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Abstract—Using the component-based software development, 
an application is constructed from individual reusable 
components providing particular functionalities. The testing of 
their functionality, their quality of services, and their extra-
functional properties is important, especially when each 
component can be created by a different manufacturer. We 
developed the SimCo simulation tool, which enables simulation 
testing of software components directly without the necessity to 
create their (potentially incorrect) models. The course of the 
testing is described in so-called scenarios. In this paper, the 
semi-automated generation of the scenarios based on the 
analysis of the interfaces of the particular software components 
and their mutual interactions is described. The described ideas 
demonstrate the usefulness of the simulation for the 
component-based software development. 

Keywords-software components testing; scenarios genera-
tion; component interface; component interaction. 

I.  INTRODUCTION 
The component-based software development is an 

important trend in contemporary software engineering. Using 
this approach, an application is constructed from individual 
reusable software components, which provide particular 
functionalities as services through their public interfaces. 
Each service of a component can be utilized by multiple 
other components of the application and the invocation of a 
service is a basic interaction between the components. A 
single component can be utilized in multiple applications, 
which implies the reuse of the existing program code. At the 
same time, an application can be constructed from 
components, which were created by different developers [1].   

The testing of software components is very important. 
Their functionality should be ensured by their developers. 
However, the potentially different developers of the particu-
lar components of a component-based application reinforce 
the need for testing of the interactions and mutual coopera-
tion of the components. Moreover, besides the functionality 
of the components, it is also necessary to test their extra-
functional properties (e.g., memory consumed by a service 
invocation) and quality of services (e.g., time required for a 
service invocation or the performance in general) [2][3]. 

During our previous research, we have developed the 
SimCo simulation tool, which enables the simulation testing 

of a single software component, a set of software 
components, or an entire component-based application [4] 
[5]. The components can be tested in the SimCo directly, 
without the necessity to create their (potentially incorrect) 
simulation models [5]. The course of the simulation testing is 
described in so-called scenarios, which are basically XML 
files loaded by the SimCo. The manual creation of the 
scenarios is a lengthy and error-prone process [6]. Therefore, 
we are now working on several approaches, which would 
provide a semi-automated generation of the scenarios. 

In this paper, we describe one such approach, which is 
based on the analysis of the public interfaces of the particular 
software components and on the observation of their mutual 
interactions. The approach is focused on the situation when 
the software components are created by a third party and 
their source codes or any other descriptions of their behavior 
are unavailable to us. 

The paper is structured as follows. The basic notions are 
briefly discussed in Section II. The SimCo is described in 
Section III. The existing approaches to generation of testing 
scenarios are discussed in Section IV. The interface-based 
scenarios generation, which is the main contribution of this 
paper, is described in Section V and demonstrated on a case 
study in Section VI. The paper is concluded in Section VII.  

II. BASIC NOTIONS 
In order to make the further reading more clear, the basic 

notions of the component-based software development and 
the simulation testing will be now briefly described. 

A. Software Components 
In the component-based software engineering, a software 

component is a black box entity with a well defined public 
interface and no observable inner state. Its particular functi-
onalities are provided as services accessible via its public 
interface [1]. An application is then constructed from multi-
ple components, which interact using their interfaces (e.g., 
invoking particular services). The particular components of 
an application can be created by different developers, which 
can be also different from the developer of the resulting 
application. At the same time, a component can be utilized in 
multiple applications. Although this definition is very 
abstract, a more specific definition is problematic, since the 
view of software components is very diverse [1]. 
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A component model specifies the features, behavior, and 
interactions of software components. A component 
framework is then a specific implementation of a component 
model [5]. So, there can be (and often are) multiple 
implementations of a single component model [7]. Software 
components of different component models often have very 
different form. Hence, it is very difficult to transform an 
existing software component from one component model to 
another. Thus, the SimCo utilizes only one component model 
– the OSGi [8][9]. However, the ideas behind it can be used 
in other component models as well. 

The OSGi is a dynamic component model for Java 
programming language widespread in both the academic and 
the industrial spheres including automotive industry, cell 
phones, and so on [7]. There are multiple implementations of 
the OSGi component model (i.e. OSGi component frame-
works) [8], for example the Equinox [10]. For its widespread 
use, the OSGi is used in the SimCo [5]. 

Using the OSGi, the particular software components are 
referred to as bundles. The dynamic nature of the OSGi 
means that it is possible to install, start, stop, and uninstall 
any bundle without the necessity to restart the OSGi 
framework assuming that all bundle dependencies are 
satisfied [11]. The OSGi bundle has the form of a .jar file 
with additional OSGi-specific meta-information regarding 
the provided and required services and so on [9]. Since the 
.jar file can contain any number of Java classes, each 
bundle can provide arbitrary complex functionality [7]. Both 
provided and required services are described by standard 
Java interfaces. Hence, the particular services of a bundle 
have the form of standard Java methods [8]. 

B. Discrete-Event Simulation 
A discrete-event simulation is a widely used simulation 

type [12]. The simulation run of a discrete-event simulation 
is divided into sequence of time-stamped events, which 
represent an incremental change to the simulation state. The 
time stamp specifies the simulation time, in which this 
change to the simulation state should happen [12]. 

The simulation time between two succeeding events can 
be arbitrary long, but the changes of the simulation state are 
associated with the events only. So, the simulation time 
“jumps” from the time stamp of an event to the time stamp 
of the next event [12]. The processing of events is handled 
by a so-called calendar with the list of events ordered by 
their time stamps. At the start of a simulation run, the 
calendar removes the first event from the event list, sets the 
simulation time to the value of the event’s time stamp, and 
performs the event’s change of the simulation state. This can 
potentially lead to the creation of multiple new events, which 
are inserted to the event list on the positions corresponding to 
their time stamps. Then, the next event is removed from the 
event list and so on. The entire process stops when a predefi-
ned condition is fulfilled or the event list is empty [12]. 

C. Simulation Testing 
Considering only the discrete-event simulation from now 

on, we will describe the simulation testing of software 
components. For this purpose, two approaches can be used. 

The first approach is to develop a model of the tested 
software component and use it in the simulation [2]. The 
advantage of this approach is that the created model is suited 
for the simulation. The disadvantage is that the creation of 
the model is time-demanding and potentially error-prone. 
Since the model usually incorporates only features, which 
are considered important for the simulation and testing, it is 
also possible to unintentionally omit some features, which in 
fact are important for the results of the testing [7]. Also, the 
consistency of the model has to be maintained. 

The second approach is to use the tested software compo-
nent directly in the simulation, instead of using its model. 
The advantage of this approach is that there is no necessity to 
create the model [4]. The disadvantage is that the simulation 
must enable the running of the tested component in a way it 
would run in a non-simulation environment [7]. 

Regardless the approach, the simulation testing can be 
divided according to the knowledge of the tested software 
component. If its source code is known, it can be (and 
usually is) used for the preparation of the course of testing. 
This is a white box testing. If the source code is not known, 
other information such as a specification of the component’s 
intended behavior, a description of its interface, and so on 
can be used for the preparation of the course of testing. This 
is a black box testing [13], on which this paper is focused. 

D. Testing Scenarios 
Regardless its type, the simulation testing lies in the 

subjecting of the tested software component (or its model) to 
a set of stimuli and observation of its corresponding 
reactions [14]. In most real cases, it is not feasible to provide 
a complete coverage of all stimuli. Hence, a subset of stimuli 
should be created instead. This subset should represent well 
all theoretical possible stimuli and, at the same time, be 
reasonably small [13].    

The course of the simulation testing is described in so-
called scenarios, which incorporate the particular stimuli and 
(optionally) the expected consequences. Using the discrete-
event simulation (see Section II.B) for the simulation testing 
of software components, the stimuli correspond to particular 
events. Each event, in turn, corresponds to the invocation of 
a service of a tested software component [7]. The consequen-
ces can then be a return value, an exception, a subsequent 
invocation of a service of another component, and so on. 

III. SIMCO SIMULATION TOOL 
Now, as we discussed the basic notions, we can proceed 

with the description of the SimCo, which we developed 
during our previous research. 

A. Purpose and Description of SimCo Simulation Tool 
The SimCo enables testing of software components using 

the discrete-event simulation (see Section II.B). The SimCo 
itself is a component-based application, which enables its 
simple extensions and modifications [15]. It utilizes the 
OSGi component model [8][9]. Currently, it runs in the 
Equinox OSGi framework [10] (see Section II.A). 
Consequently, it is utilizable only for the testing of the OSGi 
bundles (OSGi software components) [7]. 
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The tested components are directly incorporated into the 
simulation. Hence, the simulation environment must be 
constructed in a way, which enables a normal running of the 
tested components as they would be in a non-simulated 
environment. Among other things, the dependencies of the 
components must be satisfied. At the same time, the course 
of the simulation testing must be under control during the 
entire simulation run. These requirements are reflected in the 
structure of the SimCo, which consists of several software 
component types [15] (see Section III.B). 

B. Types of Software Coponents in SimCo Simulation Tool 
There are four types of software components (OSGi 

bundles) in the SimCo – the core, the real tested, the 
simulated, and the intermediate components [15]. 

The core components provide the functionality of the 
SimCo itself. Primarily, they ensure the running of the 
simulation according to the loaded testing scenario and the 
collection of the results. The most important core component 
is the Calendar, which ensures the progress of the simula-
tion run by processing the events from the event list. The 
core components also provide supplementary functions such 
as logging, visualization of the simulation, and so on [15]. 

The real tested components are the OSGi bundles, which 
shall be tested using the SimCo. The source code of these 
components may be known or unknown, since the compo-
nents can be created by a third party [15]. If the source code 
is known (i.e. white box testing) it can be used for the 
creation of the testing scenarios. However, in this paper, we 
focus on the case when the source code is not known (i.e. 
black box testing) and only the public interfaces of the 
components (with or without further description) are known. 
The real tested components run in the simulated environ-
ment, which brings several issues (e.g., discrepancy of the 
simulation and real time, undesirable remote communication, 
etc.) solvable by various means (see [5] and [15]). 

The simulated components provide services, which are 
required by the real tested components. They are useful 
when a single component or a limited set of components are 
tested and these components require services of other com-
ponents, which are not present in the simulation. Then, the 
simulated components provide the missing services required 
by the real tested components. When an entire component-
based application is tested, the simulated components are not 
necessary, since the requirements of all real tested com-
ponents should be satisfied. Another important function of 
the simulated components is the ensuring that all invocations 
of the services of these components are performed using the 
events and the calendar. This allows the SimCo to maintain 
the control of the simulation run. Additionally, the simulated 
components can be used for the speedup, since they do not 
have to perform all the calculation they real counterparts 
would. Instead, they can utilize random numbers generators 
or prerecorded values, depending on the situation [15]. 

The intermediate components are inserted between all 
pairs of real tested components. They ensure that the invoca- 
tions on the real tested components are handled using the 
events and the calendar. Basically, an intermediate compo-
nent is a proxy for a real tested component. It has the same 

 
Figure 1. Relations of the three types of SimCo components 

public interface (i.e. provides the same services). All 
invocations of the services on the real tested component are 
in fact handled using this proxy (see Figure 1). When a 
service is invoked, the intermediate component ensures the 
use of the events and the calendar and invokes the 
corresponding service on the real tested components to 
obtain the return value and potentially trigger further 
consequences (e.g., invocation of a service of another 
component) [15]. 

C. Testing Scenarios in SimCo Simulation Tool 
The testing scenarios for the SimCo have the form of 

XML files. They contain primarily the events, which shall be 
processed during the simulation run [15]. The events 
correspond to the invocations of the particular services of 
particular components (see Section II.D). The scenarios also 
contain the configuration of the simulation and the layout of 
the components (e.g., information, which components are 
real tested, which are simulated, etc.). 

Each event in the testing scenario is usually stored as a 
unique record containing the time stamp and the description 
of the invocation that shall be performed – the component, 
on which the invocation shall be performed, the service, 
which shall be invoked, and the parameter values of the 
invocation. The expected consequences of the invocation can 
be stored as well. They are useful for evaluation of the 
simulation tests – it can be easily compared whether the 
consequences of the invocation during the simulation run are 
the same as the expected ones. This is particularly useful 
during the testing of the correct functionality of the 
components. Nevertheless, the expected consequences are 
not an obligatory part of the testing scenarios, since it is also 
possible to use logging and probes for evaluation of the 
simulation tests, separately from the scenarios. This can be 
useful during the testing of the extra-functional properties 
and quality of services of the components. 

As an alternative to describing every single event 
separately, it is also possible to specify a random numbers 
generator with an appropriate probabilistic distribution [15]. 
This way, it is possible to generate multiple events (with pre-
set parameter values or even randomly generated parameter 
values) with a single description within the testing scenario. 
However, this approach can be used only in some cases. 

IV. SCENARIOS GENERATION APPROACHES 
The idea of the semi-automated generation of the testing 

scenarios is not new in the software development field. The 
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research in this area begun at least in 1970s [16] and 
continues till today [6][13][14][17]. However, the research 
focused on the semi-automated generation of the testing 
scenarios directly for the software components is rare. So, 
several existing approaches, which are briefly discussed in 
the following sections, are mostly not intended for the 
software components, but still can serve as a source of 
inspiration. They have in common that they do not utilize the 
source code of the tested application, but rather a description 
of its behavior and requirements. 

A. UML Behavioral Diagrams 
Many approaches for the generation of the testing 

scenarios are based on UML behavioral diagrams (e.g., 
sequence diagram, activity diagram, etc.) [18]. 

The activity diagrams are used, for example, for a 
representation of concurrent activities [13]. The exhaustive 
exploration of the diagrams is then used for the generation of 
the testing scenarios. Since, for large applications, the 
exploration of all possible flows in the diagrams is infeasible, 
some constraints derived from the application domain are 
used to discard illegal or irrelevant scenarios [13]. The 
activity diagrams are also used in [17] where they are 
generated using multiple UML use case diagrams in order to 
express the concurrency of the particular use cases. The 
exploration of the diagrams is again used for the generation 
of the scenarios [17]. In [19], a layered activity diagram 
describing the workflow of the tested application is used for 
the extraction of the execution paths of the tested application. 
These execution paths are then used for the generation of the 
scenarios [19]. 

B. User Interface 
Several approaches utilize the user interface for the 

generation of the testing scenarios. This is based on the 
assumption that the user interface provides access to the 
majority (if not all) functions of the tested application [20]. 

In [20], the testing scenarios are created by inducing 
inputs to the user interface and pairing them with corres-
ponding outputs. An opposite approach, which is focused on 
the testing of software components created using the .NET 
platform, is described in [21]. In this case, the absence of the 
user interface of the components is stressed as a major 
setback for the testing. Hence, reverse engineering is used 
for determination of the classes, methods and attributes of 
the particular components. Using this data, a basic graphical 
user interface is generated for each component [21]. 

C. Natural Language Specification 
Using the specification of the tested application written in 

natural language is an appealing approach for creating of the 
testing scenarios. However, this approach is still very 
difficult to implement due to the ambiguity, poor 
understandability, incompleteness, and inconsistency of the 
natural language [22]. Hence, some restrictions are often 
used to overcome these difficulties.   

An example can be found in [23] where a restricted form 
of natural language is used for descriptions of the use cases. 
From these descriptions, a control-flow-based state machine 

is generated for each use case. Then, these state machines are 
combined into a global system level state machine. The 
testing scenarios can be then generated by exploration of this 
state machine [23]. 

A similar approach, based on the use case descriptions 
written in natural language, is considered for the SimCo as 
well. However, it employs different restrictions and different 
course of generation of the testing scenarios. The use-case 
descriptions are analyzed and transformed into an overall 
behavioral automaton (OBA) using the FOAM tool [24]. 
From this automaton, the testing scenarios can be generated 
[7]. However, the use cases descriptions must be written 
using the rules described in [25] and (manually) enriched by 
annotations describing the flow of the program and its 
temporal dependencies. For more details, see [7]. 

V. INTERFACE-BASED SCENARIOS GENERATION 
The approach to semi-automated generation of the testing 

scenarios, which is described in this paper in detail, is based 
on the analysis of the interfaces of the particular software 
components and observation of their interactions. The basic 
idea has been described already in [7], but its extension, the 
formulation of the algorithm, and its specific application 
using a case study is the main contribution of this paper. 

A. Main Ideas, Features, and Limitations 
The approach is intended for the situation when the 

source code of the particular software components is not 
known, but their implementations are at our disposal. The 
generated scenarios can then be used for testing of the extra-
functional properties and the quality of services of the 
components. The specific requirements (e.g., maximal 
duration of an invocation) are not generated, but can be 
easily added by the user. The generated scenarios are also 
particularly useful when a new component shall replace its 
older version and we want to test whether the new compo-
nent exhibits the same external behavior as the old one. 

Assume now that there is an entire component-based 
application, for which the testing scenarios shall be 
generated, and the source code is not known for some or all 
of its components. This entire application can be then 
imported to the SimCo. During the import, the intermediate 
components are placed between each pair of the components, 
since all of them are real. Alternatively, some of the 
components can be replaced by their simulated counterparts 
as long as they exhibit the same external behavior as the 
original real components. 

Once the import is complete, the public interfaces of the 
components (OSGi bundles) along with their services and 
their parameters are determined. Then, the parameter values 
of the particular invocations can be partially generated 
automatically and partially provided by a user. Using these 
parameter values, the services of the particular components 
are sequentially invoked and the consequences of the 
invocations are observed using the intermediate components 
(and simulated components if they are present). The 
consequences can be an exception, a return value, a 
subsequent invocation of a service or services on another 
component or other components, or solely a change of the 
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inner state of the component. With the exception of the 
unobservable inner state, all consequences can be recorded. 

From all the types of the consequences, the subsequent 
invocations are the most important ones. The reason is that, 
with each subsequent invocation of a service, its parameter 
values are observed. These parameter values can be then 
added to the parameter values, which were automatically 
generated or provided by the user (see previous paragraph), 
but, unlike them, the parameter values from the subsequent 
invocations are genuine, provided directly by the component, 
which invokes the particular service. Moreover, the 
parameter values can contain instances of objects, which are 
difficult to generate automatically. This useful feature is 
possible, because the parameters of the subsequent 
invocations are present in the components, but are hidden 
from us, since the source code is not known. 

From the invocations and their consequences, the 
scenarios can be directly generated. It should be noted that, if 
there is an erroneous behavior in the component-based 
application (e.g., a subsequent invocation, which in fact 
should not occur), the errors will propagate into the gene-
rated scenarios. Therefore, the user is encouraged to check 
the generated scenarios. However, in most cases, we assume 
that the component-based application is working correctly. 

B. Algorithm 
The algorithm of our approach to the testing scenarios 

generation consists of three steps – the preparation of a tree 
data structure of all the components and all their services, the 
generation of invocations of particular services along with 
their parameter values, and the performing the particular in-
vocations in order to determine their consequences and sup-
plement additional invocations and their parameter values.  

The tree data structure can be initiated easily using the 
analysis of the public interfaces of the software components. 
For this purpose, a service of the OSGi framework, which 
enables to determine the public interface (i.e. a Java interface 
– see Section II.A) of a component (OSGi bundle), can be 
used. With the Java interfaces of the particular components 
known, the Java reflection can be used for the determination 
of their services (i.e. Java methods – see Section II.A) with 
types of their parameters and return values. 

For each service of each component in the initiated tree 
data structure, the list of invocations is added.  Each invoca-
tion contains the set of parameter values. These parameter 
values can be partially generated and partially supplemented 
by the user, depending on the type of the parameters. For the 
enum type, all possible values including the null value are 
generated. For the boolean types, both possible values are 
generated. For the char type, all single-byte values are 
generated. For the number types, a set of representative 
values are generated (e.g., -128, -100, -10, -1, 0, 1, 10, 100, 
and 127 for the byte type). For an object type, only the 
null value is generated. If there are multiple parameters for 
a single service, all combinations are generated. In order to 
keep the number of various invocations feasible, the user can 
provide restrictions for the generation of the parameters. 
Moreover, the user can manually add parameters, which are 
difficult    to   be    generated    automatically   (e.g.,   specific 

 
Figure 2. Scheme of the tree data structure 

instances for an object type). The scheme of the tree data 
structure with filled lists of invocations is depicted in 
Figure 2. 

Once the tree data structure is initiated and filled with the 
invocations (see Figure 2), it is sequentially explored 
component by component, service by service, invocation by 
invocation. Each invocation from the tree data structure is 
performed on the corresponding component and its 
consequences are observed using the intermediate 
components (and the simulated components if they are 
present). These consequences (a return value, an exception, a 
subsequent invocation) are added to the tree data structure if 
they are not already present. If the consequence is a 
subsequent invocation on another component and it is not 
already present, this invocation along with its parameter 
values is added to the tree data structure as well.  

//Initialization of the structure of components 
structure.components = simco.getComponents(); 
 
//Initialization of their services 
for (c: structure.components) { 
  c.services = simco.getServicesOfComponent(c); 
   
  //Generation and filling (by the user) of the  
  //invocations 
  for (s: c.services) { 
    s.invocations = simco.generateAndReadInvocations(); 
  } 
} 
   
//Exploration of invocations and consequences 
while (structure.isChanged()) { 
  structure.setChanged(false); 
  for (c: structure.components) { 
    for (s: c.services) { 
      for (i: s.invocations) { 
        invocationConsequences =  
          simco.performServiceInvocation(c, s, i); 
           
        for (ic: invocationConsequences) { 
          if (!i.consequences.contains(ic)) { 
            i.consequences.add(ic); 
            structure.setChanged(true); 
          } 
          if (ic.type == SUBSEQUENT_INVOCATION) { 
            sc = ic.subsequentComponent; 
            ss = ic.subsequentService; 
            si = ic.subsequentInvocation; 
            if (!structure.contains(sc, ss, si)) { 
              structure.addInvocation(sc, ss, si); 
              structure.setChanged(true); 
            } 
          } 
        } 
      } 
    } 
  } 
} 

Figure 3. The pseudocode of the entire algorithm 
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Once the invocation is completed and all its consequen-
ces are added to the tree data structure, the next invocation is 
performed and so on. When the entire structure is explored 
(i.e. all invocations were performed), it is checked whether 
new invocation consequences or subsequent invocations 
were added to the structure during the just finished explora-
tion. If so, the exploration of the entire structure repeats. 
Otherwise, the algorithm ends (see Figure 3). 

Once the algorithm is complete, its result is the tree data 
structure filled with the invocation consequences and the 
subsequent invocations. This filled data structure can be 
visualized as a tree (see Figure 2) or as a multilevel list (see 
Figure 5) for the user, if required. The structure can be then 
directly transcribed to the resulting scenario (an XML file). 
Should the extra-functional properties and the quality of 
services be tested, their descriptions must be added to the 
scenario by the user, since they cannot be determined from 
the components or they behavior without further description. 
The scenario can then be loaded by the SimCo, which 
performs the invocations with the parameters specified in the 
scenario and observes their consequences. 

VI. TRAFFIC CROSSROAD CONTROL CASE STUDY 
The utilization of the described approach to the semi-

automatic generation of testing scenarios will be 
demonstrated on a case study – the Traffic crossroad control. 

A. Description of Traffic Crossroad Control 
The Traffic crossroad control is a component-based 

application for the control of road traffic in a crossroad using 
traffic lights. It is expected to run in an OSGi framework on 
a specific hardware and operate a variety of hardware 
sensors and control units [5]. Since these sensors and control 
units are irrelevant for this paper, the components involving 
any direct contact with them were replaced by manually 
created simulated components in order to enable the running 
of the application on a standard desktop computer [7]. 

The scheme of the entire application is depicted in 
Figure 4. The application consists of eight components,  from  

 
Figure 4. The scheme of the Traffic crossroad control application 

which four components are real and four components are 
simulated. Moreover, each real component has its own 
intermediate component (see Figure 4). 

The TrafficCrossroad component provides the 
information about the structure of the crossroad. Its 
simulated version also incorporates a nanoscopic road traffic 
simulation replacing the real traffic [7]. The Induction-
Loop and the OpticDetection components provide 
measured data from corresponding hardware sensors. Their 
simulated versions extract the data from the road traffic 
simulation instead. The TrafficLightsController 
component ensures desired settings of the traffic lights using 
corresponding hardware control units. Its simulated version 
sets the traffic lights in the road traffic simulation instead. 
The ControlPanel component provides the user interface 
for the entire application. The TrafficControlAlgo-
rithm component contains an algorithm for the control of 
the traffic lights. This algorithm can require information 
from the sensors mediated by the SensorAccess 
component. From this component, the StatisticsCol-
lector component periodically collects data and provides 
various road traffic statistics [7]. 

B. Scenarios Generation for Traffic Crossroad Control 
Assume now the utilization of the algorithm described in 

Section V.B on the components of the Traffic crossroad 
control application. During the initiation of the tree data 
structure, the user provides eight sets of parameter values for 
two services of the SensorAccess component (string IDs 
of the particular sensors) and eight sets of parameter values 
for three services of the TrafficControlAlgorithm 
component (instances with parameters of the traffic control 
algorithm). The remainder of the parameter values is 
generated. The tree data structure is then explored and the 
invocation consequences and subsequent invocations are 
added to this structure. 

The parts of the resulting filled structure are depicted in 
Figure 5. The components, services, invocations, and 
invocation consequences are marked with C, S, I, and IC, 
respectively. The value in the parentheses of I denotes the 
originator of the invocation (G – generated at the beginning, 
U – provided by the user, Ex – added automatically during 
the xth exploration). The value in the parentheses of IC 
denotes the number of the exploration of the structure 
(starting with 1), in which the invocation consequence was 
added. The overall statistics of the filled tree data structure 
are summarized in Table I. 

TABLE I. OVERALL STATISTICS OF THE FILLED TREE DATA STRUCTURE 

Feature Count
Invocations generated at beginning (G) 39 
Invocations provided by user (U)  16 
Automatically added invocations in 1st exploration (E1) 4 
Automatically added invocations in 2nd exploration (E2) 4 
Automatically added invocations in 3rd exploration (E3) 0 
Generated consequences in 1st exploration (1) 68 
Generated consequences in 2nd exploration (2) 21 
Generated consequences in 3rd exploration (3) 0 
Explorations 3 
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C: ControlPanel 
 S: boolean isTrafficLightsActivated() 
  I(G): isTrafficLightsActivated() 
   IC(1): return value [true] 
 S: void setTrafficLightsActivated(boolean) 
  I(G): setTrafficLightsActivated(true) 
   IC(1): subsequent invocation 
    [TrafficControlAlgorithm.isActivated()] 
   IC(2): subsequent invocation   
    [TrafficControlAlgorithm.setActivated(true)] 
  I(G): setTrafficLightsActivated(false) 
   IC(1): subsequent invocation  
    [TrafficControlAlgorithm.isActivated()) 
   IC(1): subsequent invocation   
    [TrafficControlAlgorithm.setActivated(false)] 

... 
C: SensorAccess 
 S: int getQueueLength(String) 
  I(G): getQueueLength(null) 
   IC(1): exception [NullPointerException] 
  I(U): getQueueLength("E_01")  
   IC(1): subsequent invocation   
    [OpticDetection.getVehiclesCount("E_01")] 
   IC(1): return value [2] 
   IC(2): subsequent invocation   
    [InductionLoop.isVehicle("E_01")] 
   IC(2): return value [1] 

... 
 S: boolean isVehicle(String) 
  I(G): isVehicle(null) 
   IC(1): exception [NullPointerException] 
  I(U): isVehicle("E_01") 
   IC(1): subsequent invocation    
    [OpticDetection.getVehiclesCount("E_01")] 
   IC(1): return value [true] 
   IC(2): subsequent invocation    
    [InductionLoop.isVehicle("E_01")] 
   IC(2): return value [true] 

... 
 S: DetectorType getDetectorType() 
  I(G): getDetectorType() 
   IC(1): return value [DetectorTypes.OPTIC] 
 S: void setDetectorType(DetectorTypes) 
  I(G): setDetectorType(null) 
   IC(1): exception [NullPointerException] 
  I(G): setDetectorType(DetectorTypes.OPTIC) 
   IC(1): nothing observable 
  I(G): setDetectorType(DetectorType.INDUCTION) 
   IC(1): nothing observable 
 
C: StatisticsCollector 
 S: Statistics getStatistics() 
  I(G): getStatistics() 
   IC(1): return value [statistics] 

... 
C: OpticDetection 
 S: int getVehiclesCount(String) 
  I(G): getCurrentVehiclesCount(null) 
   IC(1): exception [NullPointerException] 
  I(E1): getCurrentVehiclesCount("E_01") 
   IC(1): return value [2] 

... 
C: InductionLoop 
 S: boolean isVehicle(String) 
  I(G): isVehicle(null) 
   IC(1): exception [NullPointerException] 
  I(E2): isVehicle("E_01") 
   IC(2): return value [true] 

... 

Figure 5. Selected parts of the explored and filled tree data structure 

As seen in Table I, the tree data structure is explored 
three times in this case. During the third exploration, no new 
invocation consequences and no new invocations are 
generated, which means that the structure does not change 
and the algorithm ends (see Section V.B). 

There are four newly generated invocations of the service 
getVehiclesCount() of the OpticDetection com-

ponent added during the first exploration and four newly 
generated invocations of the service isVehicle() of the 
InductionLoop component during the second explora-
tion. These invocations are direct consequences of the 
invocations of the getQueueLength() service of the 
SensorAccess component – not its isVehicle() ser-
vice, which would have the same consequences, but is invo-
ked after the getQueueLength() service, so the invoca-
tions are already present. In other words, the invocations 
provided by the user for the SensorAccess component 
propagate automatically to other components (OpticDe-
tection and InductionLoop in this case) and enable 
their better testing. This is a very useful feature of our 
approach. 

It should also be noted that both sets of the subsequent 
invocations described in the previous paragraph are genera-
ted by the same invocation, but in different explorations. The 
reason is that the inner state of the SensorAccess compo-
nent is being changed during the exploration of the tree data 
structure by its setDetectorType() service. So, althou-
gh the inner state of the components is unobservable, it can 
(and often does) influence the behavior of their services. Due 
to this, the services, which lack any observable consequence, 
but presumably change the inner state of the components, 
can influence the generation of the invocation consequences. 
So, the repetitive explorations of the tree data structure 
maximize the number of generated invocation consequences. 

As it was mentioned in Section V.B, the filled explored 
tree structure can be directly transcribed to the resulting 
scenario, which is a XML file. The part of this scenario for 
the structure depicted in Figure 5 is depicted in Figure 6. 

<scenario> 
  <invocation time="1" componentName="ControlPanel"  
      serviceName="isTrafficLightsActivated"> 
    <parameters> 
    </parameters> 
    <consequences> 
      <consequence type="RETURN_VALUE"  
          dataType="boolean" value="true" /> 
    </consequences> 
  </invocation> 
  <invocation time="2" componentName="ControlPanel"  
      serviceName="setTrafficLightsActivated"> 
    <parameters> 
      <parameter dataType="boolean" name="arg0"  
          value="true"> 
    </parameters> 
    <consequences> 
      <consequence type="SUBSEQUENT_INVOCATION"  
          componentName="TrafficControlAlgorithm"  
          serviceName="isActivated"> 
        <parameters> 
        </parameters> 
      </consequence> 
      <consequence type="SUBSEQUENT_INVOCATION"  
          componentName="TrafficControlAlgorithm"  
          serviceName="setActivated"> 
        <parameters> 
          <parameter dataType="boolean" name="arg0"  
              value="true"> 
        </parameters> 
      </consequence> 
    </consequences> 
  </invocation> 

... 
</scenarios> 

Figure 6. A part of the resulting scenario 
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VII. CONCLUSION 
In this paper, we described an approach to the semi-

automated generation of the scenarios for the simulation 
testing of software components. The approach is based on 
the analysis of the interfaces of the particular software 
components and observation of their mutual interactions. 
The approach is intended for situations when the source code 
of the components is unknown, but their implementations are 
available. Then, it enables to partially analyze the behavior 
of the particular components. The resulting scenarios are 
useful for the testing of the functionality of new versions of 
the components, which shall replace their older versions, and 
as the basis for the testing of the extra-functional properties 
and quality of services of the components. In the latter case, 
however, the descriptions and constraints of the extra-
functional properties and the quality of services must be 
filled into the generated scenario by the user.  

The functioning of the approach was demonstrated on the 
Traffic crossroad control case study. The approach was 
designed for the SimCo simulation tool and OSGi 
component model, but its basic ideas are utilizable for other 
existing component models as well.    

In our future work, we will focus on the better 
exploration of the structure, from which the scenarios are 
generated. This includes ordering of the particular service 
invocations and attempting to extrapolate the inner states of 
the components. 
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