knowledge level (depth dimension) about any element within
this structure can vary from fragile to moderate to deep, and

47

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is often correlated with the time on task (depth dimension),
which can vary from low to medium to high.

Understanding	the	
program’s	goal/

purpose

Understanding	
algorithm	of	
program

Understanding	
overall	program	
text	structure

Understanding	
how	a	function	is	
achieved	by	
subfunctions

Understanding	
method	call	
sequence

Understanding	
references	

between	blocks

Function	of	a	block	
(subgoal)

Operation	of	a	
block,	method,	or	
region	of	interest

Region	of	interest	
(ROI)	that	builds	a	

unit

Function	of	a	
statement

Operation	of	a	
statement Language	elements

Text	surfaceControl	structureFunction	goals

Structure

Macro-
structure

Relations

Block

Atom

Fragile
Moderate

Deep

Low
Medium

High

Time	on
Task

Kn
ow
le
dg
e	

Le
ve
l

Program	Comprehension	Knowledge	Base

A B C

D E F

G H I

J K L

Figure 1. Depiction of the "holey quilt" theory of program

comprehension, adapted from [12].

Given this perspective, a hermeneutic view of program
comprehension is assumed, consisting of a dynamic process
of program code interpretation that involves recurrent
transitions between some overall picture down to various
myopic code snippets and back to the overall picture again,
successively assembling a (hopefully) coherent and
consistent picture based on an interpretation of its syntax,
semantics, and intention.

In the constructivist theory of human learning, humans
actively construct their knowledge [39]. We thus view
program comprehension as individualistic for aspects such as
capacity, speed, motivation, and how mental models are
constructed. Additionally, programmers possess different
application-independent general and application-specific
domain knowledge. Information processing habits of an
individual are known as cognitive learning styles. ViSiTR
provides individual and automated support for various
learning model (M:) styles, primarily ordering or adjusting
concept location (code area) visitation scope.

M:Bottom-Up: in this learning model, chunking [40] is
used with the program model being correlated with a
situation model [41]. Microstructures are mentally chunked
into larger macrostructures as comprehension increases, as
depicted by the row ordering in Figure 1 from bottom up.
ViSiTR assumes a package hierarchy.

M:Top-Down: this model [42] is typically applicable
when familiarity with the code, system, domain, or similar
system structures already exists. Beacons and rules of
discourse are used to hierarchically decompose goals and
plans, as depicted by the rows in Figure 1 from top down. To
automate support, ViSiTR assumes a cluster hierarchy and
starts trails from the highest hierarchy.

M:Topics/Goal: when programmers are given a specific
task, they tend to utilize an as-needed strategy to
comprehend only those portions relevant for the task [43].
This correlates with ROIs of Figure 1. To support this
simply, ViSiTR supports investigating a limited code subset
via topic filtering. Topic filters (positive and negative) can be
shared and support a goal (e.g., optimize memory) or apply
to a specific topic (e.g., security, database access, user
interface).

M:DynamicPath: in this model, ordering is oriented on
actual invocation execution traces [44], which correlates with
block E of Figure 1.

M:Exploratory: this model supports either discovery or
analysis to confirm a hypothesis, with the learner actively
deciding and controlling the navigation. It is supported by
default, since a user can deviate at any time.

IV. SOLUTION APPROACH
The ViSiTR solution approach, incorporating various

concepts from [1], [10], and [11], focuses on supporting the
learning, understanding, and navigation of unfamiliar
program source code by programmers in an automated,
systematic way, without requiring additional knowledge,
historical information, or human expert assistance. In
alignment with the holey quilt theory, we hold the view that
a programmer's view of any complex team-based software
project given limited time constraints is unlikely to ever be
comprehensive, leaving knowledge level "holes" from a
knowledge level scale between none to deep knowledge.
Thus, a major intent is to provide efficient code trails that
focus on the important methods to comprehend given some
limited timeframe.

A. Principles
The ViSiTR solution approach is based on these

principles (P:):
P:POI: program source code locations are identified and

viewed as Points-of-Interest (POI) (or knowledge entities),
analogous to geographical locations in navigational systems
and ROI in the holey quilt theory. Each POI is identified by
some unique name, for instance in Java its fully qualified
name (FQN) consisting of the concatenation of a package
name, class name, colon, and method name. A POI can be
viewed as a granule or information entity of interest in a
knowledge "landscape", but this could be a function in non-
object-oriented languages, an object method, a class, or a
package.

P:POIRanking: to determine the importance of a POI (or
knowledge granule) for human comprehension, they are
ranked relative to each other. The algorithm MethodRank
described below exemplifies such a ranking that fulfills this
principle.

48

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

P:POILocality: POI locality, which can be conceptually
viewed as knowledge closeness from the perspective of
knowledge distance [14], is taken into consideration. This is
intended to address the cognitive burden of context switches
to a human when viewing program source code, by ordering
POIs such that the number of unnecessary switches in a POI
visitation order is reduced. The POI Distance calculation
described later is an example for applying this principle.

P:Timeboxing: the amount of time available for
concentrated comprehension and learning is assumed to be
limited, and we assume learning is chunked into one or more
sessions. Thus, the visitation time for POIs is estimated, and
only the subset of priority ordered POIs that can be feasibly
visited in the given timebox (deadline is midnight if no other
time is provided) is first selected, and this prioritized subset
is then reordered according to locality for that session. We
assume that a session will not be interrupted, but that
following sessions may not occur, therefore we use priority
sorting first, and then resort the session subset by locality to
limit jumping or thrashing.

P:CodeTrails: the recommendation service provides code
trails as output with a navigation and visitation order
recommendation for the POIs, whereby POI locality is taken
into account. A mapping of the TSP and related planning
algorithms are applied to these granules (the POIs) and the
associated knowledge distance between them. While the path
suggested may not necessarily be the most optimal path, it
provides an efficient path nonetheless through the knowledge
landscape (source code). In ViSiTR, POI visitation planning
via the generated code trails focuses on invocation
relationships rather than class relationships. Not following
class relationships can be viewed as supported by an
empirical eye-tracking study finding that "software engineers
do not seem to follow binary class relationships, such as
inheritance and composition" [45]. Two modes are
supported: initial trail mode that generates a trail from
scratch, and refactor trail mode that dynamically incorporates
user actions and re-optimizes the trail based on the visited
POI and the session time left. Visited POIs (including
deviations) are detected via events and automatically
removed from the next suggested trail.

P:User profile: user's knowledge level (e.g., familiar vs.
unfamiliar) and competency level (junior vs. senior) are
taken into consideration.

B. Visualization Principles
ViSiTR includes these visualization principles (P:V:):
P:V:Multiple 3D metaphors: The input for a model

instantiation is an import of project source code. One of the
first issues faced in visualization is how to best model and
visualize the program code structures. Because of the lack of
any standardization or norms in this area, and to support the
spectrum of individual preferences, support is provided for
modeling and switching between multiple visualization
metaphors, analogous to the concept of skins. Our initial
model focuses primarily on modeling and visualizing object-
oriented packages, classes, and their relationships such as
associations and dependencies. Initially, we support two
metaphors "out-of-the-box" to provide examples of skins,

and custom mappings to other objects types are possible. In
the universe metaphor, each planet represents a class with
planet size based on the number of methods, and solar
systems represent a package. Multiple packages are shown
by layer solar systems over one another. In the terrestrial
metaphor, buildings can represent classes, building height
can represent the number of methods, and glass bubbles can
group classes into packages. Relationships are modeled
visually as light beams or pipes by default.

P:V:Cockpit: analogous to an airplane cockpit, this
provides information to the user on the border of the screen,
and has input fields for searching for a class or method or
navigating directly to a class. Buttons can be depressed to
indicate preferences. A minimap on the upper right of the
screen provides a high-level overview of the entire landscape
and one's relative location in a small area.

P:V:Heads-Up Display (HUD): This provides a
transparent glass on the screen with additional context-
specific information. The type of information displayed can
be changed via left/right arrows on the screen edges. The
transparency level can be adjusted in the cockpit to provide a
less opaque background if desired (e.g., to view code better).
Various HUD screens are provided: Tags for automatic and
manual persistent annotations/tags; Source Code where the
program text is shown in scrollable form; UML where UML
diagrams are dynamically generated in 2D; Metrics which
shows text-based metrics due to the large number of possible
metrics (any of which may be of interest to the user); Project
Management to manage the metaphor, load a project record,
or import a new project; and Filtering that provides selectors
for adjusting the visibility of packages by interest.

P:V:Flythrough navigation: both mouse and keyboard
support for 3D navigation (motion) in all directions is
provided, as is autopilot or lockon to navigate to a specific
class.

P:V:Intermixing 3D/2D: support for dynamically
generated 2D UML is integrated in the 3D environment,
enabling the usage of this standard notation to support the
understanding of a particular area of interest.

P:V:CodeTrails: We provide the ability to capture and
record a visitation trail as well as provide a playback ability,
displaying the previous, current, and the next visitation node.
Furthermore, the trail can be recommended and adjusted
adhoc by the ViSiTR service. The HUD features can be used
to view the code for any visited class.

C. ViSiTR Solution Architecture
ViSiTR consists of a visual client that utilizes a

recommender service. The architecture for the recommender
service is shown in Figure 2 and consists of four primary
modules: Cognitive Learning, Knowledge Processing, a
Database Repository, and Integration.

The Cognitive Learning module supports various
program code learning Models, Goals, Topics, execution
Traces, and visitation History. The Knowledge Processing
module includes the components POI Prioritizer for ranking
POIs, a POI Filter that filters based on visitations or topics, a
Trail Estimator for visitation times, and a Trail Planner for
planning the POI visitation time and order. The Database

49

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Repository utilizes appropriate database types to retain
metadata, knowledge, or data in forms such as a graph
database for modeling the source code as a graph of nodes
with properties, and a relational/NoSQL database for dealing
with non-graph-related knowledge related to source code.
The Integration module includes a Web Service API
(application programming interface) for development tool
integration, an Input Processor to process inputs,
transformations, and events (such as a POI visit) including
analysis and tracing inputs, and a Trail Generator for
generating a planned trail into a desired format.

Cognitive Learning Integration

Database Repository

Knowledge Processing

Web
Service

Graph DB Relat ional DB

Trail
Estimator

Input
Processor

Trail
Generator

POI
Prioritizer

Trail
Planner

POI
Filter

Models Goals /
Topics HistoryTraces

Figure 2. ViSiTR recommender service architecture.

Figure 3. ViSiTR visual client architecture.

Figure 3 shows the visual client architecture which is
based on a game engine and supports extensibility via
plugin-ins. Assets are used by the game engine and consist of
Animations, Fonts, Imported Assets (like a ComboBox),
Materials (like colors and reflective textures), Media (like
textures), 3D Models, Prefabs, Shaders (for shading of text in
3D), and Scripts. Scripts consist of Basic Scripts like user
interface (UI) helpers, Logic Scripts that import, parse, and
load project data structures, and Controllers that react to user
interaction. Logic Scripts read Configuration data about
Stored Projects and the Plugin System (input in XML about
how to parse source code and invocation commands). Logic
Scripts can then call Applications consisting of General and
Java Applications. General Applications currently consist of
BaseX, Graph Layout consists of our own version of the KK
layout algorithm for positioning objects, Graphviz,
PlantUML, and integration with for instance the
recommender service as a web service client. Java
Applications consist of Dependency Finder, Java
Transformer that invokes Groovy scripts, Campwood

SourceMonitor, and srcML. Via the designed Plugin system,
additional tools and applications can be easily integrated.
This was used to integrate the Recommender Service Client
which invokes the Recommender Service.

D. ViSiTR Service MethodRank Calculation
With regard to P:POIRanking, it is assumed that in

general, given no other knowledge source besides the source
code and assuming limited learning time, it is more essential
for the user to become familiar with the methods of a project
that are used frequently throughout the code, rather than ones
that are only sparsely utilized. Thus, a variation of the
PageRank [20] algorithm call MethodRank is used to
prioritize the POIs, whereby instead of webpages methods
are mapped, and instead of hyperlinks, we map invocations.
Thus, those methods that have the most references
(invocations) in the code set are ranked the highest. While
this does not consider runtime invocations (such as loops), it
can be an indicator for a method with broader relative
utilization and thus likely of greater interest for
comprehension. One might argue that certain utility methods
such as print or log would perhaps then be ranked highest,
but we provide pattern matching mechanisms to include or
exclude methods of no interest so the focus can be on
domain-relevant methods. Or one might argue against
PageRank for webpages, in that the highest ranked webpages
are not necessarily the most important, since importance can
be viewed differently by various individuals and their
distinct perspective and intentions. However, MethodRank
does provide an indicator of the methods that are heavily
used throughout the static code and should thus be
understood.

E. ViSiTR Service POI Distance Calculation
To address P:POILocality, an underlying assumption is

that (sub)packages map vertically to (sub)layers and classes
serve as a type of horizontal grouping of methods. Thus, the
distance between any two POIs (given in (3)) A and B
(analogous to geographical distance) is determined by their
vertical (1) and horizontal (2) distance where ld() is a layer
depth function.

 VerticalDistance = ld(A) + ld(B) - 2(ld(common)) (1)

For instance, given layer A = foo.a.b and layer B =
foo.x.y.z (closest common package is foo) so
VerticalDistance = 3 + 4 - 2(1) = 5.

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0				𝑖𝑖𝑖𝑖	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵)
	1					𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒																									

 (2)

For instance, the POIDistance between methods in the
same class is 0, between classes in the same package 1.

POIDistance = VerticalDistance + HorizontalDistance (3)

Depending on the implementation, a higher layer may
only represent a greater abstraction (e.g., only interfaces) and
not necessarily be that far in cognitive "distance".

	

Assets
Animations

Fonts

Imported
Assets

Materials
Media

3D Models
Prefabs
Shader

Scripts
Controllers

Logic
Basic

Tool Integration

Java-specific

BaseX
Graphviz
PlantUML

Game Engine

Configuration
Stored

Projects
Plugin

System

Graph Layout

srcML
Source
Monitor

Java
Transformer
Dependency

Finder

Recommender
Service Client

50

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Nevertheless, any sublayers between them should still be
cognitively "closer".

F. ViSiTR Service Hamiltonian POI Visitation Trail
Assuming the principles of proper modularity and

hierarchy are applied in a given project, a greater distance
between POIs is equivalent to a larger mental jump. Thus, to
reduce mental effort, once the distance for all pairs has been
calculated, we desire the overall shortest trail that provides
the visitation order for all POIs such that each POI is visited
exactly once except that the starting point is also the end
point, i.e., a Hamiltonian cycle. The calculation problem is
equivalent to the well-known TSP.

G. ViSiTR Service Knowledge Processing
ViSiTR knowledge processing stages are shown in

Figure 4 and described below.

Figure 4. ViSiTR knowledge processing stages.

1) Input Processing: the source code as text files is
imported and analyzed. A list of all the POIs in the project
as FQNs is determined. The layer of each POI is determined
by counting the subpackage depth of its FQN. Whether the
project actually utilizes a layer structure or not is irrelevant.
This is then used to apply the aforementioned POI distance
calculation.

2) POI Filtering: POIs already visited by this user
(either in the expected order or out of order) are filtered
from the set for the initial planning or replanning.

3) POI Prioritization: the aforementioned MethodRank
calculation is used to create an ordered list of POIs.

4) POI Time Planning: the actual POI visitation time is
stored per user. Given no prior actual POI visitation time, a
default visitation time can be estimated based on a user's
profile utilizing a basis time per line of code in seconds, and
factors correlated with the size and complexity of the
current POI method, the knowledge level (stranger or
familiar), and the competency level (junior or senior). Based
on the limited session time available and the set of POIs, the
POI Time Planner component limits the set to an ordered
list by priority that is cut off at the point that the cumlative
time exceeds the timeboxed session. This reduces the size of
the FQN set for locality planning and traversal.

5) POI Locality Planning: from the resulting set, the
POIs are then ordered using a planner for a Hamiltonian
cycle and a TSP path that takes locality into account, such
that those nearby are visited first before jumping to POIs at
a further distance.

6) Trail Generation: the trail with the recommended
POI visit order is generated.

H. ViSiTR Client Visualization Process
Enabling visualization in the ViSiTR client consists of:

1) modeling program code project constructs, structures, and
artifacts as well as visual objects, 2) mapping these to a
metaphor of visual objects, 3) extraction via tools of a
concrete project's structure (via source code import and
parsing) and metrics, 4) visualization of the model with
alternative metaphors, and 5) supporting navigation through
the model in 3 dimensional space (simulating movement by
moving the camera based on user interaction).

V. IMPLEMENTATION
To support validation of the solution concept and

architecture, a prototype was realized in Java that analyzes
and generates code trails given Java program code as input.
For simplification, only normal class methods are considered
and method overloading is ignored (a single FQN is used for
methods of the same name in trails), but this could be
extended via more complex method signatures to handle any
method type and overloading where only parameters
differentiate methods.

A. ViSiTR Service Implementation
To permit the code trail processing and generation to be

location-independent (run anywhere, be it local,
organization, or cloud and not necessarily burden client PCs)
and easily integrate with with various integrated
development environments (IDEs), the ViSiTR service was
realized as a Web service. It is REST-based
(Representational State Transfer), processing client events
(e.g., visitations) and outputting updated trails. Thus, if
larger projects require more processing, the service could be
placed on a more powerful cloud-based server. The
Database Repository used H2 as a relational and Neo4j as a
graph database. To support flexible integration, the output
trail format is XML.

The actual POI visitation time is tracked via navigation
events received via the web service, with the table
METHODRATING_TIMEONMETHOD storing MethodID,
UserID, and visitation time (in seconds). POIs that were
already visited (expected or not) are then filtered and
removed from the replanned trail.

MethodRank requires a data structure with methods (as
FQNs) and their target invocation relationships and counts.
For this, static code analysis of a project's methods and
invoke relationships is performed using jQAssistant 1.0.0
and the GraphAware Neo4j NodeRank plugin [47]. A
Cypher query selects all Method FQNs and their invoked
Method FQNs and the result is exported to a CSV file. Self-
references (such as recursion) are ignored. A separate
simplified graph is then created by importing the CSV file
into the Static Analysis Program with FQN(Method)-
>INVOKES->FQN(TargetMethod) relationships in the
Neo4j server. GraphAware NodeRank then provides
NodeRanks (i.e., MethodRanks) for every node (Method) for
the number of invocations with the NodeRank stored in each
node's property (Figure 5 shows a partial graph in Neo4j).
The result is retrieved via the Neo4j REST API in JSON

51

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(example shown in Figure 6). The JSON was parsed,
converted to FQNs, and placed in the H2 MethodRank table.

Figure 5. Example partial MethodRank graph in Neo4j.

Figure 6. Example NodeRank request result in JSON.

 Users are differentiated by a user ID. The visitation time
is adjusted by a factor (default = 0.5) to halve the estimated
time if it is a senior engineer, and a factor (0.5) also if the
user is already familiar with the code. All user sessions are
time-boxed (default setting is termination at midnight, but
any end time can be set). Once the prioritized POI list is
calculated, POIs are selected in priority order to be included
in the trail until the accumulated expected visitation times

exceed remaining session time. The Hamiltonian path
calculation is then applied on this subset.

To order the POI trail according to POI locality, the Trail
Planner component integrated OptaPlanner, specifically
optimizing the trail with regard to the TSP. For sufficient
IDE interaction responsiveness during trail generation, the
OptaPlanner solving time was explicitly limited to a
maximum of 5 seconds to likely provide sufficient time for
at least a solution to be found (depending on the project size,
session time, and computation hardware) but not necessarily
an optimum (absolute shortest path).

Figure 7 shows a sample of the XML-based code trail
that is sent to the ViSiTR client, with the tags explained as
follows: sessionguid is a unique id for the session.
user can be a unique username for tracking.
timeboxfinishuntil is an absolute time for the
expected end time for the session.
filterregexinclude is a regular expression for the
packages to be included, if nothing is provided then all are
assumed. executablepath is the path to the project
executable. sourcerootpath is the path to the root of the
program source files. topicsfilepath is a path to the
file that contains topics of interest, if it is empty then all
topics are assumed. trailsoutputpath is the location
of the trails file. topic provides a list of the topics if given,
if empty then all topics are assumed.
prioritizationmode provides the type of trail
prioritization desired. userprofile indicates if the user is
a junior or senior engineer (relates to how fast they may
comprehend code). knowledgelevel relates to whether
the programmer is a stranger or familiar with this code
project. history tracks the trailsteps visited with the
actual methods visited including the
actualvisittimestamp. trail provides a list of the
suggested trailsteps in the suggested order and with the
suggestedvisittimestamp as an absolute time.

To demonstrate the REST-based integration capability of
ViSiTR recommender service within common IDE tools, an
Eclipse IDE client was developed, shown in Figure 8. The
upper part shows the current project, the middle part is used
for starting and navigating a session, and the bottom displays
the upcoming trail locations (methods). Double-clicking
causes the method to be shown in the Eclipse source view.

Figure 7. Example ViSiTR code trail XML format.

52

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. An Eclipse IDE ViSiTR client plugin showing a code trail
retrieved from the ViSiTR service.

Code trail integration was accomplished using REST and
JSON via a Unirest client invoked in a Groovy Script. The
returned XML-based code trail was then parsed in the client.

B. Visualization Client Implementation
Existing software structures are imported and converted

into a common XML-centric model. XML was selected as
the primary data format to support the greatest amount of
interoperability with various existing software development
tools. BaseX [17] is used as an XML repository and XQuery
used for queries. srcML [18] v.0.9.5 was selected to convert
source code (such as Java) into XML documents and
provides various code metrics. Campwood SourceMonitor
v.3.5 is used because it creates code metrics across multiple
programming languages. To determine dependencies such as
coupling and inheritance, DependencyFinder was selected,
which also provides data on code structure, dependencies,
and metrics from binary Java. Furthermore, Groovy scripts
were used for the integration of the various tools.

The project structure consists of the following files:
• metrics_{date}.xml: contains metrics obtained from

tools such as SourceMonitor and DependencyFinder,
which are grouped by project, packages, and classes.

• source_{date}.xml: holds all source code in the
srcML XML format

• structure_{date}.xml: contains the project structure
and dependencies, obtained from tools such as
DependencyFinder.

• swexplorer-annotations.xml: contains user-based
annotations with color, flag, and text including
manual tags placed by a user and automatic tag
patterns placed automatically where matches occur.

• swexplorer-metrics-config.xml: contains thresholds
for metrics that support visual differentiation.

• swexplorer-records.xml: contains a record of each
import of the same project done at different times
with a reference to the various XML files such as
source and structure for that import. This permits
changing the model to different timepoints as a
project evolves.

Additional HUD screens include: search, filtering (e.g.,
inclusion/exclusion of packages and classes), tagging, and a
minimap (right corner) for orientation.

Minimum PC specifications are a CPU supporting
Streaming SIMD Extensions 2 and DX9 GPU with Shader
Model 2.0. Recommended is a DX11 GPU and 1GB video

RAM. Java 7 and .NET Framework 3.5 or higher are
required.

VI. CASE STUDY
In prior work [10], validation of the various learning

models was performed: M:Top-Down and M:Bottom-Up
utilizing the package hierarchy, M:Topics/Goal which
utilizes filtering of packages and classes by names,
M:DynamicPath which prioritizes methods that appear in
various runtime traces by both how often (frequency) within
a trace and that they occur within different trace files, and
weighted mode that uses configurable parameter weighting
inputs. Furthermore, the empirical study utilized program
code obfuscation to limit any intuitive mental model creation
or semantic ordering, assessing its effectiveness and
efficiency for program comprehension knowledge navigation
within unfamiliar program code (i.e., unfamiliar presented
knowledge), while retaining the equivalent program
structure.

This case study thus focuses on validating the viability of
the 3D visualization solution and its scalability. For this
study, two Java projects were used: the Saxon XSLT 2.0 and
XQuery processor consisting of 331K lines of code (LOC),
17K methods, and 1655 classes in 38 packages with 53K
inter-class dependencies. The ViSiTR client ran on a Fujitsu
Lifebook AH531with Windows 10 Pro (x64) 2.4GHz i5-
2430M 8GB RAM and SSD disk.

A. ViSiTR client visualization
In the universe metaphor, Figure 9 shows the loaded

Saxon project consisting of 53 solar systems (without
applying any filters to hide any packages or classes), and
showing all dependencies. This can be navigated via 3D fly-
thru and visual responsiveness for 3D fly-thru navigation
showed no issues. In Figure 10, dependencies were
deselected and solar systems become recognizable and
distinguishable based on package names. In Figure 11, a
single package, the net.sf.saxon package is shown as a solar
system including internal package dependencies. Figure 12
shows the source code view in the HUD for the
net.sf.saxon.Platform class (class name is labeled on a square
in the middle of the planet, these are also used for tagging by
stacking the squares in customizable colors) with the selected
object in white. Planet orbits are in turquoise and
dependencies as purple light beams. Planet size can vary
based on some metric like number of methods.

 Within the terrestrial metaphor, Figure 13 shows the
loaded Saxon project with 53 packages represented by glass
bubble cities viewed here from above (dependencies are
hidden). Figure 14 shows the source code view in the HUD
for the net.sf.saxon.Platform class (class name is labeled on a
stackable square of tags on the top of any building), with
classes in a package grouped within a glass city bubble and
dependencies shown as purple pipes. If desired, building size
can be set to vary based on some metric such as number of
methods. Both metaphors were found to be easily navigable
via 3D fly-thru, and scalability, performance, and
responsiveness for the client showed no issues once the
project was loaded.

53

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Code trail navigation is shown in Figure 15 for the
universe metaphor, with the current location shown on the
trail strip above the cockpit menu. On the right of this strip,
the current and upcoming two POIs are shown, and on the
left, a play/pause button and a rewind and forward button are
available for trail navigation. The slider on the left side
center adjusts the speed with which one is transported
between POIs by the automated trail guidance. Figure 16
shows the HUD in source code view with the terrestrial
metaphor. Figure 17 shows the HUD in the UML view with
a dynamically generated class diagram showing the
dependencies between classes in 2D and those in 3D can be
seen in the background.

B. 3D Code Trail Evaluation
The performance and scalability of the ViSiTR prototype

was measured. The ViSiTR service was run with VirtualBox
version 5.1.14 in a virtual machine image of Debian 8 x86,
single CPU, and 1.7GB RAM hosted on a Fujitsu Lifebook
AH531with Windows 10 Pro (x64) 2.4GHz i5-2430M 8GB
RAM and SSD disk. The host was also used to run the
ViSiTR client.

To provide a contrast to the relatively large Saxon
project, which includes two dynamic traces - one with 100K
lines and the other with 17,497 lines, we also measured a
custom small project called MathFunc consisting of 5
packages, 6 classes, 22 methods, and 37 dependencies
without any trace input.

Table I compares the measured performance (wall clock
time in seconds (s) or hours (h)) for various activities with
the MathFunc and the Saxon project. Client-side project
preparation, involving external tools and including code
parsing, dependencies, and metrics was 15 secs for
MathFunc and 300 secs for Saxon. Server-side project
preparation was 400 secs for MathFunc and 6 hrs for Saxon.
This project preparation time, which among other things
involves source code parsing, dynamic trace analysis, and
static graph call invocation analysis, is usually incurred once
for stable projects. Client project loading delays on the Unity
game engine were 5 secs for MathFunc and 220 secs for
Saxon. All objects are created on initial loading before
providing navigational capability. Trail creation, which
involves TSP-based POI prioritization, was 15 secs for
MathFunc and 110 secs for Saxon. Trail optimization, which
sends a user event and requests a code trail optimization
(adaptation) based on the data, was 12 secs for MathFunc
and 65 secs for Saxon.

TABLE I. ACTIVITY PERFORMANCE

Activity MathFunc Saxon

Client-side project preparation 15s 300s

Server-side project preparation 400s 6h

Client project loading latency 5s 220s

Trail creation 15s 110s

Trail optimization 12s 65s

In our previous empirical study in C-TRAIL [10] using
obfuscated code, we had focused on small projects to support
reconstruction of the code structure to avoid straining
cognitive abilities. For larger projects using code trails,
ViSiTR performance showed the code trail service to be the
primary bottleneck both in preparation and at runtime. While
this service was run locally on the notebook, the service
could instead be placed in the cloud to utilize more powerful
hardware and reduce the 6h preparation time.

While we were able to successfully prototype the code
trail recommendation with 3D visualization, larger projects
created noticeable performance issues, although not in the
visualization but rather in the recommendation service. In
future work, we plan to address the initial prototype's
performance issues via profiling, platform tuning, algorithm
optimizations, dedicated server hardware for the service, and
enabling background loading of visual objects on the client
for very large projects. These are needed to enable a
comprehensive empirical study to determine acceptance and
improved comprehension by programmers.

Understanding the project requires a programmer to
visualize the overall structure in abstractions in their mind;
UML also requires some cognitive processing within its
metaphor of boxes and lines. Even if visual metaphors
provide an additional cognitive burden requiring further
processing, in our opinion based on results from our previous
study they also provide an additional motivation incentive
that can offset this burden for various user groups (such as
students) and keep them interested in the project code longer
while still viewing real source code.

VII. CONCLUSION AND FUTURE WORK
This paper described the ViSiTR approach to code trail

visualization, describing its theoretical background in the
holey quilt theory and cognitive learning models. The
solution concept was described and implementation details
of a prototype provided. A case study evaluated its viability
for code trail visualization and its scalability for larger
projects.

As an automated tutor and recommender system in the
program code comprehension space, ViSiTR applies a
conceptual mapping of geographical POIs to code locations,
considers the locality or knowledge closeness of such
granules, and applies TSP to an unfamiliar knowledge
landscape consisting of program code. It incorporates
MethodRanking as a variant of PageRanking and granular
distance in the form of POI locality. Furthermore, it
recommends a knowledge navigation order by generating a
code trail as a Hamiltonian cycle. While the ViSiTR
prototype showed the feasibility and viability of 3D visual
code trails, the evaluation also showed that optimizations of
the prototype implementation are needed to improve its
scalability and permit empirical studies with larger projects.

Our approach does not consider extraneous artifacts
related to program comprehension, such as configuration
files and documentation, since these typically must be
analyzed and provided by humans. In future work we will
consider providing a way to include this information.

54

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Future work includes prototype performance and
scalability optimization and testing with workstations, a
comprehensive empirical study with different projects and
user groups, support for additional programming languages,
support for displaying different and directed relationship
categories and cardinalities, and additional visualization
paradigms. Application of the elaborated ViSiTR solution
principles to other domains beyond software engineering
could provide beneficial knowledge navigation guidance and
recommendations in form of a trail for other unfamiliar
knowledge landscapes.

ACKNOWLEDGMENT
The author thanks Claudius Eisele for his assistance with

the implementation of the service and Dominik Bergen for
the client implementation and evaluation.

REFERENCES
[1] R. Oberhauser, "ReSCU: A Trail Recommender Approach to

Support Program Code Understanding," Proceedings of the
Eighth International Conference on Information, Process, and
Knowledge Management (eKNOW 2016). IARIA XPS Press,
2016, pp. 112-118.

[2] G. Booch, "The complexity of programming models,"
keynote talk at AOSD 2005, Chicago, IL, March 14-18, 2005.

[3] A. Deshpande and D. Riehle. “The total growth of open
source,” In: IFIP International Federation for Information
Processing. Vol. 275. 2008, pp. 197–209.

[4] C. Jones, "The economics of software maintenance in the
twenty first century," Version 3, 2006. [Online]. Available
from: http://www.compaid.com/caiinternet/ezine
/capersjones-maintenance.pdf 2017.02.23

[5] R. Minelli, A. Mocci, and M. Lanza, "I know what you did
last summer: an investigation of how developers spend their
time," Proc. IEEE 23rd International Conference on Program
Comprehension, IEEE Press, 2015, pp. 25-35.

[6] L. Kappelman, "Some strategic Y2K blessings," Software,
IEEE, 17(2), 2000, pp. 42-46.

[7] PayScale, "Full List of Most and Least Loyal Employees."
[Online]. Available from: http://www.payscale.com/data-
packages/employee-loyalty/full-list 2017.02.23

[8] M. Robillard, W. Maalej, R. Walker, and T. Zimmermann,
Recommendation Systems in Software Engineering. Springer,
2014.

[9] F. P. Brooks, Jr., The Mythical Man-Month. Boston, MA:
Addison-Wesley Longman Publ. Co., Inc., 1995.

[10] R. Oberhauser, "C-TRAIL: A Program Comprehension
Approach for Leveraging Learning Models in Automated
Code Trail Generation," Proceedings of the 11th International
Conference on Software Engineering and Applications
(ICSOFT-EA 2016), SciTePress, 2016, pp. 177-185.

[11] R. Oberhauser, C. Silfang, and C. Lecon, "Code structure
visualization using 3D-flythrough," Proc. of the 11th
International Conference on Computer Science & Education
(ICCSE), IEEE, 2016, pp. 365-370.

[12] T. Clear, "The hermeneutics of program comprehension: a
'holey quilt' theory," ACM Inroads, 3(2), June 2012, pp.6-7.

[13] A. Bargiela and W. Pedrycz, Granular computing: an
introduction. Springer Science & Business Media, vol. 717,
2012.

[14] Y. Qian, J. Liang, C. Dang, F. Wang, and W. Xu,
"Knowledge distance in information systems," J. of Systems
Science and Systems Engineering, 16(4), 2007, pp. 434-449.

[15] M. Rahman and M. Kaykobad, "On Hamiltonian cycles and
Hamiltonian paths," Information Processing Letters, 94(1),
2005, pp. 37-41.

[16] E. Lawler, J. Lenstra, A. Kan, and D. Shmoys. The traveling
salesman problem: a guided tour of combinatorial
optimization. Wiley, New York, 1985.

[17] J. Singer, R. Elves, and M.-A. Storey, "NavTracks:
Supporting Navigation in Software Maintenance," Proc. Int'l
Conf. on Software Maintenance, 2005, pp. 325–334.

[18] M. Kersten and G. Murphy, "Mylar: A degree-of-interest
model for IDEs," Proc. 4th international conf. on aspect-
oriented software development, ACM, 2005, pp. 159-168.

[19] D. Cubranic, G. Murphy, J. Singer, and K. Booth, "Hipikat: A
project memory for software development," Software Eng.,
IEEE Trans. on, 31(6), 2005, pp. 446-465.

[20] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl,
"Mining version histories to guide software changes,"
Software Eng., IEEE Trans. on, 31(6), 2005, pp. 429-445.

[21] M. Robillard and G. Murphy, "FEAT: A tool for locating,
describing, and analyzing concerns in source code," Proc.
25th Int'l Conf. on Software Eng., IEEE, 2003, pp. 822–823.

[22] M. Robillard and G. Murphy, "Automatically Inferring
Concern Code from Program Investigation Activities," Proc.
18th Int'l Conf. Autom. SW Eng., IEEE, 2003, pp. 225-234.

[23] M. Robillard, “Topology Analysis of Software
Dependencies,” ACM Trans. Software Eng. and
Methodology, vol. 17, no. 4, article no. 18, 2008.

[24] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, "Mining
Jungloids: Helping to Navigate the API Jungle," Proceedings
of PLDI, Chicago, IL, 2005, pp. 48–61.

[25] R. Holmes, R. J. Walker, and G. C. Murphy, "Approximate
structural context matching: An approach to recommend
relevant examples," IEEE Transactions on Software
Engineering 32(12), 2006, pp. 952–970.

[26] M. Bruch, T. Schaefer, and M. Mezini, "Fruit: IDE support
for framework understanding," Proc. 2006 OOPSLA
workshop on eclipse technology eXchange, eclipse ’06,
ACM, 2006, pp. 55–59.

[27] M. Goldman and R. C. Miller, "Codetrail: Connecting source
code and web resources," Journal of Visual Languages &
Computing, 20(4), 2009, pp.223-235.

[28] M. Yin, B. Li, and C. Tao, "Using cognitive easiness metric
for program comprehension," Proc. 2nd Int. Conf. on Softw.
Eng. and Data Mining, IEEE, 2010, pp. 134-139.

[29] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen,
and R. Koschke, "A systematic survey of program
comprehension through dynamic analysis," Softw. Eng., IEEE
Trans. on, 35(5), 2009, pp.684-702.

[30] A. Teyseyre and M. Campo, "An overview of 3D software
visualization," Visualization and Computer Graphics, IEEE
Transactions on, vol. 15, no. 1, (2009, pp. 87-105.

[31] A. Kashcha, "Software Galaxies." [Online]. Available:
http://github.com/anvaka/pm/ 2017.02.23

[32] R. Wettel and M. Lanza, “Program comprehension through
software habitability,” in Proc. 15th IEEE Int'l Conf. on
Program Comprehension, IEEE CS, 2007, pp. 231–240.

[33] R. Wettel et al., "Software systems as cities: A controlled
experiment," in Proc. of the 33rd Int'l Conf. on Software
Engineering, ACM, 2011, pp. 551-560.

[34] J. Rilling and S. P. Mudur, "On the use of metaballs to
visually map source code structures and analysis results onto
3d space," in Proc.. 9th Work. Conf. on Reverse Engineering,
IEEE, 2002, pp. 299-308.

[35] P. McIntosh, "X3D-UML: user-centred design,
implementation and evaluation of 3D UML using X3D,"
Ph.D. dissertation, RMIT University, 2009.

55

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[36] A. Krolovitsch and L. Nilsson, "3D Visualization for Model
Comprehension: A Case Study Conducted at Ericsson AB,"
University of Gothenburg, Sweden, 2009.

[37] C. Schulte, "Block Model: an educational model of program
comprehension as a tool for a scholarly approach to teaching,"
Proc. Fourth International Workshop on Computing
Education Research, ACM, 2008, pp. 149-160.

[38] C. Schulte, T. Busjahn, T. Clear, J. Paterson, and A.
Taherkhani, "An introduction to program comprehension for
computer science educators," Proc. 2010 ITiCSE Working
group reports (ITiCSE-WGR ‘10), ACM, 2010, pp. 65-86.

[39] J. Novak. Learning, creating, and using knowledge. Lawrence
Erlbaum Assoc., Mahwah, NJ, 1998.

[40] S. Letovsky, "Cognitive processes in program
comprehension," Journal of Systems and Software, 7(4),
1987, pp. 325-339.

[41] N. Pennington, "Stimulus structures and mental
representations in expert comprehension of computer
programs," Cognitive psychology, 19(3), 1987, pp.295-341

[42] E. Soloway, B. Adelson, and K. Ehrlich, "Knowledge and
processes in the comprehension of computer programs," In:

The Nature of Expertise, A. Lawrence Erlbaum Associates,
1988, pp. 129-152

[43] J. Koenemann and S. Robertson, "Expert problem solving
strategies for program comprehension," Proc. of the SIGCHI
Conference on Human Factors in Computing Systems, ACM,
1991, pp. 125-130.

[44] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen,
and R. Koschke, "A systematic survey of program
comprehension through dynamic analysis," Softw. Eng., IEEE
Trans. on, 35(5), 2009, pp.684-702

[45] Y. Guéhéneuc, "TAUPE: towards understanding program
comprehension," Proc. 2006 conf. Center for Adv. Studies on
Collaborative research (CASCON '06) IBM Corp., 2006.

[46] L. Page, S. Brin, R. Motwani, and T. Winograd, "The
PageRank citation ranking: bringing order to the Web,"
In:World Wide Web Internet And Web Information Systems
54.1999-66, 1998, pp. 1–17.

[47] GraphAware. Neo4j NodeRank. [Online]. Available from:
https://github.com/graphaware/neo4j-noderank 2017.02.23

Figure 9. Saxon project with dependencies shown in the ViSiTR universe metaphor.

56

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Saxon project without dependencies shown in the ViSiTR universe metaphor.

Figure 11. The net.sf.saxon package shown as an isolated solar system with internal dependencies in the ViSiTR universe metaphor.

57

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. HUD source code view of the saxon Platform class as a planet with dependencies in the ViSiTR universe metaphor.

Figure 13. The Saxon project with dependencies shown in the ViSiTR terrestrial metaphor.

58

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. HUD source code of saxon Platform class as building in glass city bubble with dependencies in ViSiTR terrestrial metaphor.

Figure 15. Visitation of CharSlice during automated code trail navigation in the ViSiTR universe metaphor.

59

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Visitation of ProxyReceiver showing HUD source code view during automated code trail navigation in the ViSiTR terrestrial metaphor.

Figure 17. Dynamically generated UML class diagram showing dependencies for CharSlice during code trail visit in the ViSiTR universe metaphor.

60

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

