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Abstract—The rapid digitalization occurring in our society 
depends on massive amounts of data and software running on 
various devices. This, in turn, entails the creation and 
maintenance of an ever-increasing volume of computer 
program code. This situation is exacerbated by a limited pool 
of trained human resources that must quickly comprehend 
various sections of program code. Thus, effective and efficient 
automated tutor systems or recommenders for program 
comprehension are imperative. Furthermore, advances in 
game engine and PC performance have hitherto been 
insufficiently utilized by software engineering tools to leverage 
the potential that 3D visualization of code structure and 
navigation can provide. This paper introduces ViSiTR (3D 
Visualization of code viSitation Trail Recommendations), an 
approach that utilizes program code as a knowledge base to 
automatically recommend code visitation trails with visual 3D 
navigation to support effective and efficient human program 
code comprehension. A case study with a prototype 
demonstrated the viability of the approach but found 
scalability issues for large projects. 

Keywords - program code comprehension; recommendation 
systems; learning models; intelligent tutoring systems; 
knowledge-based systems; software engineering; engineering 
training; computer education; software visualization. 

I. INTRODUCTION 
This is an extended paper of [1]. The increasing demand 

for and utilization of software throughout society and 
industry results in soaring volumes of (legacy) program code 
and associated maintenance activity. Although the total lines 
and growth of program code worldwide is untracked and 
unknown, it's been estimated that well over a trillion lines of 
code (LOC) exist with 33bn added annually [2], while a 
study of 5000 active open source software projects shows 
code size doubling on average every 14 months [3].  

This has ramifications on the amount of relatively 
expensive labor involved in software development and 
maintenance. Approximately 75% of technical software 
workers are estimated to be doing maintenance [4]. 
Moreover, program comprehension may consume up to 70% 
of the software engineering effort [5]. As an example, the 
Year 2000 (Y2K) crisis [6] with global costs of $375-750 
billion provided an indicator of the scale and importance of 
program comprehension. Moreover, the available pool of 
programmers to develop and maintain code remains limited 
and is not growing correspondingly. This is exacerbated by 
high employee turnover rates in the software industry, for 
example 1.1 years at Google [7]. 

Thus, there is resulting pressure on programmers to 
rapidly come up to speed on existing code or comprehend 
and maintain legacy code (a type of knowledge) in a cost-
effective manner. It thus becomes imperative that 
programmers be supported with automated tutors and 
recommenders that efficiently and effectively support 
program code comprehension. In this space, 
recommendation systems for software engineering provide 
information items considered to be valuable for a software 
engineering task in a given context [8].  

However, such recommenders often lack integrated 
visualization support, hampering their ability to achieve 
more comprehensive program comprehension support. This 
relates to an essential difficulty of software construction 
asserted by F. P. Brooks Jr., namely the invisibility of 
software, since the reality of software is not embedded in 
space [9]. The most common formats used for the 
comprehension of program code include text or the two-
dimensional Unified Modeling Language (UML). 

In prior work, we introduced ReSCU [1], a knowledge-
centric recommendation service and planner for program 
code comprehension. This was enhanced with support for 
cognitive learning models in C-TRAIL [10]. Separately, we 
developed a 3D flythrough visualization approach called 
FlyThruCode [11] that offers opportunities for grasping 
software program structures utilizing information 
visualization to support exploratory, analytical, and 
descriptive cognitive processes. 

This paper introduces ViSiTR (3D Visualization of code 
viSitation Trail Recommendations), an approach for the 3D 
visualization of automatically recommended program 
comprehension code trails in alignment with various 
cognitive learning model styles and the "holey quilt" theory 
[12]. ViSiTR can be viewed as an intelligent tutor system 
with a 3D visual interface, applying a practical form of 
granular computing [13] and concepts like knowledge 
distance [14] to automatically recommend knowledge 
navigation as a Hamiltonian cycle [15], a special case of the 
traveling salesman problem (TSP) [16], in an unfamiliar 
knowledge landscape consisting of program code. 

The paper is organized as follows: the next section 
discusses related work. This is followed by Section III, 
which provides background information. Section IV then 
describes the solution concept that is followed by a 
description of a prototype implementation. Section VI then 
presents a case study, which is followed by a conclusion. 
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II. RELATED WORK 
An overview of recommendation systems in software 

engineering is provided by [8]. In the Eclipse Integrated 
Development Environment (IDE), NavTracks [17] 
recommends files related to the currently selected files based 
on their previous navigation patterns. Mylar [18] utilizes a 
degree-of-interest model in Eclipse to filter our irrelevant 
files from the File Explorer and other views. The interest 
value of a selected or edited program element increases, 
while those of others decrease, whereby the relationship 
between elements is not considered. In support of developers 
with maintenance tasks in unfamiliar projects, Hipikat [19] 
recommends software artifacts relevant to a context based on 
the source code, email discussions, bug reports, change 
history, and documentation. The eRose plugin for Eclipse 
mines past changes in a version control system repository to 
suggest what is likely also related to this change based on 
historical similarity [20]. To improve navigation efficiency 
and enhance comprehension, the FEAT tool uses concern 
graphs either explicitly created by a programmer [21] or 
automatically inferred [22] based on navigation pathways 
utilizing a stochastic model, whereby a programmer 
confirms or rejects them for the concern graph. With the 
Eclipse plugin Suade [23], a developer drags-and-drops 
related fields and methods into a view to specify a context, 
and Suade utilizes a dependency graph and heuristics to 
recommend suggestions for further investigation. To support 
the usage of complex APIs in Eclipse, the Prospector system 
[24] recommends relevant code snippets by utilizing a search 
engine in combination with Eclipse Content Assist. 
Strathcona [25] analyzes structural facts of an incomplete 
code selection and utilizes heuristic matches to determine the 
most similar example. The Eclipse plugin FrUiT [26] 
supports example framework usage via association rule 
mining of applications that utilize a specific framework. 
Codetrail [27] connects source code and hyperlinked web 
resources via Eclipse and Firefox. Yin et al. [28] propose 
applying coarse-grained call graph slicing, intra-procedural 
coarse-grained slicing, and a cognitive easiness metric to 
guide programmers from the easiest to the hardest non-
understood methods. Cornelissen et al. [29] survey work on 
program comprehension via dynamic analysis. 

Although we attempted to provide a more detailed 
practical comparison with many of the above program 
comprehension tools, we abandoned our effort since the tool 
software was mostly either inaccessible or after download 
we were unable to get it to successfully execute. Our 
comparison is thus based on research paper descriptions. In 
contrast to the related work above, various facets 
differentiate the ViSiTR approach. ViSiTR is able to 
recommend code region visitations and plan a code trail 
order without necessitating an explicit context or prior 
history, without requiring the intervention or confirmation of 
a human expert. Furthermore, the approach is unique in 
applying a conceptual mapping of geographical points of 
interest (POI) and the traveling salesman problem/planning 
(TSP) to source code and the generation of code trail 

planning, with a Hamiltonian cycle to avoid unnecessary 
revisitations. 

With regard to 3D software visualization tools across the 
various software engineering areas, an overview and survey 
is given by Teyseyre and Campo [30]. Software Galaxies 
[31] provides a web-based visualization of dependencies 
among popular package managers and supports flying. Every 
star represents a package that is clustered by dependencies. 
CodeCity [32] is a 3D software visualization approach based 
on a city metaphor and implemented in SmallTalk on the 
Moose reengineering framework. Buildings represent 
classes, districts represent packages, and visible properties 
depict selected metrics. Wettel et al. [33] showed a 
significant increase in terms of task correctness and decrease 
in task completion time. Rilling and Mudur [34] use a 
metaball metaphor combined with dynamic analysis of 
program execution. X3D-UML [35] provides 3D support 
with UML in planes such that classes are grouped in planes 
based on the package or hierarchical state machine diagrams. 
A case study of a 3D UML tool using Google SketchUp 
showed that a 3D perspective improved model 
comprehension and was found to be intuitive [36].  

In contrast to the above work, ViSiTR supports visual 
code trails that can be recommended, captured, and replayed 
via 3D fly-thru visitation  using multiple and dynamically 
switchable metaphors, custom and automatic 
annotation/tagging, and the display of localized contextually-
relevant program code data (code, metrics, UML) in a heads-
up display, thereby intermixing 2D data while flying through 
the 3D space. Because the source code is transformed into an 
XML description, various programming languages can be 
easily supported. Its plugin architecture permits the 
integration of program code data from various separate tools. 

III. BACKGROUND 
For our purposes, it may be helpful to view program code 

comprehension from the holey quilt theory perspective [12], 
based on [37] and [38]. According to this metaphor "novice 
programmers' early comprehension models can be 
characterized by a pattern of 'holey knowledge' (i.e., an 
incomplete patchwork of fabric, with empty cells and 
missing stuffing)" [38] quoted in [12]. 

For the programmer, her or his program comprehension 
knowledge base can be viewed as a block model as shown in 
Figure 1 both functionally (the "what" in green) and 
structurally (the "how" in gold). Structure includes both the 
text surface of the program (right column), including its 
syntax, semantics, and style as well as its control structure 
(middle column). Its function goals (left column) considers 
its intent or goals at various levels. The finest granularity 
considered is on the atom (bottom) row, considering 
language elements and the result of any statement. The third 
row is labeled block, and consists of grouping within some 
region of interest (ROI). The second row labeled relations 
deals with the relations between method calls. The top row 
deals with the macro-structure of the overall program. The 
knowledge level (depth dimension) about any element within 
this structure can vary from fragile to moderate to deep, and 
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is often correlated with the time on task (depth dimension), 
which can vary from low to medium to high.  
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Figure 1.  Depiction of the "holey quilt" theory of program 

comprehension, adapted from [12]. 

Given this perspective, a hermeneutic view of program 
comprehension is assumed, consisting of a dynamic process 
of program code interpretation that involves recurrent 
transitions between some overall picture down to various 
myopic code snippets and back to the overall picture again, 
successively assembling a (hopefully) coherent and 
consistent picture based on an interpretation of its syntax, 
semantics, and intention. 

In the constructivist theory of human learning, humans 
actively construct their knowledge [39]. We thus view 
program comprehension as individualistic for aspects such as 
capacity, speed, motivation, and how mental models are 
constructed. Additionally, programmers possess different 
application-independent general and application-specific 
domain knowledge. Information processing habits of an 
individual are known as cognitive learning styles. ViSiTR 
provides individual and automated support for various 
learning model (M:) styles, primarily ordering or adjusting 
concept location (code area) visitation scope.  

M:Bottom-Up: in this learning model, chunking [40] is 
used with the program model being correlated with a 
situation model [41]. Microstructures are mentally chunked 
into larger macrostructures as comprehension increases, as 
depicted by the row ordering in Figure 1 from bottom up. 
ViSiTR assumes a package hierarchy. 

M:Top-Down: this model [42] is typically applicable 
when familiarity with the code, system, domain, or similar 
system structures already exists. Beacons and rules of 
discourse are used to hierarchically decompose goals and 
plans, as depicted by the rows in Figure 1 from top down. To 
automate support, ViSiTR assumes a cluster hierarchy and 
starts trails from the highest hierarchy.  

M:Topics/Goal: when programmers are given a specific 
task, they tend to utilize an as-needed strategy to 
comprehend only those portions relevant for the task [43]. 
This correlates with ROIs of Figure 1. To support this 
simply, ViSiTR supports investigating a limited code subset 
via topic filtering. Topic filters (positive and negative) can be 
shared and support a goal (e.g., optimize memory) or apply 
to a specific topic (e.g., security, database access, user 
interface). 

M:DynamicPath: in this model, ordering is oriented on 
actual invocation execution traces [44], which correlates with 
block E of Figure 1.  

M:Exploratory: this model supports either discovery or 
analysis to confirm a hypothesis, with the learner actively 
deciding and controlling the navigation. It is supported by 
default, since a user can deviate at any time. 

IV. SOLUTION APPROACH 
The ViSiTR solution approach, incorporating various 

concepts from [1], [10], and [11], focuses on supporting the 
learning, understanding, and navigation of unfamiliar 
program source code by programmers in an automated, 
systematic way, without requiring additional knowledge, 
historical information, or human expert assistance. In 
alignment with the holey quilt theory, we hold the view that 
a programmer's view of any complex team-based software 
project given limited time constraints is unlikely to ever be 
comprehensive, leaving knowledge level "holes" from a 
knowledge level scale between none to deep knowledge. 
Thus, a major intent is to provide efficient code trails that 
focus on the important methods to comprehend given some 
limited timeframe.  

A. Principles 
The ViSiTR solution approach is based on these 

principles (P:): 
P:POI: program source code locations are identified and 

viewed as Points-of-Interest (POI) (or knowledge entities), 
analogous to geographical locations in navigational systems 
and ROI in the holey quilt theory. Each POI is identified by 
some unique name, for instance in Java its fully qualified 
name (FQN) consisting of the concatenation of a package 
name, class name, colon, and method name. A POI can be 
viewed as a granule or information entity of interest in a 
knowledge "landscape", but this could be a function in non-
object-oriented languages, an object method, a class, or a 
package.  

P:POIRanking: to determine the importance of a POI (or 
knowledge granule) for human comprehension, they are 
ranked relative to each other. The algorithm MethodRank 
described below exemplifies such a ranking that fulfills this 
principle.  
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P:POILocality: POI locality, which can be conceptually 
viewed as knowledge closeness from the perspective of 
knowledge distance [14], is taken into consideration. This is 
intended to address the cognitive burden of context switches 
to a human when viewing program source code, by ordering 
POIs such that the number of unnecessary switches in a POI 
visitation order is reduced. The POI Distance calculation 
described later is an example for applying this principle. 

P:Timeboxing:  the amount of time available for 
concentrated comprehension and learning is assumed to be 
limited, and we assume learning is chunked into one or more 
sessions. Thus, the visitation time for POIs is estimated, and 
only the subset of priority ordered POIs that can be feasibly 
visited in the given timebox (deadline is midnight if no other 
time is provided) is first selected, and this prioritized subset 
is then reordered according to locality for that session. We 
assume that a session will not be interrupted, but that 
following sessions  may not occur, therefore we use priority 
sorting first, and then resort the session subset by locality to 
limit jumping or thrashing. 

P:CodeTrails: the recommendation service provides code 
trails as output with a navigation and visitation order 
recommendation for the POIs, whereby POI locality is taken 
into account. A mapping of the TSP and related planning 
algorithms are applied to these granules (the POIs) and the 
associated knowledge distance between them. While the path 
suggested may not necessarily be the most optimal path, it 
provides an efficient path nonetheless through the knowledge 
landscape (source code). In ViSiTR, POI visitation planning 
via the generated code trails focuses on invocation 
relationships rather than class relationships. Not following 
class relationships can be viewed as supported by an 
empirical eye-tracking study finding that "software engineers 
do not seem to follow binary class relationships, such as 
inheritance and composition" [45]. Two modes are 
supported: initial trail mode that generates a trail from 
scratch, and refactor trail mode that dynamically incorporates 
user actions and re-optimizes the trail based on the visited 
POI and the session time left. Visited POIs (including 
deviations) are detected via events and automatically 
removed from the next suggested trail. 

P:User profile: user's knowledge level (e.g., familiar vs. 
unfamiliar) and competency level (junior vs. senior) are 
taken into consideration. 

B. Visualization Principles 
ViSiTR includes these visualization principles (P:V:): 
P:V:Multiple 3D metaphors: The input for a model 

instantiation is an import of project source code. One of the 
first issues faced in visualization is how to best model and 
visualize the program code structures. Because of the lack of 
any standardization or norms in this area, and to support the 
spectrum of individual preferences, support is provided for 
modeling and switching between multiple visualization 
metaphors, analogous to the concept of skins. Our initial 
model focuses primarily on modeling and visualizing object-
oriented packages, classes, and their relationships such as 
associations and dependencies. Initially, we support two 
metaphors "out-of-the-box" to provide examples of skins, 

and custom mappings to other objects types are possible. In 
the universe metaphor, each planet represents a class with 
planet size based on the number of methods, and solar 
systems represent a package. Multiple packages are shown 
by layer solar systems over one another. In the terrestrial 
metaphor, buildings can represent classes, building height 
can represent the number of methods, and glass bubbles can 
group classes into packages. Relationships are modeled 
visually as light beams or pipes by default. 

P:V:Cockpit: analogous to an airplane cockpit, this 
provides information to the user on the border of the screen, 
and has input fields for searching for a class or method or 
navigating directly to a class. Buttons can be depressed to 
indicate preferences. A minimap on the upper right of the 
screen provides a high-level overview of the entire landscape 
and one's relative location in a small area. 

P:V:Heads-Up Display (HUD): This provides a 
transparent glass on the screen with additional context-
specific information. The type of information displayed can 
be changed via left/right arrows on the screen edges. The 
transparency level can be adjusted in the cockpit to provide a 
less opaque background if desired (e.g., to view code better). 
Various HUD screens are provided: Tags for automatic and 
manual persistent annotations/tags; Source Code where the 
program text is shown in scrollable form; UML where UML 
diagrams are dynamically generated in 2D; Metrics which 
shows text-based metrics due to the large number of possible 
metrics (any of which may be of interest to the user); Project 
Management to manage the metaphor, load a project record, 
or import a new project; and Filtering that provides selectors 
for adjusting the visibility of packages by interest.  

P:V:Flythrough navigation: both mouse and keyboard 
support for 3D navigation (motion) in all directions is 
provided, as is autopilot or lockon to navigate to a specific 
class. 

P:V:Intermixing 3D/2D: support for dynamically 
generated 2D UML is integrated in the 3D environment, 
enabling the usage of this standard notation to support the 
understanding of a particular area of interest. 

P:V:CodeTrails: We provide the ability to capture and 
record a visitation trail as well as provide a playback ability, 
displaying the previous, current, and the next visitation node. 
Furthermore, the trail can be recommended and adjusted 
adhoc by the ViSiTR service. The HUD features can be used 
to view the code for any visited class. 

C. ViSiTR Solution Architecture 
ViSiTR consists of a visual client that utilizes a 

recommender service. The architecture for the recommender 
service is shown in Figure 2 and consists of four primary 
modules: Cognitive Learning, Knowledge Processing, a 
Database Repository, and Integration. 

The Cognitive Learning module supports various 
program code learning Models, Goals, Topics, execution 
Traces, and visitation History. The Knowledge Processing 
module includes the components POI Prioritizer for ranking 
POIs, a POI Filter that filters based on visitations or topics, a 
Trail Estimator for visitation times, and a Trail Planner for 
planning the POI visitation time and order. The Database 
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Repository utilizes appropriate database types to retain 
metadata, knowledge, or data in forms such as a graph 
database for modeling the source code as a graph of nodes 
with properties, and a relational/NoSQL database for dealing 
with non-graph-related knowledge related to source code. 
The Integration module includes a Web Service API 
(application programming interface) for development tool 
integration, an Input Processor to process inputs, 
transformations, and events (such as a POI visit) including 
analysis and tracing inputs, and a Trail Generator for 
generating a planned trail into a desired format. 
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Figure 2.  ViSiTR recommender service architecture. 

 
Figure 3.  ViSiTR visual client architecture. 

Figure 3 shows the visual client architecture which is 
based on a game engine and supports extensibility via 
plugin-ins. Assets are used by the game engine and consist of 
Animations, Fonts, Imported Assets (like a ComboBox), 
Materials (like colors and reflective textures), Media (like 
textures), 3D Models, Prefabs, Shaders (for shading of text in 
3D), and Scripts. Scripts consist of Basic Scripts like user 
interface (UI) helpers, Logic Scripts that import, parse, and 
load project data structures, and Controllers that react to user 
interaction. Logic Scripts read Configuration data about 
Stored Projects and the Plugin System (input in XML about 
how to parse source code and invocation commands). Logic 
Scripts can then call Applications consisting of General and 
Java Applications. General Applications currently consist of 
BaseX, Graph Layout consists of our own version of the KK 
layout algorithm for positioning objects, Graphviz, 
PlantUML, and integration with for instance the 
recommender service as a web service client. Java 
Applications consist of Dependency Finder, Java 
Transformer that invokes Groovy scripts, Campwood 

SourceMonitor, and srcML. Via the designed Plugin system, 
additional tools and applications can be easily integrated. 
This was used to integrate the Recommender Service Client 
which invokes the Recommender Service. 

D. ViSiTR Service MethodRank Calculation 
With regard to P:POIRanking, it is assumed that in 

general, given no other knowledge source besides the source 
code and assuming limited learning time, it is more essential 
for the user to become familiar with the methods of a project 
that are used frequently throughout the code, rather than ones 
that are only sparsely utilized. Thus, a variation of the 
PageRank [20] algorithm call MethodRank is used to 
prioritize the POIs, whereby instead of webpages methods 
are mapped, and instead of hyperlinks, we map invocations. 
Thus, those methods that have the most references 
(invocations) in the code set are ranked the highest. While 
this does not consider runtime invocations (such as loops), it 
can be an indicator for a method with broader relative 
utilization and thus likely of greater interest for 
comprehension. One might argue that certain utility methods 
such as print or log would perhaps then be ranked highest, 
but we provide pattern matching mechanisms to include or 
exclude methods of no interest so the focus can be on 
domain-relevant methods. Or one might argue against 
PageRank for webpages, in that the highest ranked webpages 
are not necessarily the most important, since importance can 
be viewed differently by various individuals and their 
distinct perspective and intentions. However, MethodRank 
does provide an indicator of the methods that are heavily 
used throughout the static code and should thus be 
understood. 

E. ViSiTR Service POI Distance Calculation 
To address P:POILocality, an underlying assumption is 

that (sub)packages map vertically to (sub)layers and classes 
serve as a type of horizontal grouping of methods. Thus, the 
distance between any two POIs (given in (3)) A and B 
(analogous to geographical distance) is determined by their 
vertical (1) and horizontal (2) distance where ld() is a layer 
depth function.  

 VerticalDistance = ld(A) + ld(B) - 2(ld(common)) (1) 

For instance, given layer A = foo.a.b and layer B = 
foo.x.y.z (closest common package is foo) so 
VerticalDistance = 3 + 4 - 2(1) = 5. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0				𝑖𝑖𝑖𝑖	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵)
	1					𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒																									

 (2) 

For instance, the POIDistance between methods in the 
same class is 0, between classes in the same package 1. 

POIDistance = VerticalDistance + HorizontalDistance (3) 

Depending on the implementation, a higher layer may 
only represent a greater abstraction (e.g., only interfaces) and 
not necessarily be that far in cognitive "distance". 
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Nevertheless, any sublayers between them should still be 
cognitively "closer". 

F. ViSiTR Service Hamiltonian POI Visitation Trail 
Assuming the principles of proper modularity and 

hierarchy are applied in a given project, a greater distance 
between POIs is equivalent to a larger mental jump. Thus, to 
reduce mental effort, once the distance for all pairs has been 
calculated, we desire the overall shortest trail that provides 
the visitation order for all POIs such that each POI is visited 
exactly once except that the starting point is also the end 
point, i.e., a Hamiltonian cycle. The calculation problem is 
equivalent to the well-known TSP.  

G. ViSiTR Service Knowledge Processing 
ViSiTR knowledge processing stages are shown in 

Figure 4 and described below. 
 

 
Figure 4.  ViSiTR knowledge processing stages. 

1) Input Processing: the source code as text files is 
imported and analyzed. A list of all the POIs in the project 
as FQNs is determined. The layer of each POI is determined 
by counting the subpackage depth of its FQN. Whether the 
project actually utilizes a layer structure or not is irrelevant. 
This is then used to apply the aforementioned POI distance 
calculation.  

2) POI Filtering: POIs already visited by this user 
(either in the expected order or out of order) are filtered 
from the set for the initial planning or replanning. 

3) POI Prioritization: the aforementioned MethodRank 
calculation is used to create an ordered list of POIs. 

4) POI Time Planning: the actual POI visitation time is 
stored per user. Given no prior actual POI visitation time, a 
default visitation time can be estimated based on a user's 
profile utilizing a basis time per line of code in seconds, and 
factors correlated with the size and complexity of the 
current POI method, the knowledge level (stranger or 
familiar), and the competency level (junior or senior). Based 
on the limited session time available and the set of POIs, the 
POI Time Planner component limits the set to an ordered 
list by priority that is cut off at the point that the cumlative 
time exceeds the timeboxed session. This reduces the size of 
the FQN set for locality planning and traversal. 

5) POI Locality Planning: from the resulting set, the 
POIs are then ordered using a planner for a Hamiltonian 
cycle and a TSP path that takes locality into account, such 
that those nearby are visited first before jumping to POIs at 
a further distance.  

6) Trail Generation: the trail with the recommended 
POI  visit order is generated. 

H. ViSiTR Client Visualization Process 
Enabling visualization in the ViSiTR client consists of: 

1) modeling program code project constructs, structures,  and 
artifacts as well as visual objects, 2) mapping these to a 
metaphor of visual objects, 3) extraction via tools of a 
concrete project's structure (via source code import and 
parsing) and metrics, 4) visualization of the model with 
alternative metaphors, and 5) supporting navigation through 
the model in 3 dimensional space (simulating movement by 
moving the camera based on user interaction). 

V. IMPLEMENTATION 
To support validation of the solution concept and 

architecture, a prototype was realized in Java that analyzes 
and generates code trails given Java program code as input. 
For simplification, only normal class methods are considered 
and method overloading is ignored (a single FQN is used for 
methods of the same name in trails), but this could be 
extended via more complex method signatures to handle any 
method type and overloading where only parameters 
differentiate methods. 

A. ViSiTR Service Implementation 
To permit the code trail processing and generation to be 

location-independent (run anywhere, be it local, 
organization, or cloud and not necessarily burden client PCs) 
and easily integrate with with various integrated 
development environments (IDEs), the ViSiTR service was 
realized as a Web service. It is REST-based 
(Representational State Transfer), processing client events 
(e.g., visitations) and outputting updated trails. Thus, if 
larger projects require more processing, the service could be 
placed on a more powerful cloud-based server. The 
Database Repository used H2 as a relational and Neo4j as a 
graph database. To support flexible integration, the output 
trail format is XML.  

The actual POI visitation time is tracked via navigation 
events received via the web service, with the table 
METHODRATING_TIMEONMETHOD storing MethodID, 
UserID, and visitation time (in seconds). POIs that were 
already visited (expected or not) are then filtered and 
removed from the replanned trail. 

MethodRank requires a data structure with methods (as 
FQNs) and their target invocation relationships and counts. 
For this, static code analysis of a project's methods and 
invoke relationships is performed using jQAssistant 1.0.0 
and the GraphAware Neo4j NodeRank plugin [47]. A 
Cypher query selects all Method FQNs and their invoked 
Method FQNs and the result is exported to a CSV file. Self-
references (such as recursion) are ignored. A separate 
simplified graph is then created by importing the CSV file 
into the Static Analysis Program with FQN(Method)-
>INVOKES->FQN(TargetMethod) relationships in the 
Neo4j server. GraphAware NodeRank then provides 
NodeRanks (i.e., MethodRanks) for every node (Method) for 
the number of invocations with the NodeRank stored in each 
node's property (Figure 5 shows a partial graph in Neo4j). 
The result is retrieved via the Neo4j REST API in JSON 
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(example shown in Figure 6). The JSON was parsed, 
converted to FQNs, and placed in the H2 MethodRank table.  

 

 
Figure 5.  Example partial MethodRank graph in Neo4j. 

 
Figure 6.  Example NodeRank request result in JSON. 

 Users are differentiated by a user ID. The visitation time 
is adjusted by a factor (default = 0.5) to halve the estimated 
time if it is a senior engineer, and a factor (0.5) also if the 
user is already familiar with the code. All user sessions are 
time-boxed (default setting is termination at midnight, but 
any end time can be set). Once the prioritized POI list is 
calculated, POIs are selected in priority order to be included 
in the trail until the accumulated expected visitation times 

exceed remaining session time. The Hamiltonian path 
calculation is then applied on this subset. 

To order the POI trail according to POI locality, the Trail 
Planner component integrated OptaPlanner, specifically 
optimizing the trail with regard to the TSP. For sufficient 
IDE interaction responsiveness during trail generation, the 
OptaPlanner solving time was explicitly limited to a 
maximum of 5 seconds to likely provide sufficient time for 
at least a solution to be found (depending on the project size, 
session time, and computation hardware) but not necessarily 
an optimum (absolute shortest path). 

Figure 7 shows a sample of the XML-based code trail 
that is sent to the ViSiTR client, with the tags explained as 
follows: sessionguid is a unique id for the session. 
user can be a unique username for tracking. 
timeboxfinishuntil is an absolute time for the 
expected end time for the session. 
filterregexinclude is a regular expression for the 
packages to be included, if nothing is provided then all are 
assumed. executablepath is the path to the project 
executable. sourcerootpath is the path to the root of the 
program source files. topicsfilepath is a path to the 
file that contains topics of interest, if it is empty then all 
topics are assumed. trailsoutputpath is the location 
of the trails file. topic provides a list of the topics if given, 
if empty then all topics are assumed. 
prioritizationmode provides the type of trail 
prioritization desired. userprofile indicates if the user is 
a junior or senior engineer (relates to how fast they may 
comprehend code). knowledgelevel relates to whether 
the programmer is a stranger or familiar with this code 
project. history tracks the trailsteps visited with the 
actual methods visited including the 
actualvisittimestamp. trail provides a list of the 
suggested trailsteps in the suggested order and with the 
suggestedvisittimestamp as an absolute time. 

To demonstrate the REST-based integration capability of 
ViSiTR recommender service within common IDE tools, an 
Eclipse IDE client was developed, shown in Figure 8. The 
upper part shows the current project, the middle part is used 
for starting and navigating a session, and the bottom displays 
the upcoming trail locations (methods). Double-clicking 
causes the method to be shown in the Eclipse source view. 

 
Figure 7. Example ViSiTR code trail XML format. 
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Figure 8.  An Eclipse IDE ViSiTR client plugin showing a code trail 
retrieved from the ViSiTR service. 

Code trail integration was accomplished using REST and 
JSON via a Unirest client invoked in a Groovy Script. The 
returned XML-based code trail was then parsed in the client.  

B. Visualization Client Implementation 
Existing software structures are imported and converted 

into a common XML-centric model. XML was selected as 
the primary data format to support the greatest amount of 
interoperability with various existing software development 
tools. BaseX [17] is used as an XML repository and XQuery 
used for queries. srcML [18] v.0.9.5 was selected to convert 
source code (such as Java) into XML documents and 
provides various code metrics. Campwood SourceMonitor 
v.3.5 is used because it creates code metrics across multiple 
programming languages. To determine dependencies such as 
coupling and inheritance, DependencyFinder was selected, 
which also provides data on code structure, dependencies, 
and metrics from binary Java. Furthermore, Groovy scripts 
were used for the integration of the various tools. 

The project structure consists of the following files: 
• metrics_{date}.xml: contains metrics obtained from 

tools such as SourceMonitor and DependencyFinder, 
which are grouped by project, packages, and classes. 

• source_{date}.xml: holds all source code in the 
srcML XML format 

• structure_{date}.xml: contains the project structure 
and dependencies, obtained from tools such as 
DependencyFinder. 

• swexplorer-annotations.xml: contains user-based 
annotations with color, flag, and text including 
manual tags placed by a user and automatic tag 
patterns placed automatically where matches occur. 

• swexplorer-metrics-config.xml: contains thresholds 
for metrics that support visual differentiation. 

• swexplorer-records.xml: contains a record of each 
import of the same project done at different times 
with a reference to the various XML files such as 
source and structure for that import. This permits 
changing the model to different timepoints as a 
project evolves. 

Additional HUD screens include: search, filtering (e.g., 
inclusion/exclusion of packages and classes), tagging, and a 
minimap (right corner) for orientation.  

Minimum PC specifications are a CPU supporting 
Streaming SIMD Extensions 2 and DX9 GPU with Shader 
Model 2.0. Recommended is a DX11 GPU and 1GB video 

RAM. Java 7 and .NET Framework 3.5 or higher are 
required. 

VI. CASE STUDY 
In prior work [10], validation of the various learning 

models was performed: M:Top-Down and M:Bottom-Up 
utilizing the package hierarchy, M:Topics/Goal which 
utilizes filtering of packages and classes by names, 
M:DynamicPath which prioritizes methods that appear in 
various runtime traces by both how often (frequency) within 
a trace and that they occur within different trace files, and 
weighted mode that uses configurable parameter weighting 
inputs. Furthermore, the empirical study utilized program 
code obfuscation to limit any intuitive mental model creation 
or semantic ordering, assessing its effectiveness and 
efficiency for program comprehension knowledge navigation 
within unfamiliar program code (i.e., unfamiliar presented 
knowledge), while retaining the equivalent program 
structure.  

This case study thus focuses on validating the viability of 
the 3D visualization solution and its scalability. For this 
study, two Java projects were used: the Saxon XSLT 2.0 and 
XQuery processor consisting of 331K lines of code (LOC), 
17K methods, and 1655 classes in 38 packages with 53K 
inter-class dependencies. The ViSiTR client ran on a Fujitsu 
Lifebook AH531with Windows 10 Pro (x64) 2.4GHz i5-
2430M 8GB RAM and SSD disk.  

A. ViSiTR client visualization 
In the universe metaphor, Figure 9 shows the loaded 

Saxon project consisting of 53 solar systems (without 
applying any filters to hide any packages or classes), and 
showing all dependencies. This can be navigated via 3D fly-
thru and visual responsiveness for 3D fly-thru navigation 
showed no issues. In Figure 10, dependencies were 
deselected and solar systems become recognizable and 
distinguishable based on package names. In Figure 11, a 
single package, the net.sf.saxon package is shown as a solar 
system including internal package dependencies. Figure 12 
shows the source code view in the HUD for the 
net.sf.saxon.Platform class (class name is labeled on a square 
in the middle of the planet, these are also used for tagging by 
stacking the squares in customizable colors) with the selected 
object in white. Planet orbits are in turquoise and 
dependencies as purple light beams. Planet size can vary 
based on some metric like number of methods. 

 Within the terrestrial metaphor, Figure 13 shows the 
loaded Saxon project with 53 packages represented by glass 
bubble cities viewed here from above (dependencies are 
hidden). Figure 14 shows the source code view in the HUD 
for the net.sf.saxon.Platform class (class name is labeled on a 
stackable square of tags on the top of any building), with 
classes in a package grouped within a glass city bubble and 
dependencies shown as purple pipes. If desired, building size 
can be set to vary based on some metric such as number of 
methods. Both metaphors were found to be easily navigable 
via 3D fly-thru, and scalability, performance, and 
responsiveness for the client showed no issues once the 
project was loaded. 
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Code trail navigation is shown in Figure 15 for the 
universe metaphor, with the current location shown on the 
trail strip above the cockpit menu. On the right of this strip, 
the current and upcoming two POIs are shown, and on the 
left, a play/pause button and a rewind and forward button are 
available for trail navigation. The slider on the left side 
center adjusts the speed with which one is transported 
between POIs by the automated trail guidance. Figure 16 
shows the HUD in source code view with the terrestrial 
metaphor. Figure 17 shows the HUD in the UML view with 
a dynamically generated class diagram showing the 
dependencies between classes in 2D and those in 3D can be 
seen in the background. 

B. 3D Code Trail Evaluation 
The performance and scalability of the ViSiTR prototype 

was measured. The ViSiTR service was run with VirtualBox 
version 5.1.14  in a virtual machine image of Debian 8 x86, 
single CPU, and 1.7GB RAM hosted on a Fujitsu Lifebook 
AH531with Windows 10 Pro (x64) 2.4GHz i5-2430M 8GB 
RAM and SSD disk. The host was also used to run the 
ViSiTR client.  

To provide a contrast to the relatively large Saxon 
project, which includes two dynamic traces - one with 100K 
lines and the other with 17,497 lines, we also measured a 
custom small project called MathFunc consisting of 5 
packages, 6 classes, 22 methods, and 37 dependencies 
without any trace input. 

Table I compares the measured performance (wall clock 
time in seconds (s) or hours (h)) for various activities with 
the MathFunc and the Saxon project. Client-side project 
preparation, involving external tools and including code 
parsing, dependencies, and metrics was 15 secs for 
MathFunc and 300 secs for Saxon. Server-side project 
preparation was 400 secs for MathFunc and 6 hrs for Saxon. 
This project preparation time, which among other things 
involves source code parsing, dynamic trace analysis, and 
static graph call invocation analysis, is usually incurred once 
for stable projects. Client project loading delays on the Unity 
game engine were 5 secs for MathFunc and 220 secs for 
Saxon. All objects are created on initial loading before 
providing navigational capability. Trail creation, which 
involves TSP-based POI prioritization, was 15 secs for 
MathFunc and 110 secs for Saxon. Trail optimization, which 
sends a user event and requests a code trail optimization 
(adaptation) based on the data, was 12 secs for MathFunc 
and 65 secs for Saxon. 

TABLE I.  ACTIVITY PERFORMANCE  

Activity MathFunc Saxon 

Client-side project preparation 15s 300s 

Server-side project preparation 400s 6h 

Client project loading latency 5s 220s 

Trail creation 15s 110s 

Trail optimization 12s 65s 

 

In our previous empirical study in C-TRAIL [10] using 
obfuscated code, we had focused on small projects to support 
reconstruction of the code structure to avoid straining 
cognitive abilities. For larger projects using code trails, 
ViSiTR performance showed the code trail service to be the 
primary bottleneck both in preparation and at runtime. While 
this service was run locally on the notebook, the service 
could instead be placed in the cloud to utilize more powerful 
hardware and reduce the 6h preparation time. 

While we were able to successfully prototype the code 
trail recommendation with 3D visualization, larger projects 
created noticeable performance issues, although not in the 
visualization but rather in the recommendation service. In 
future work, we plan to address the initial prototype's 
performance issues via profiling, platform tuning, algorithm 
optimizations, dedicated server hardware for the service, and 
enabling background loading of visual objects on the client 
for very large projects. These are needed to enable a 
comprehensive empirical study to determine acceptance and 
improved comprehension by programmers. 

Understanding the project requires a programmer to 
visualize the overall structure in abstractions in their mind; 
UML also requires some cognitive processing within its 
metaphor of boxes and lines. Even if visual metaphors 
provide an additional cognitive burden requiring further 
processing, in our opinion based on results from our previous 
study they also provide an additional motivation incentive 
that can offset this burden for various user groups (such as 
students) and keep them interested in the project code longer 
while still viewing real source code. 

VII. CONCLUSION AND FUTURE WORK 
This paper described the ViSiTR approach to code trail 

visualization, describing its theoretical background in the 
holey quilt theory and cognitive learning models. The 
solution concept was described and implementation details 
of a prototype provided. A case study evaluated its viability 
for code trail visualization and its scalability for larger 
projects. 

As an automated tutor and recommender system in the 
program code comprehension space, ViSiTR applies a 
conceptual mapping of geographical POIs to code locations, 
considers the locality or knowledge closeness of such 
granules, and applies TSP to an unfamiliar knowledge 
landscape consisting of program code. It incorporates 
MethodRanking as a variant of PageRanking and granular 
distance in the form of POI locality. Furthermore, it 
recommends a knowledge navigation order by generating a 
code trail as a Hamiltonian cycle. While the ViSiTR 
prototype showed the feasibility and viability of 3D visual 
code trails, the evaluation also showed that optimizations of 
the prototype implementation are needed to improve its 
scalability and permit empirical studies with larger projects. 

Our approach does not consider extraneous artifacts 
related to program comprehension, such as configuration 
files and documentation, since these typically must be 
analyzed and provided by humans. In future work we will 
consider providing a way to include this information.  

54

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Future work includes prototype performance and 
scalability optimization and testing with workstations, a 
comprehensive empirical study with different projects and 
user groups, support for additional programming languages, 
support for displaying different and directed relationship 
categories and cardinalities, and additional visualization 
paradigms. Application of the elaborated ViSiTR solution 
principles to other domains beyond software engineering 
could provide beneficial knowledge navigation guidance and 
recommendations in form of a trail for other unfamiliar 
knowledge landscapes. 
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Figure 9. Saxon project with dependencies shown in the ViSiTR universe metaphor. 
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Figure 10.   Saxon project without dependencies shown in the ViSiTR universe metaphor. 

 
Figure 11.   The net.sf.saxon package shown as an isolated solar system with internal dependencies in the ViSiTR universe metaphor. 
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Figure 12.  HUD source code view of the saxon Platform class as a planet with dependencies in the ViSiTR universe metaphor. 

 
Figure 13.  The Saxon project with dependencies shown in the ViSiTR terrestrial metaphor. 
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Figure 14.  HUD source code of saxon Platform class as building in glass city bubble  with dependencies in ViSiTR terrestrial metaphor. 

 
Figure 15.  Visitation of CharSlice during automated  code trail navigation in the ViSiTR universe metaphor. 
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Figure 16.  Visitation of ProxyReceiver showing HUD source code view during automated  code trail navigation in the ViSiTR terrestrial metaphor. 

 
Figure 17.  Dynamically generated UML class diagram showing dependencies for CharSlice during code trail visit in the ViSiTR universe metaphor. 
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