
Interface-based Semi-automated Generation of Scenarios for Simulation Testing of
Software Components

Tomas Potuzak
Department of Computer Science and Engineering

Faculty of Applied Sciences, University of West Bohemia
Univerzitni 8, 306 14, Plzen, Czech Republic

e-mail: tpotuzak@kiv.zcu.cz

Richard Lipka
Department of Computer Science and Engineering/

NTIS – European Center of Excellence
Faculty of Applied Sciences, University of West Bohemia

Univerzitni 8, 306 14, Plzen, Czech Republic
e-mail: lipka@kiv.zcu.cz

Abstract—Using the component-based software development,
an application is constructed from individual reusable
components providing particular functionalities. The testing of
their functionality, their quality of services, and their extra-
functional properties is important, especially when each
component can be created by a different manufacturer. We
developed the SimCo simulation tool, which enables simulation
testing of software components directly without the necessity to
create their (potentially incorrect) models. The course of the
testing is described in so-called scenarios. In this paper, the
semi-automated generation of the scenarios based on the
analysis of the interfaces of the particular software components
and their mutual interactions is described. The described ideas
demonstrate the usefulness of the simulation for the
component-based software development.

Keywords-software components testing; scenarios genera-
tion; component interface; component interaction.

I. INTRODUCTION
The component-based software development is an

important trend in contemporary software engineering. Using
this approach, an application is constructed from individual
reusable software components, which provide particular
functionalities as services through their public interfaces.
Each service of a component can be utilized by multiple
other components of the application and the invocation of a
service is a basic interaction between the components. A
single component can be utilized in multiple applications,
which implies the reuse of the existing program code. At the
same time, an application can be constructed from
components, which were created by different developers [1].

The testing of software components is very important.
Their functionality should be ensured by their developers.
However, the potentially different developers of the particu-
lar components of a component-based application reinforce
the need for testing of the interactions and mutual coopera-
tion of the components. Moreover, besides the functionality
of the components, it is also necessary to test their extra-
functional properties (e.g., memory consumed by a service
invocation) and quality of services (e.g., time required for a
service invocation or the performance in general) [2][3].

During our previous research, we have developed the
SimCo simulation tool, which enables the simulation testing

of a single software component, a set of software
components, or an entire component-based application [4]
[5]. The components can be tested in the SimCo directly,
without the necessity to create their (potentially incorrect)
simulation models [5]. The course of the simulation testing is
described in so-called scenarios, which are basically XML
files loaded by the SimCo. The manual creation of the
scenarios is a lengthy and error-prone process [6]. Therefore,
we are now working on several approaches, which would
provide a semi-automated generation of the scenarios.

In this paper, we describe one such approach, which is
based on the analysis of the public interfaces of the particular
software components and on the observation of their mutual
interactions. The approach is focused on the situation when
the software components are created by a third party and
their source codes or any other descriptions of their behavior
are unavailable to us.

The paper is structured as follows. The basic notions are
briefly discussed in Section II. The SimCo is described in
Section III. The existing approaches to generation of testing
scenarios are discussed in Section IV. The interface-based
scenarios generation, which is the main contribution of this
paper, is described in Section V and demonstrated on a case
study in Section VI. The paper is concluded in Section VII.

II. BASIC NOTIONS
In order to make the further reading more clear, the basic

notions of the component-based software development and
the simulation testing will be now briefly described.

A. Software Components
In the component-based software engineering, a software

component is a black box entity with a well defined public
interface and no observable inner state. Its particular functi-
onalities are provided as services accessible via its public
interface [1]. An application is then constructed from multi-
ple components, which interact using their interfaces (e.g.,
invoking particular services). The particular components of
an application can be created by different developers, which
can be also different from the developer of the resulting
application. At the same time, a component can be utilized in
multiple applications. Although this definition is very
abstract, a more specific definition is problematic, since the
view of software components is very diverse [1].

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

A component model specifies the features, behavior, and
interactions of software components. A component
framework is then a specific implementation of a component
model [5]. So, there can be (and often are) multiple
implementations of a single component model [7]. Software
components of different component models often have very
different form. Hence, it is very difficult to transform an
existing software component from one component model to
another. Thus, the SimCo utilizes only one component model
– the OSGi [8][9]. However, the ideas behind it can be used
in other component models as well.

The OSGi is a dynamic component model for Java
programming language widespread in both the academic and
the industrial spheres including automotive industry, cell
phones, and so on [7]. There are multiple implementations of
the OSGi component model (i.e. OSGi component frame-
works) [8], for example the Equinox [10]. For its widespread
use, the OSGi is used in the SimCo [5].

Using the OSGi, the particular software components are
referred to as bundles. The dynamic nature of the OSGi
means that it is possible to install, start, stop, and uninstall
any bundle without the necessity to restart the OSGi
framework assuming that all bundle dependencies are
satisfied [11]. The OSGi bundle has the form of a .jar file
with additional OSGi-specific meta-information regarding
the provided and required services and so on [9]. Since the
.jar file can contain any number of Java classes, each
bundle can provide arbitrary complex functionality [7]. Both
provided and required services are described by standard
Java interfaces. Hence, the particular services of a bundle
have the form of standard Java methods [8].

B. Discrete-Event Simulation
A discrete-event simulation is a widely used simulation

type [12]. The simulation run of a discrete-event simulation
is divided into sequence of time-stamped events, which
represent an incremental change to the simulation state. The
time stamp specifies the simulation time, in which this
change to the simulation state should happen [12].

The simulation time between two succeeding events can
be arbitrary long, but the changes of the simulation state are
associated with the events only. So, the simulation time
“jumps” from the time stamp of an event to the time stamp
of the next event [12]. The processing of events is handled
by a so-called calendar with the list of events ordered by
their time stamps. At the start of a simulation run, the
calendar removes the first event from the event list, sets the
simulation time to the value of the event’s time stamp, and
performs the event’s change of the simulation state. This can
potentially lead to the creation of multiple new events, which
are inserted to the event list on the positions corresponding to
their time stamps. Then, the next event is removed from the
event list and so on. The entire process stops when a predefi-
ned condition is fulfilled or the event list is empty [12].

C. Simulation Testing
Considering only the discrete-event simulation from now

on, we will describe the simulation testing of software
components. For this purpose, two approaches can be used.

The first approach is to develop a model of the tested
software component and use it in the simulation [2]. The
advantage of this approach is that the created model is suited
for the simulation. The disadvantage is that the creation of
the model is time-demanding and potentially error-prone.
Since the model usually incorporates only features, which
are considered important for the simulation and testing, it is
also possible to unintentionally omit some features, which in
fact are important for the results of the testing [7]. Also, the
consistency of the model has to be maintained.

The second approach is to use the tested software compo-
nent directly in the simulation, instead of using its model.
The advantage of this approach is that there is no necessity to
create the model [4]. The disadvantage is that the simulation
must enable the running of the tested component in a way it
would run in a non-simulation environment [7].

Regardless the approach, the simulation testing can be
divided according to the knowledge of the tested software
component. If its source code is known, it can be (and
usually is) used for the preparation of the course of testing.
This is a white box testing. If the source code is not known,
other information such as a specification of the component’s
intended behavior, a description of its interface, and so on
can be used for the preparation of the course of testing. This
is a black box testing [13], on which this paper is focused.

D. Testing Scenarios
Regardless its type, the simulation testing lies in the

subjecting of the tested software component (or its model) to
a set of stimuli and observation of its corresponding
reactions [14]. In most real cases, it is not feasible to provide
a complete coverage of all stimuli. Hence, a subset of stimuli
should be created instead. This subset should represent well
all theoretical possible stimuli and, at the same time, be
reasonably small [13].

The course of the simulation testing is described in so-
called scenarios, which incorporate the particular stimuli and
(optionally) the expected consequences. Using the discrete-
event simulation (see Section II.B) for the simulation testing
of software components, the stimuli correspond to particular
events. Each event, in turn, corresponds to the invocation of
a service of a tested software component [7]. The consequen-
ces can then be a return value, an exception, a subsequent
invocation of a service of another component, and so on.

III. SIMCO SIMULATION TOOL
Now, as we discussed the basic notions, we can proceed

with the description of the SimCo, which we developed
during our previous research.

A. Purpose and Description of SimCo Simulation Tool
The SimCo enables testing of software components using

the discrete-event simulation (see Section II.B). The SimCo
itself is a component-based application, which enables its
simple extensions and modifications [15]. It utilizes the
OSGi component model [8][9]. Currently, it runs in the
Equinox OSGi framework [10] (see Section II.A).
Consequently, it is utilizable only for the testing of the OSGi
bundles (OSGi software components) [7].

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

The tested components are directly incorporated into the
simulation. Hence, the simulation environment must be
constructed in a way, which enables a normal running of the
tested components as they would be in a non-simulated
environment. Among other things, the dependencies of the
components must be satisfied. At the same time, the course
of the simulation testing must be under control during the
entire simulation run. These requirements are reflected in the
structure of the SimCo, which consists of several software
component types [15] (see Section III.B).

B. Types of Software Coponents in SimCo Simulation Tool
There are four types of software components (OSGi

bundles) in the SimCo – the core, the real tested, the
simulated, and the intermediate components [15].

The core components provide the functionality of the
SimCo itself. Primarily, they ensure the running of the
simulation according to the loaded testing scenario and the
collection of the results. The most important core component
is the Calendar, which ensures the progress of the simula-
tion run by processing the events from the event list. The
core components also provide supplementary functions such
as logging, visualization of the simulation, and so on [15].

The real tested components are the OSGi bundles, which
shall be tested using the SimCo. The source code of these
components may be known or unknown, since the compo-
nents can be created by a third party [15]. If the source code
is known (i.e. white box testing) it can be used for the
creation of the testing scenarios. However, in this paper, we
focus on the case when the source code is not known (i.e.
black box testing) and only the public interfaces of the
components (with or without further description) are known.
The real tested components run in the simulated environ-
ment, which brings several issues (e.g., discrepancy of the
simulation and real time, undesirable remote communication,
etc.) solvable by various means (see [5] and [15]).

The simulated components provide services, which are
required by the real tested components. They are useful
when a single component or a limited set of components are
tested and these components require services of other com-
ponents, which are not present in the simulation. Then, the
simulated components provide the missing services required
by the real tested components. When an entire component-
based application is tested, the simulated components are not
necessary, since the requirements of all real tested com-
ponents should be satisfied. Another important function of
the simulated components is the ensuring that all invocations
of the services of these components are performed using the
events and the calendar. This allows the SimCo to maintain
the control of the simulation run. Additionally, the simulated
components can be used for the speedup, since they do not
have to perform all the calculation they real counterparts
would. Instead, they can utilize random numbers generators
or prerecorded values, depending on the situation [15].

The intermediate components are inserted between all
pairs of real tested components. They ensure that the invoca-
tions on the real tested components are handled using the
events and the calendar. Basically, an intermediate compo-
nent is a proxy for a real tested component. It has the same

Figure 1. Relations of the three types of SimCo components

public interface (i.e. provides the same services). All
invocations of the services on the real tested component are
in fact handled using this proxy (see Figure 1). When a
service is invoked, the intermediate component ensures the
use of the events and the calendar and invokes the
corresponding service on the real tested components to
obtain the return value and potentially trigger further
consequences (e.g., invocation of a service of another
component) [15].

C. Testing Scenarios in SimCo Simulation Tool
The testing scenarios for the SimCo have the form of

XML files. They contain primarily the events, which shall be
processed during the simulation run [15]. The events
correspond to the invocations of the particular services of
particular components (see Section II.D). The scenarios also
contain the configuration of the simulation and the layout of
the components (e.g., information, which components are
real tested, which are simulated, etc.).

Each event in the testing scenario is usually stored as a
unique record containing the time stamp and the description
of the invocation that shall be performed – the component,
on which the invocation shall be performed, the service,
which shall be invoked, and the parameter values of the
invocation. The expected consequences of the invocation can
be stored as well. They are useful for evaluation of the
simulation tests – it can be easily compared whether the
consequences of the invocation during the simulation run are
the same as the expected ones. This is particularly useful
during the testing of the correct functionality of the
components. Nevertheless, the expected consequences are
not an obligatory part of the testing scenarios, since it is also
possible to use logging and probes for evaluation of the
simulation tests, separately from the scenarios. This can be
useful during the testing of the extra-functional properties
and quality of services of the components.

As an alternative to describing every single event
separately, it is also possible to specify a random numbers
generator with an appropriate probabilistic distribution [15].
This way, it is possible to generate multiple events (with pre-
set parameter values or even randomly generated parameter
values) with a single description within the testing scenario.
However, this approach can be used only in some cases.

IV. SCENARIOS GENERATION APPROACHES
The idea of the semi-automated generation of the testing

scenarios is not new in the software development field. The

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

research in this area begun at least in 1970s [16] and
continues till today [6][13][14][17]. However, the research
focused on the semi-automated generation of the testing
scenarios directly for the software components is rare. So,
several existing approaches, which are briefly discussed in
the following sections, are mostly not intended for the
software components, but still can serve as a source of
inspiration. They have in common that they do not utilize the
source code of the tested application, but rather a description
of its behavior and requirements.

A. UML Behavioral Diagrams
Many approaches for the generation of the testing

scenarios are based on UML behavioral diagrams (e.g.,
sequence diagram, activity diagram, etc.) [18].

The activity diagrams are used, for example, for a
representation of concurrent activities [13]. The exhaustive
exploration of the diagrams is then used for the generation of
the testing scenarios. Since, for large applications, the
exploration of all possible flows in the diagrams is infeasible,
some constraints derived from the application domain are
used to discard illegal or irrelevant scenarios [13]. The
activity diagrams are also used in [17] where they are
generated using multiple UML use case diagrams in order to
express the concurrency of the particular use cases. The
exploration of the diagrams is again used for the generation
of the scenarios [17]. In [19], a layered activity diagram
describing the workflow of the tested application is used for
the extraction of the execution paths of the tested application.
These execution paths are then used for the generation of the
scenarios [19].

B. User Interface
Several approaches utilize the user interface for the

generation of the testing scenarios. This is based on the
assumption that the user interface provides access to the
majority (if not all) functions of the tested application [20].

In [20], the testing scenarios are created by inducing
inputs to the user interface and pairing them with corres-
ponding outputs. An opposite approach, which is focused on
the testing of software components created using the .NET
platform, is described in [21]. In this case, the absence of the
user interface of the components is stressed as a major
setback for the testing. Hence, reverse engineering is used
for determination of the classes, methods and attributes of
the particular components. Using this data, a basic graphical
user interface is generated for each component [21].

C. Natural Language Specification
Using the specification of the tested application written in

natural language is an appealing approach for creating of the
testing scenarios. However, this approach is still very
difficult to implement due to the ambiguity, poor
understandability, incompleteness, and inconsistency of the
natural language [22]. Hence, some restrictions are often
used to overcome these difficulties.

An example can be found in [23] where a restricted form
of natural language is used for descriptions of the use cases.
From these descriptions, a control-flow-based state machine

is generated for each use case. Then, these state machines are
combined into a global system level state machine. The
testing scenarios can be then generated by exploration of this
state machine [23].

A similar approach, based on the use case descriptions
written in natural language, is considered for the SimCo as
well. However, it employs different restrictions and different
course of generation of the testing scenarios. The use-case
descriptions are analyzed and transformed into an overall
behavioral automaton (OBA) using the FOAM tool [24].
From this automaton, the testing scenarios can be generated
[7]. However, the use cases descriptions must be written
using the rules described in [25] and (manually) enriched by
annotations describing the flow of the program and its
temporal dependencies. For more details, see [7].

V. INTERFACE-BASED SCENARIOS GENERATION
The approach to semi-automated generation of the testing

scenarios, which is described in this paper in detail, is based
on the analysis of the interfaces of the particular software
components and observation of their interactions. The basic
idea has been described already in [7], but its extension, the
formulation of the algorithm, and its specific application
using a case study is the main contribution of this paper.

A. Main Ideas, Features, and Limitations
The approach is intended for the situation when the

source code of the particular software components is not
known, but their implementations are at our disposal. The
generated scenarios can then be used for testing of the extra-
functional properties and the quality of services of the
components. The specific requirements (e.g., maximal
duration of an invocation) are not generated, but can be
easily added by the user. The generated scenarios are also
particularly useful when a new component shall replace its
older version and we want to test whether the new compo-
nent exhibits the same external behavior as the old one.

Assume now that there is an entire component-based
application, for which the testing scenarios shall be
generated, and the source code is not known for some or all
of its components. This entire application can be then
imported to the SimCo. During the import, the intermediate
components are placed between each pair of the components,
since all of them are real. Alternatively, some of the
components can be replaced by their simulated counterparts
as long as they exhibit the same external behavior as the
original real components.

Once the import is complete, the public interfaces of the
components (OSGi bundles) along with their services and
their parameters are determined. Then, the parameter values
of the particular invocations can be partially generated
automatically and partially provided by a user. Using these
parameter values, the services of the particular components
are sequentially invoked and the consequences of the
invocations are observed using the intermediate components
(and simulated components if they are present). The
consequences can be an exception, a return value, a
subsequent invocation of a service or services on another
component or other components, or solely a change of the

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

inner state of the component. With the exception of the
unobservable inner state, all consequences can be recorded.

From all the types of the consequences, the subsequent
invocations are the most important ones. The reason is that,
with each subsequent invocation of a service, its parameter
values are observed. These parameter values can be then
added to the parameter values, which were automatically
generated or provided by the user (see previous paragraph),
but, unlike them, the parameter values from the subsequent
invocations are genuine, provided directly by the component,
which invokes the particular service. Moreover, the
parameter values can contain instances of objects, which are
difficult to generate automatically. This useful feature is
possible, because the parameters of the subsequent
invocations are present in the components, but are hidden
from us, since the source code is not known.

From the invocations and their consequences, the
scenarios can be directly generated. It should be noted that, if
there is an erroneous behavior in the component-based
application (e.g., a subsequent invocation, which in fact
should not occur), the errors will propagate into the gene-
rated scenarios. Therefore, the user is encouraged to check
the generated scenarios. However, in most cases, we assume
that the component-based application is working correctly.

B. Algorithm
The algorithm of our approach to the testing scenarios

generation consists of three steps – the preparation of a tree
data structure of all the components and all their services, the
generation of invocations of particular services along with
their parameter values, and the performing the particular in-
vocations in order to determine their consequences and sup-
plement additional invocations and their parameter values.

The tree data structure can be initiated easily using the
analysis of the public interfaces of the software components.
For this purpose, a service of the OSGi framework, which
enables to determine the public interface (i.e. a Java interface
– see Section II.A) of a component (OSGi bundle), can be
used. With the Java interfaces of the particular components
known, the Java reflection can be used for the determination
of their services (i.e. Java methods – see Section II.A) with
types of their parameters and return values.

For each service of each component in the initiated tree
data structure, the list of invocations is added. Each invoca-
tion contains the set of parameter values. These parameter
values can be partially generated and partially supplemented
by the user, depending on the type of the parameters. For the
enum type, all possible values including the null value are
generated. For the boolean types, both possible values are
generated. For the char type, all single-byte values are
generated. For the number types, a set of representative
values are generated (e.g., -128, -100, -10, -1, 0, 1, 10, 100,
and 127 for the byte type). For an object type, only the
null value is generated. If there are multiple parameters for
a single service, all combinations are generated. In order to
keep the number of various invocations feasible, the user can
provide restrictions for the generation of the parameters.
Moreover, the user can manually add parameters, which are
difficult to be generated automatically (e.g., specific

Figure 2. Scheme of the tree data structure

instances for an object type). The scheme of the tree data
structure with filled lists of invocations is depicted in
Figure 2.

Once the tree data structure is initiated and filled with the
invocations (see Figure 2), it is sequentially explored
component by component, service by service, invocation by
invocation. Each invocation from the tree data structure is
performed on the corresponding component and its
consequences are observed using the intermediate
components (and the simulated components if they are
present). These consequences (a return value, an exception, a
subsequent invocation) are added to the tree data structure if
they are not already present. If the consequence is a
subsequent invocation on another component and it is not
already present, this invocation along with its parameter
values is added to the tree data structure as well.

//Initialization of the structure of components
structure.components = simco.getComponents();

//Initialization of their services
for (c: structure.components) {
 c.services = simco.getServicesOfComponent(c);

 //Generation and filling (by the user) of the
 //invocations
 for (s: c.services) {
 s.invocations = simco.generateAndReadInvocations();
 }
}

//Exploration of invocations and consequences
while (structure.isChanged()) {
 structure.setChanged(false);
 for (c: structure.components) {
 for (s: c.services) {
 for (i: s.invocations) {
 invocationConsequences =
 simco.performServiceInvocation(c, s, i);

 for (ic: invocationConsequences) {
 if (!i.consequences.contains(ic)) {
 i.consequences.add(ic);
 structure.setChanged(true);
 }
 if (ic.type == SUBSEQUENT_INVOCATION) {
 sc = ic.subsequentComponent;
 ss = ic.subsequentService;
 si = ic.subsequentInvocation;
 if (!structure.contains(sc, ss, si)) {
 structure.addInvocation(sc, ss, si);
 structure.setChanged(true);
 }
 }
 }
 }
 }
 }
}

Figure 3. The pseudocode of the entire algorithm

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Once the invocation is completed and all its consequen-
ces are added to the tree data structure, the next invocation is
performed and so on. When the entire structure is explored
(i.e. all invocations were performed), it is checked whether
new invocation consequences or subsequent invocations
were added to the structure during the just finished explora-
tion. If so, the exploration of the entire structure repeats.
Otherwise, the algorithm ends (see Figure 3).

Once the algorithm is complete, its result is the tree data
structure filled with the invocation consequences and the
subsequent invocations. This filled data structure can be
visualized as a tree (see Figure 2) or as a multilevel list (see
Figure 5) for the user, if required. The structure can be then
directly transcribed to the resulting scenario (an XML file).
Should the extra-functional properties and the quality of
services be tested, their descriptions must be added to the
scenario by the user, since they cannot be determined from
the components or they behavior without further description.
The scenario can then be loaded by the SimCo, which
performs the invocations with the parameters specified in the
scenario and observes their consequences.

VI. TRAFFIC CROSSROAD CONTROL CASE STUDY
The utilization of the described approach to the semi-

automatic generation of testing scenarios will be
demonstrated on a case study – the Traffic crossroad control.

A. Description of Traffic Crossroad Control
The Traffic crossroad control is a component-based

application for the control of road traffic in a crossroad using
traffic lights. It is expected to run in an OSGi framework on
a specific hardware and operate a variety of hardware
sensors and control units [5]. Since these sensors and control
units are irrelevant for this paper, the components involving
any direct contact with them were replaced by manually
created simulated components in order to enable the running
of the application on a standard desktop computer [7].

The scheme of the entire application is depicted in
Figure 4. The application consists of eight components, from

Figure 4. The scheme of the Traffic crossroad control application

which four components are real and four components are
simulated. Moreover, each real component has its own
intermediate component (see Figure 4).

The TrafficCrossroad component provides the
information about the structure of the crossroad. Its
simulated version also incorporates a nanoscopic road traffic
simulation replacing the real traffic [7]. The Induction-
Loop and the OpticDetection components provide
measured data from corresponding hardware sensors. Their
simulated versions extract the data from the road traffic
simulation instead. The TrafficLightsController
component ensures desired settings of the traffic lights using
corresponding hardware control units. Its simulated version
sets the traffic lights in the road traffic simulation instead.
The ControlPanel component provides the user interface
for the entire application. The TrafficControlAlgo-
rithm component contains an algorithm for the control of
the traffic lights. This algorithm can require information
from the sensors mediated by the SensorAccess
component. From this component, the StatisticsCol-
lector component periodically collects data and provides
various road traffic statistics [7].

B. Scenarios Generation for Traffic Crossroad Control
Assume now the utilization of the algorithm described in

Section V.B on the components of the Traffic crossroad
control application. During the initiation of the tree data
structure, the user provides eight sets of parameter values for
two services of the SensorAccess component (string IDs
of the particular sensors) and eight sets of parameter values
for three services of the TrafficControlAlgorithm
component (instances with parameters of the traffic control
algorithm). The remainder of the parameter values is
generated. The tree data structure is then explored and the
invocation consequences and subsequent invocations are
added to this structure.

The parts of the resulting filled structure are depicted in
Figure 5. The components, services, invocations, and
invocation consequences are marked with C, S, I, and IC,
respectively. The value in the parentheses of I denotes the
originator of the invocation (G – generated at the beginning,
U – provided by the user, Ex – added automatically during
the xth exploration). The value in the parentheses of IC
denotes the number of the exploration of the structure
(starting with 1), in which the invocation consequence was
added. The overall statistics of the filled tree data structure
are summarized in Table I.

TABLE I. OVERALL STATISTICS OF THE FILLED TREE DATA STRUCTURE

Feature Count
Invocations generated at beginning (G) 39
Invocations provided by user (U) 16
Automatically added invocations in 1st exploration (E1) 4
Automatically added invocations in 2nd exploration (E2) 4
Automatically added invocations in 3rd exploration (E3) 0
Generated consequences in 1st exploration (1) 68
Generated consequences in 2nd exploration (2) 21
Generated consequences in 3rd exploration (3) 0
Explorations 3

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

C: ControlPanel
 S: boolean isTrafficLightsActivated()
 I(G): isTrafficLightsActivated()
 IC(1): return value [true]
 S: void setTrafficLightsActivated(boolean)
 I(G): setTrafficLightsActivated(true)
 IC(1): subsequent invocation
 [TrafficControlAlgorithm.isActivated()]
 IC(2): subsequent invocation
 [TrafficControlAlgorithm.setActivated(true)]
 I(G): setTrafficLightsActivated(false)
 IC(1): subsequent invocation
 [TrafficControlAlgorithm.isActivated())
 IC(1): subsequent invocation
 [TrafficControlAlgorithm.setActivated(false)]

...
C: SensorAccess
 S: int getQueueLength(String)
 I(G): getQueueLength(null)
 IC(1): exception [NullPointerException]
 I(U): getQueueLength("E_01")
 IC(1): subsequent invocation
 [OpticDetection.getVehiclesCount("E_01")]
 IC(1): return value [2]
 IC(2): subsequent invocation
 [InductionLoop.isVehicle("E_01")]
 IC(2): return value [1]

...
 S: boolean isVehicle(String)
 I(G): isVehicle(null)
 IC(1): exception [NullPointerException]
 I(U): isVehicle("E_01")
 IC(1): subsequent invocation
 [OpticDetection.getVehiclesCount("E_01")]
 IC(1): return value [true]
 IC(2): subsequent invocation
 [InductionLoop.isVehicle("E_01")]
 IC(2): return value [true]

...
 S: DetectorType getDetectorType()
 I(G): getDetectorType()
 IC(1): return value [DetectorTypes.OPTIC]
 S: void setDetectorType(DetectorTypes)
 I(G): setDetectorType(null)
 IC(1): exception [NullPointerException]
 I(G): setDetectorType(DetectorTypes.OPTIC)
 IC(1): nothing observable
 I(G): setDetectorType(DetectorType.INDUCTION)
 IC(1): nothing observable

C: StatisticsCollector
 S: Statistics getStatistics()
 I(G): getStatistics()
 IC(1): return value [statistics]

...
C: OpticDetection
 S: int getVehiclesCount(String)
 I(G): getCurrentVehiclesCount(null)
 IC(1): exception [NullPointerException]
 I(E1): getCurrentVehiclesCount("E_01")
 IC(1): return value [2]

...
C: InductionLoop
 S: boolean isVehicle(String)
 I(G): isVehicle(null)
 IC(1): exception [NullPointerException]
 I(E2): isVehicle("E_01")
 IC(2): return value [true]

...

Figure 5. Selected parts of the explored and filled tree data structure

As seen in Table I, the tree data structure is explored
three times in this case. During the third exploration, no new
invocation consequences and no new invocations are
generated, which means that the structure does not change
and the algorithm ends (see Section V.B).

There are four newly generated invocations of the service
getVehiclesCount() of the OpticDetection com-

ponent added during the first exploration and four newly
generated invocations of the service isVehicle() of the
InductionLoop component during the second explora-
tion. These invocations are direct consequences of the
invocations of the getQueueLength() service of the
SensorAccess component – not its isVehicle() ser-
vice, which would have the same consequences, but is invo-
ked after the getQueueLength() service, so the invoca-
tions are already present. In other words, the invocations
provided by the user for the SensorAccess component
propagate automatically to other components (OpticDe-
tection and InductionLoop in this case) and enable
their better testing. This is a very useful feature of our
approach.

It should also be noted that both sets of the subsequent
invocations described in the previous paragraph are genera-
ted by the same invocation, but in different explorations. The
reason is that the inner state of the SensorAccess compo-
nent is being changed during the exploration of the tree data
structure by its setDetectorType() service. So, althou-
gh the inner state of the components is unobservable, it can
(and often does) influence the behavior of their services. Due
to this, the services, which lack any observable consequence,
but presumably change the inner state of the components,
can influence the generation of the invocation consequences.
So, the repetitive explorations of the tree data structure
maximize the number of generated invocation consequences.

As it was mentioned in Section V.B, the filled explored
tree structure can be directly transcribed to the resulting
scenario, which is a XML file. The part of this scenario for
the structure depicted in Figure 5 is depicted in Figure 6.

<scenario>
 <invocation time="1" componentName="ControlPanel"
 serviceName="isTrafficLightsActivated">
 <parameters>
 </parameters>
 <consequences>
 <consequence type="RETURN_VALUE"
 dataType="boolean" value="true" />
 </consequences>
 </invocation>
 <invocation time="2" componentName="ControlPanel"
 serviceName="setTrafficLightsActivated">
 <parameters>
 <parameter dataType="boolean" name="arg0"
 value="true">
 </parameters>
 <consequences>
 <consequence type="SUBSEQUENT_INVOCATION"
 componentName="TrafficControlAlgorithm"
 serviceName="isActivated">
 <parameters>
 </parameters>
 </consequence>
 <consequence type="SUBSEQUENT_INVOCATION"
 componentName="TrafficControlAlgorithm"
 serviceName="setActivated">
 <parameters>
 <parameter dataType="boolean" name="arg0"
 value="true">
 </parameters>
 </consequence>
 </consequences>
 </invocation>

...
</scenarios>

Figure 6. A part of the resulting scenario

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

VII. CONCLUSION
In this paper, we described an approach to the semi-

automated generation of the scenarios for the simulation
testing of software components. The approach is based on
the analysis of the interfaces of the particular software
components and observation of their mutual interactions.
The approach is intended for situations when the source code
of the components is unknown, but their implementations are
available. Then, it enables to partially analyze the behavior
of the particular components. The resulting scenarios are
useful for the testing of the functionality of new versions of
the components, which shall replace their older versions, and
as the basis for the testing of the extra-functional properties
and quality of services of the components. In the latter case,
however, the descriptions and constraints of the extra-
functional properties and the quality of services must be
filled into the generated scenario by the user.

The functioning of the approach was demonstrated on the
Traffic crossroad control case study. The approach was
designed for the SimCo simulation tool and OSGi
component model, but its basic ideas are utilizable for other
existing component models as well.

In our future work, we will focus on the better
exploration of the structure, from which the scenarios are
generated. This includes ordering of the particular service
invocations and attempting to extrapolate the inner states of
the components.

ACKNOWLEDGMENT
This work was supported by the European Regional

Development Fund (ERDF), project “NTIS – New
Technologies for the Information Society”, European Centre
of Excellence, CZ.1.05/1.1.00/02.0090.

REFERENCES
[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software

– Beyond Object-Oriented Programming, ACM Press, New
York, 2000.

[2] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Systems and Software, vol. 82(1), 2009, pp. 3–22.

[3] P. C. Heam, O. Kouchnarenko, and J. Voinot, “Component
Simulation-based Substitutivity Managing QoS Aspects,”
Electronic Notes in Theoretical Computer Science, vol. 260,
2010, pp. 109–123.

[4] T. Potuzak, R. Lipka, J. Snajberk, P. Brada, and P. Herout,
“Design of a Component-based Simulation Framework for
Component Testing using SpringDM,” ECBS-EERC 2011 –
2011 Second Eastern European Regional Conference on the
Engineering on Computer Based Systems, Bratislava,
September 2011, pp. 167–168.

[5] T. Potuzak, R. Lipka, P. Brada, and P. Herout, “Testing a
Component-based Application for Road Traffic Crossroad
Control using the SimCo Simulation Framework,” 38th
Euromicro Conference on Software Engineering and
Advanced Applications, Cesme, Izmir, September 2012, pp.
175–182.

[6] D. Xu, H. Li, and C. P. Lam, “Using Adaptive Agents to
Automatically Generate Test Scenarios from the UML
Activity Diagrams,” Proccedings of the 12th Asia-Pacific
Software Engineering Conference, December 2005.

[7] T. Potuzak and R. Lipka, “Possibilities of Semi-automated
Generation of Scenarios for Simulation Testing of Software
Components,” International Journal of Information and
Computer Science, vol. 2(6), September 2013, pp. 95–105.

[8] The OSGi Alliance, OSGi Service Platform Core
Specification, release 4, version 4.2, 2009.

[9] R. S. Hall, K. Pauls, S. McCulloch, and D. Savage, OSGi in
Action: Creating Modular Applications in Java, Manning
Publications Co., Stamford, 2011.

[10] J. McAffer, P. VanderLei, and S. Archer, OSGi and Equinox:
Creating Highly Modular JavaTM Systems, Pearson
Education Inc., Boston, 2010.

[11] D. Rubio, Pro Spring Dynamic Modules for OSGiTM Service
Platform, Apress, USA, 2009.

[12] R. M. Fujimoto, Parallel and Distributed Simulation Systems,
John Wiley & Sons, New York, 2000.

[13] P. G. Sapna and H. Mohanty, “Automated Scenario
Generation based on UML Activity Diagrams,” International
Conference on Information Technology, 2008, December
2008, pp. 209–214.

[14] S. J. Cunning and J. W. Rozenbiit, “Test Scenario Generation
from a Structured Requirements Specification,” IEEE
Conference and Workshop on Engineering of Computer-
Based Systems, 1999, Proceedings, March 1999, pp. 166–
172.

[15] R. Lipka, T. Potuzak, P. Brada, and P. Herout, “Verification
of SimCo – Simulation Tool for Testing of Component-based
Application,” EUROCON 2013, Zagreb, July 2013, pp. 467–
474.

[16] J. Bauer and A. Finger, “Test Plan Generation Using Formal
Grammars,” Proceedings of the Fourth International
conference on Software Engineering, Los Alamitos,
September 1979, pp. 425–432.

[17] X. Hou, Y. Wang, H. Zheng, and G. Tang, “Integration
Testing System Scenarios Generation Based on UML,” 2010
International Conference on Computer, Mechatronics, Control
and Electronic Engineering, August 2010, pp. 271–273.

[18] M. Shirole and R. Kumar, “UML Behavioral Model Based
Test Case Generation: A Survey,” ACM SIGSOFT Software
Engineering Notes, Vol. 28(4), 2013, pp. 1–12.

[19] Y. Yongfeng, L. Bin, L. Minyan, and L. Zhen, “Test Cases
Generation for Embedded Real-time Software Based on
Extended UML,” 2009 International Conference on
Information Technology and Computer Science, Kiev, 2009,
pp. 69–74.

[20] S. Liu and W. Shen, “A Formal Approach to Testing
Programs in Practice,” 2012 International Conference on
Systems and Informatics, Yantai, 2012, pp. 2509–2515.

[21] F. Naseer, S. U. Rehman, and K. Hussain, “Using Meta-data
Technique for Component Based Black Box Testing,” 2010
6th International Conference on Emerging Technologies,
Islamabad, 2010, pp. 276–281.

[22] V. A. De Santiago Jr. and N. L. Vijaykumar, “Generating
model-based test cases from natural language requirements
for space application software,” Software Quality Journal,
vol. 20(1), 2012, pp. 77–143.

[23] S. S. Somé and X. Cheng, “An Approach for Supporting
System-level Test Scenarios Generation from Textual Use
Cases,” Proceedings of the 2008 ACM symposium on
Applied computing, Fortaleza, 2008, pp. 724–729.

[24] V. Simko, D. Hauzar, T. Bures, P. Hnetynka, and F. Plasil,
“Verifying Temporal Properties of Use-Cases in Natural
Language,” Springer-Verlag, vol. 7741, 2013, pp. 350–367.

[25] A. Cockburn, Writing Effective Use Cases. Addison-Wesley,
Boston, 2000

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

