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Abstract—A Monte Carlo method for pricing high-dimensional
American options is considered. The consistency of the stochastic
mesh method is studied. Some ”natural” estimators of this method
have infinite variance. A modification which gives consistent
estimators for a diffusion model is proposed. It is shown that
the variance of estimators is inverse proportional to the number
of points in each layer of the mesh.
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I. INTRODUCTION

Pricing of American options may be formulated as a prob-
lem of the theory of optimal stopping: if Sn is the price process
of the underlying asset and fn are the option payoffs then the
option price C has the expession [1] C = supτ<T Efτ (Sτ ),
T being the expiry date, τ - an arbitrary Markov moment. In
the case when Sn is a high-dimensional process, numerical
methods with regular mesh are very time-consuming. Mark
Broadie and Paul Glasserman [2] suggested a stochastic mesh
method which does not depend on the dimension. In parallel,
Athanassios N. Avramidis and Heinrich Matzinger [3] formu-
lated general conditions under which estimators of the method
are statistically consistent. Using Malliavin calculus approach,
Vlad Bally and others [4] suggested analogous estimators for
a generalized Black-Scholes model; these estimators may be
transformed [5] to the formula (20) of the present paper.
This slight modification of formula (5) allows to convert
the estimator with infinite variance to the one with a finite
variance. The issue of the method consistency applying to
the general diffusion model was not investigated till now and
is the goal of the paper. Section 2 describes the stochastic
mesh method; in Section 3, theoretical assertions, concerning
consistency, are formulated; in Section 4, numerical examples,
which illustrate these results, are given; proofs are gathered in
the Appendix.

II. THE STOCHASTIC MESH METHOD

Let prices of d securities Sn = (Sn1, . . . , Snd), Sn ∈ Rd =
X , be given at discrete moments tn = n∆t, where ∆t = T/N .
Assume also, that discounted prices are martingales that means
the following equalities are fulfilled

E(Sn+1,i | S1, . . . , Sn) = er∆tSni, (1)

r being an interest rate, which is assumed to be constant.
Onwards, it will be more convenient to deal with sequences
ξni = lnSni − rtn. Assume that ξn = (ξn1, . . . , ξnd) is a
Markov chain with values in X and pn(x, dy) are transitional
probabilities.

Let an American option be given with an expiration T
and discounted payoffs of the form fn = fn(ξn). Define
successively functions Yn(x):

YN (x) = fN (x), Yn(x) = max (fn(x),En,xYn+1(ξn+1)) .
(2)

It is known [1] that the option price C satisfies C = Y0(ξ0).

For every time step n, a set of random points x̄n ={
xin
}M
i=1

(”mesh”) is constructed as a Markov chain with
transitional probabilities

q̄n(x̄, dȳ) = qn,1(x̄, dy1)...qn,M (x̄, dyM ). (3)

Make an assumption on probabilities qn,j(x̄, dy) that densities

ρn,j(x̄, x, y) = pn(x, dy)/qn,j(x̄, dy) (4)

exist. For a shortage of further notations, introduce random
variables defined on the mesh: Yn(j) = Yn(xjn), ρn(x, j) =
ρn,j(x̄n−1, x, x

j
n), ρn(i, j) = ρn(xin−1, j).

Recursively construct random sequence Y̌n(x): first, set
Y̌N (x) = fN (x), then define

Y̌n(x) = max

fn(x),
1

M

M∑
j=1

ρn+1(x, j)Y̌n+1(j)

 , (5)

where using analogous notations Y̌n+1(j) = Y̌n+1(xjn+1).

Introduce Fn – a σ-algebra generated by values x̄1, . . . , x̄n.
Denote a conditional expectation with respect to Fn as EFn .
Assume that for every n, random variables jn taking values
1, . . . ,M with equal probabilities, are defined and which are
independent in total and with respect to FN , then the last
equality can be rewritten in the form

Y̌n(x) = max
(
fn(x),EFNρn+1(x, jn+1)Y̌n+1(jn+1)

)
. (6)

It follows from (2) and (6) that

∣∣Y̌0(x0)− Y0(x0)
∣∣ 6 N−1∑

n=0

EFN

n∏
k=1

ρk(jk−1, jk)|∆n(jn)|,

(7)
where

∆n(x) = EFNρn+1(x, jn+1)Yn+1(jn+1)−En,xYn+1(ξn+1).

In virtue of (3), values x1
n+1, . . . , x

M
n+1 are independent with

regard to Fn, therefore

EFn∆2
n(x) 6

1

M
Eρ2

n+1(x, jn+1)Y 2(jn+1). (8)
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It follows in turn from (7) and (8) that under the condition

E[ρ1(x0, j)...ρn(jn−1, jn)Yn(jn)]2 <∞, n = 1, . . . , N ;
(9)

the inequality
E(Y̌0 − C)2 6 C/M (10)

is fulfilled ant thereby Y̌0 is a consistent estimator for C.

In [2] some substantiation is given for using the average
distribution, which is defined by the expression

qn,j(x̄, dy) = M−1
∑
i

pn(xi, dy). (11)

In some models (e.g. Black-Scholes), transitional probabilities
for several steps pk,n(x, dy) are known, in this case one can
use [2]

qn,j(x̄, dy) = p0,n(x0, dy). (12)

The objective of the paper is to study the statistical con-
sistency of these and other estimators for the general diffusion
model.

III. CONSISTENT ESTIMATORS

First, consider a case when xn are normal vectors in Rd

defined by the sequence

xn+1 = xn + anεn+1 + bn, (13)

an being d×m - matrices, εn – independent standard normal
vectors in Rm, An = ana

∗
n, bn(i) = −0.5An(i, i). Denote

ψ(An, z) = (Anz, z) and suppose that

sup
||z||=1

ψ(An, z) > Ā0 > 0, (14)

then densities pk,n+1(x, y) exist for transition from point x at
the moment k to point y at the moment n+ 1:

pk,n+1(x, y) = ckn exp(−0.5ψ(Σ−1
k,n, x+Bk,n − y)),

where ckn = [(2π)d det Σkn]−1/2, Σk,n =
∑n
i=k Ai and

Bk,n =
∑n
i=k bi. Suppose payoffs imply that

Yn(x) 6
∑
i

ci(e
kixi + 1). (15)

Theorem 1. The inequality (10) for the estimator with
average densities (11) is valid under conditions (14), (15).

Proofs are given in the Appendix.

Now, consider the mesh generated according to the formula
(12). Note that it is approximately 2 times less time-consuming
for calculation than (11) but the variance of Y̌0 may be infinite
if N is big enough. Really, let N > 3 then

EY̌ 2
0 > E [ρ2(j1, j2)ρ3(j2, j3)f3(j3)]

2

=
1

M3

∫
X3

p(x0, y1)
p2(y1, y2)

p0,2(y0, y2)

p2(y2, z3)

p0,3(y0, y3)
f2

3 (y3)dy1dy2dy3.

Consider the case when d = 1 and an are constant, then after
integrating by y1, y2 receive

EY̌ 2
0 > c

∫
R

exp

(
7y2

78a2

)
f2

3 (ya
√

∆t+ 3b∆t)dy. (16)

If f3(x) > ε for x > K or x < −K with some ε,K > 0 then
the integral does not converge and thus the variance is infinite.
Below, a modification of this estimator with finite variance will
be constructed for a more general diffusion model.

Now, consider a discretization of a diffusion process ac-
cording to the Euler scheme:

xn+1 = xn + an(xn)εn+1 + bn(xn). (17)

Suppose that for some Ā0, Ā1 the inequalities are fulfilled

Ā0|z|2 6 (An(x)z, z) 6 Ā1|z|2; (18)

then |bn(x)| 6 b̄ for some b̄.

Let the mesh be produced by transition probabilities

qn,j(x̄, dy) = qn(y)dy = cn exp(−|y−x0|2/(2s2n))dy. (19)

Consider a following modification of the scheme (5) :

Y̌n(i) = max

(
fn
(
i
)
,

∑
j ρn+1(i, j) Y̌n+1(j)∑

j ρn+1(i, j)

)
. (20)

Note that unlike the scheme (5), the estimator of the expecta-
tion (6) is biased here.

Theorem 2. Suppose that fn(x) 6 F and s2 > 0.5Ā1 then
the inequality (10) is valid for the scheme (20).

Note. Consider a more general model for which transitional
densities may be estimated by a mixture

pn(x, y) 6 C

K∑
k=1

p(k)
n (x, y), (21)

p
(k)
n (x, y) being normal densities with correlation matrices
A

(k)
n (x). Suppose these matrices satisfy condition (18) with

common constants A0, A1, then, as follows from the proof,
the assertion of the theorem still holds true.

Now, suppose that instead of the condition fn(x) 6 F the
the following condition is fulfilled: for some gn(x), G and F

fn(x) 6 Fgn(x),

∫
X

dy pn(x, y)gn(y) 6 Ggn−1(x). (22)

Denote g̃n(x) =
∫
X
dy pn(x, y)gn(y) and consider the scheme

Y̌n(i) = max

(
fn
(
i
)
, g̃n(i)

∑
j ρn+1(i, j) Y̌n+1(j)∑
j ρn+1(i, j)gn+1(j)

)
. (23)

Theorem 3. Suppose conditions (22) are fulfilled, densities
p̃n(x, y) = pn(x, y)gn(y)/g̃n(x) satisfy (21) and s2 > 0.5A1

then inequality (10) is valid for the scheme (23).

Note 1. Though the variance decreases when M tends to
infinity, it may be still quite big for a chosen M . To reduce it
one can use a method of control variates [2], which implies the
substitution of the term Y̌n+1(j) in formulas (5), (23) by the
term Y̌n+1(j) + νn+1(j) with appropriate functions νn+1(x),
which satisfy the condition En,xνn+1(ξn+1) = 0.

Note 2. Give an example when conditions of the theorem
are fulfilled. For many multi-dimensional options (basket,
geometrical average, maximum [2]), functions gn(x) may be
chosen in the form gn(x) =

∑d
i=1 exp(xi). Since exp(ξni)
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are martingales then g̃n(x) = gn(x). It is easy to verify that
the representation (21) takes place under K = d, correlation
matrices A(k)

n (x) = An(x) and b(k)
n (x) = bn(x) +An(x)ek.

IV. NUMERICAL RESULTS

Consider a geometrical average option with payoff func-
tions fn = ((Sn1..Snd)

1/d − K)+. In the case of Black-
Scholes model, the calculation may be reduced to a one-
dimensional American call with dividends and the solution
may be obtained with high accuracy either by a regular mesh or
by the analytical approximation [6]. Under parameters d = 5,
a = 0.3, r = 0.02, S = 100, K = 100, T = 1, the price of
American option in the continuous model is Ca = 4.63, which
is strictly greater than the price of the correspondent European
option Ce = 4.46. In discrete models the price of American
option increases from Ce to Ca with increasing N . As a control
variate, take the corresponding European call option.

TABLE I. COMPARISON OF ESTIMATORS

Estimator, density (5), (11) (23), (19)
N True M Av Err Av Err
6 4.59 300 4.61 0.008 4.59 0.006

1200 4.60 0.004 4.59 0.0026
12 4.61 300 4.7 0.017 4.61 0.0055

1200 4.66 0.006 4.61 0.0023
24 4.62 300 4.86 0.04 4.63 0.005

1200 4.81 0.015 4.62 0.0025

The table includes the true price, estimates and statistical
errors, corresponding to 99% confidence level by 50 realiza-
tions. It illustrates the assertion that the variance is inverse
proportional to M . It may be observed from the table (and is
known from the theory) that the estimator (5), (11) is biased
high and this bias increases with the number of time steps; to
compensate it one should increase the mesh size. Note also
that the first estimator is approximately 2 times more time-
consuming than the second one.

Consider the same option in the following diffusion model
∆xni =

√
∆tσ(xn−1,i)[αεni + ρεn,d+1] − 0.5σ2(xn−1,i)∆t,

where α2 +ρ2 = 1, ρ = 0.5, σ(x) being a decreasing function,
which varies from 0.6 to 0.1, σ(x0) = 0.3.

TABLE II. CASE OF THE GENERAL DIFFUSION MODEL

s 0.2 0.43 0.5
M Av Err Av Err Av Err

300 7.13 0.012 7.19 0.009 7.21 0.012
600 7.13 0.008 7.18 0.007 7.19 0.009

1200 7.14 0.007 7.16 0.005 7.17 0.007

Rough 1-dimensional approximations give prices from 7.1
to 7.2. The simulation results for the estimator (19), (23) with
N = 12 and different values of the parameter s are presented
in the Table II. The value 0.43 is slightly greater than A1/

√
2,

which provides the variance finiteness.

V. APPENDIX

Proof of theorem 1. First, note that ρ1(x0, j) = 1 for every
j; further, EFNρ2(j1, j) = 1 also for every j and by induction
we receive that the right part in (7) is equal to

∑N−1
n=0 |∆n(jn)|.

Therefore, to prove consistency it is sufficient to show that for
every n < N the following integrals are finite:

Eρ2
n+1(jn, 1)Y 2

n+1(1) =

∫
X

dy Y 2
n+1(y)E

∑
j p

2
n+1(xjn, y)∑

j pn+1(xjn, y)
.

(24)
To estimate the expectation under the sign of the integral, prove
the following lemma:

Lemma. Let ηi, i = 1, . . . ,M , be positive, independent,
similar distributed random variables, ζi = cη1+ε

i ε > 0;
denote η̄ = M−1

∑
j ηj , ζ̄ = M−1

∑
j ζj , then

Eζ̄/η̄ 6 3Eζ/Eη.

Proof. From the equality

ζ̄

η̄
=

ζ̄

Eη
− 1

Eη

ζ̄

η̄
(η̄ −Eη) (25)

the estimate follows:

E
ζ̄

η̄
6

Eζ

Eη
+

1

Eη
E
ζ̄

η̄
|η̄ −Eη| . (26)

Further, from inequality
∑
j η

1+ε
j 6 (

∑
j ηj)

1+ε it follows that

ζ̄/η̄ 6
(∑

j

η1+ε
j

) ε
1+ε

. (27)

Using the last estimate and then Hölder’s inequality receive

E
ζ̄

η̄
|η̄ −Eη| 6 E

(∑
j

η1+ε
j

) ε
1+ε |η̄ −Eη| (28)

6 E
ε

1+ε

(∑
j

η1+ε
j

)
E

1
1+ε |η̄ −Eη|1+ε

.

Now use the following theorem ([7], c.79):

Let X1, . . . , Xn be independent random variables with zero
mean and finite absolute moments of order p (1 6 p 6 2); then

E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
p

6

(
2− 1

n

) n∑
k=1

E|Xk|p.

Using this theorem one can estimate (28) by the value

M
ε

1+εE
ε

1+ε η1+ε 2

M
ε

1+ε
E

1
1+ε η1+ε = 2Eζ.

Substituting the obtained estimates in (26), one receive the
assertion of the lemma.

Now denote ηk,n+1(j) = pk,n+1(xk,j , y); then applying
lemma (with ε = 1) to expectation in (24), receive

E

∑
j η

2
n,n+1(j)∑

j ηn,n+1(j)
6 3E

EFn−1
η2
n,n+1(1)

EFn−1
ηn,n+1(1)

. (29)

According to Chapman-Kolmogorov equations, the denomi-
nator is equal to

∑
j ηn−1,n+1(j). Calculate EFk−1

ηmk,n+1(1)
with m > 1:

EFk−1
ηmk,n+1(1) = c̃kn

∑
j

e−ψ(Σ̃−1
k−1,n, x

j
k−1+Bk−1,n−y)/2,
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where

Σ̃k−1,n = Ak−1 +
1

m
Σk,n = Σk−1,n −

m− 1

m
Σk,n. (30)

It follows from (30) that Σ̃−1
k−1,n = Σ−1

k−1,n(I − Dk,n)−1,

where Dk,n = (m− 1)/m Σk,nΣ−1
k−1,n, I being a unit d× d

matrix. Since ||Dk,n|| < 1, one can estimate the inverse matrix
Σ̃−1
k−1,n > Σ−1

k−1,n(I + Dk,n). On the other hand, Dk,n > εI
with some value ε = εk,n,m > 0; therefore, an estimation from
below is Σ̃−1

k−1,n > (1+ε)Σ−1
k−1,n. Particularly, it follows from

this estimate that

EFn−1η
2
n,n+1(1)

EFn−1ηn,n+1(1)
6 C1

∑
j η

1+ε
n−1,n+1(j)∑

j ηn−1,n+1(j)

with ε = εn−1,n,2. The lemma may be applied to the obtained
expression as well, and after n iterations receive

E

∑
j p

2
n+1(xjn, y)∑

j pn+1(xjn, y)
6 Cnp

ε
0,n+1(x0, y).

Under condition (15) the integral in (24) is finite. Thus, the
proof is complete.

Proof of theorem 2. Introduce an additional notation

ρ̄n(i, j) = ρn(i, j)/
∑
k

ρn(i, k)

and in the same way as in (7) obtain

∣∣Y̌0 − Y0

∣∣ 6 N−1∑
n=0

∑
i1,...,in

ρ̄1(0, i1) . . . ρ̄n(in−1, in)|∆n(in)|,

where ∆n(i) =
∑
j ρ̄n+1(i, j)Yn+1(j) − En,xniYn+1(ξn+1).

Squaring both parts and taking into account that ρ̄n(i, j) is a
distribution by j, due to Hölder inequality obtain

E
(
Y̌0 − Y0

)2
6 N

N−1∑
n=0

∑
i1,...,in

E

n∏
k=1

ρ̄k(ik−1, ik)∆2
n(in).

(31)
Define values dkn(i):

dnn(i) = EFn∆2
n(i),

dk−1,n(i) = EFk−1
ρ̄k(i, jk)dk,n(jk). k < n,

and show that the following estimate takes place

dkn(i) 6 min

(
F 2,

C

M

n∑
m=k

φm+1,m+1−k(xki)

)
, (32)

where φrl(x) = e
(|x−x0|+βl)

2

s2r−0.5Ā1l , βl = b̄
∑l
i=1 d

(i−1)/2.

Fix the index i and represent ∆n(i) in a form ∆n(i) = ζ̄/η̄,
where ζ̄ =

∑
j ζj/M , η̄ =

∑
j ηj/M ,

ζj = ρn+1(i, j)
[
Yn+1(j)−En,xni Ỹn+1(Sn+1)

]
,

ηj = ρn+1(i, j), EFnζj = 0, EFnηj = 1.

It follows from (26) that

EFn

( ζ̄
η̄

)2

6 2EFn ζ̄
2 + 2EFn

( ζ̄
η̄

)2

(η̄ − 1)2.

First, note that |ζj | 6 F |ηj |, and second that with respect to
Fn values η̄ − 1 and ζ̄ are sample averages of independent
random variables with zero mean, therefore

EFn∆2
n(i) 6

C

M2

∑
j

EFnη
2
j .

Now calculate EFnη
2
j ; denote zin = xin + bn(xin)− x0 then

EFnη
2
j = cni exp(ψ([(n+ 1)s2I − 0.5An(xin)]−1, zin)/2)

6 Cφn+1,1(xin). (33)

Thus, (32) is fulfilled for k = n. Now suppose that the
inequality is fulfilled for the index k + 1; estimate dkn(i).
Redenote ζj = ρk+1(i, j)dk+1,n(j), ηj = ρk+1(i, j), then
dkn(i) = EFk ζ̄/η̄. Split the region of integration and use the
induction assumption that dk+1,n(i) 6 F 2:

EFk ζ̄/η̄ = EFk ζ̄/η̄ 1{η̄>1/2} + EFk ζ̄/η̄ 1{η̄<1/2}

6 2EFk ζ̄ + F 2EFk1{|η̄−1|>1/2}. (34)

For the first term use the induction assumption

EFk ζ̄ 6
C

M

n∑
m=k+1

∫
X

dy pk+1(xik, y)φm+1,m−k(y),

and then the estimate φr,l(y) 6
∑2d
i=1 e

(x0−x+eiβl
√
d)2

s2r−0.5Ā1l , ei
being the basis vectors in Rd and opposite ones by sign. The
integration leads to∫

X

dy pk+1(xik, y)φm+1,m−k(y) 6 Cφm+1,m−k+1(xik).

For the second term in (34), apply the Chebyshev inequality
and enequality (33):

EFk1{|η̄−1|>1/2} 6 4EFk(η̄ − 1)2 6
C

M
φk+1,1(xik).

Thus, (32) is proven, which implies d0n(x0) 6 C/M . Finally,
from (31) receive the assertion of the theorem:

E
(
Y̌0 − Y0

)2
6 N

N−1∑
n=0

dn0(x0) 6 C/M. (35)

Proof of theorem 3. Introduce auxiliary payoff functions
f̃n(x) = fn(x)/gn(x) and consider the sequence

Ỹn(x) = max

f̃n(x), αn(x)

∫
X

dy p̃n+1(x, y)Ỹn+1(y)

 ,

(36)
where αn(x) = g̃n+1(x)/gn(x). One can construct the scheme
analogous to (20) for the sequence (36):

Y ′n(i) = max

(
f̃n
(
i
)
, αn(i)

∑
j ρ̃n+1(i, j) Y ′n+1(j)∑

j ρ̃n+1(i, j)

)
, (37)

where ρ̃n is defined by (4) with substitution p̃ for p. Since
f̃n(x) 6 F and αn(x) 6 G, the theorem 2 may be applied
to the scheme (37). Thus E(Y ′0(ξ0)− Ỹ0(ξ0))2 6 CM−1. On
the other hand, it is easy to verify that Ỹn(x) = Yn(x)/gn(x)
and Y ′n(i) = Y̌n(i)/gn(i). The proof is complete.
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VI. CONCLUSION AND FUTURE WORK

It is shown in the paper that a simple modification from
scheme (5) to schemes (20), (37) allows to prove the finiteness
of the variance and, thus, consistency of the estimators in the
general diffusion model. Besides, unpleasant bias vanishes,
which allows to reduce the number of nodes in the mesh. The
next step may be the extension of results to the jump-diffusion
model, which is important for applications.
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