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Abstract—In this work, new results are obtained using con-
structed probabilistic representation of the first boundary value
problem for polyharmonic equation. It is shown that correspond-
ing solution is presented by the parametric derivative of a solution
to the specially constructed Dirichlet problem for Helmholtz
equation. On this base, new algorithms of ’random walk by
spheres’ for solving biharmonic equations are derived.

Index Terms—plate bending; Monte Carlo methods; biharmonic
equations; ’random walks by spheres’

I. INTRODUCTION

The deflection of thin plates under the action of loads is
satisfied an biharmonic equation with Dirichlet, Neumann,
or mixed boundary conditions [1]. Despite the slow rate of
convergence of statistical methods for low-dimensional spaces,
in comparison with classical numerical methods, their use
is advantageous in finding a solution to a small area or
for calculating the statistical characteristics of the solutions
with random right-hand sides. We can distinguish several ap-
proaches of Monte Carlo methods for solving above mentioned
problems:

• Approaches based on probabilistic representation of the
solution [3], [7], [5]

• Random walk by subdomains methods [8], [9], [10], [13]
(”by spheres” is most known)

• Random walk on boundary methods [13]
• SVD-based approaches [14]

Let us consider the pros and cons of each approach. The
methods based on probabilistic representation of the solution
are often used to find the asymptotic properties of solutions.
These methods are difficult to construct numerical algorithms
directly and estimates of the simplified approach are used.
This methods are more time-consuming in comparison with
others. More economical methods are walk by subdomains
and walk on boundary based on the reduction of the original
equation to a special integral equation with generalized kernel.
Walk on boundary methods are derived for a more restricted
range of problems, but can solve problems with complex
geometry boundaries. New SVD approach allows to construct
the most efficient statistical methods for finding solutions of
linear equations approximated the original problem.
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In this paper, we consider the biharmonic equation with ran-
dom inputs functional parameters. The walk by shperes vector
estimates of covariance for the solutions were constructed in
[6], the corresponding walk on boundary vector estimates were
suggested in [13], SVD approach was presented in [14].

Here, a new scalar walk by spheres estimates of covariance
for the solution were constructed by an parametric differentia-
tion of well known estimates of solution to special constructed
problems. First, this approach was proposed by G. Mikhailov
[12]. Besides, Mikhailov and Tolstolytkin [6] proposed scalar
estimates had been fully investigated: the finiteness of vari-
ances has been proved, absolute errors have been evaluated,
laboriousness have been estimated, the problem of optimal
choice of method parameters to achieve a given error level
have been solved. Compared to [13][14] the offered method
can solve a problems with a random spectral parameter. It
seems that the approach by Sabelfeld and Mozartova [14] is
less time consuming, but a special comparison of methods was
not carried out.

We obtain estimates for the Dirichlet BVP and some special
Neumann BVP. Further investigation is aimed at building a
cost-effective methods for mixed and Neumann BVP.

This work is mostly theoretical. However, the proposed
estimates is easy to extend to the real problems with the own
geometry of the boundary.

A brief structure of the paper is presented below. Pre-
cise mathematical formulation of problems for theory of
fluctuations of elastic systems and some auxiliary equations
are presented in Section II. General theoretical results for
polyharmonic equation, obtained with Mikhailov [4][5], are
presented in Section III. New results and model calculations
are considered in Section IV.

II. BOUNDARY VALUE PROBLEMS

A. Helmholtz equation

Let us consider the Dirichlet problem for the Helmholtz
equation in a domain D ⊂ R3 with boundary Γ:

(∆ + c)u = −g, u|Γ = φ. (1)

Let us assume that the following conditions hold. The function
g satisfied Holder condition [2] in D, D is a bounded open set
in R3 with a regular boundary Γ, the function φ is continuous
on Γ, c < c∗, where −c∗ is the first eigen value of Laplace
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operator defined on the domain D. These conditions provide
the existence and uniqueness of the solution to problem (1),
the existence its probabilistic and integral representations in
terms of the spherical Green’s function [2]. We suppose that
above conditions are fulfilled and after change of all parametric
functions by their modules.

B. Elastic BVP

In a domain D ∈ R2 with boundary Γ bending of thin elastic
plate satisfies the biharmonic equation [1]

∆2u = f(x, y)/K. (2)

In case a plate is lying on an elastic foundation, we have the
following equation [1]

∆2u+ cu = f(x, y)/K. (3)

Here, u(x, y) is normal flexure of a plate at the point (x, y);
f(x, y) is a strength of normal charge; K = Eh3/12(1−σ2),
where E is the elastic modulus; σ is the Poison constant for
the stuff of the plate; 2h is plate thickness. Let us consider
the following frequently occurring boundary conditions

• the edge of the plate is simply supported: u|Γ = 0,
∆u− 1−σ

ρ
∂u
∂n

∣∣∣
Γ
= 0;

• the edge of the plate is rigid: u|Γ = 0, ∂u
∂n

∣∣
Γ
= 0;

• the edge of the plate is elastically supported: u|Γ = 0,
∆u+

(
1−σ
ρ + k0

)
∂u
∂n

∣∣∣
Γ
= 0.

Here, n is the external normal to the boundary Γ of the plate;
ρ is curvature radius of Γ; k0 is a value related to a rigidity
of the edge fixity.

C. Metaharmonic BVP

Let us consider the general problem:{
(∆ + c)p+1u = −g,
(∆ + c)ku|Γ = φk, k = 0, . . . , p.

(4)

In this work, the following results will be used [5].
Theorem 1. Let conditions of the part A are satisfied then
the p-th parametric derivative of solution u to the problem (1)
with a functional parameters

φ =

p∑
k=0

(−1)kλp−k

p!
φk, g1 =

(−1)p

p!
g (5)

is the solution to the problem (4).

III. ALGORITHMS OF ’RANDOM WALKS BY SPHERES’

A. General algorithm

Further considered estimators of the Monte Carlo method
are associated with a ’random walks by spheres’ in the domain
D [8]. For simplicity, we designate: D is a closure of domain
D; d(P ) is a distance from the point P to the boundary Γ;
Γε = {P ∈ D : d(P ) < ε} is the ε-neighborhood of the
boundary; S(P ) = {Q ∈ D : |Q − P | = d(P )} is a sphere
of radius d(P ) with its center at the point P lying in D. In
the ’random walk by spheres’ we chose the successive Pk+1

uniformly on the sphere S(Pk); the walk is terminated if the
point Pk+1 occurs in Γε. Let N = min{m : rm ∈ Γε}.

It is well known [12] that solution to the problem (1)
satisfies the following equation u(r0) = E ηε in Rn, where

ηε =
N∑
i=0

[
i−1∏
j=0

s(c, dj)

] ∫
D(ri)

G(ρ; c, di)g(ρ)dρ

+

[∏N−1
j=0 s(c, dj)

]
u(rN ).

(6)

Here, dj = d(rj), D(ri) is a ball of radius di with its center
at the point ri,

s(c, d) =
(d
√
c/2)(n−2)/2

Γ(n/2)J(n−2)/2(d
√
c)
, (7)

G(ρ; c, d) is a spherical Green’s function, J(·) is a Bessel
function, Γ(·) is a Gamma function.

Therefore, using Theorem 1, we have following assertion
(all derivatives are considered at the point c = c0) [4].

Theorem 2. Under the conditions of Theorem 1 the follow-
ing representation holds true for the solution to the problem
(3) u = E(

∂η1,ε

∂cp ) = E(η
(p)
1,ε) ∀p ≥ 0, where η1,ε is derived

from ηε by the substitute

g −→ g1 =
(−1)p

p!
g,

u(rN ) −→ φ(rN , c) =

p∑
k=0

(−1)k(c− c0)
p−k

p!
uk(rN ).

Here, uk is a solution to the problem (4) with φ ≡ φk, k =
0, . . . , p, function g is equal to zero for k = 0, . . . , p− 1.

Theorem 3. If c < c∗/2 then D(η
(p)
1,ε) < Cp < +∞ ∀p ≥

0

B. Practical estimators
Let us consider now practically realizing estimate

η̃
(p)
1,ε which is obtained after substitute of variables
uk(rN ) to φk(P ), where P is a nearest to rN
point of boundary. From (6), we obtain that η̃

(p)
1,ε =

N∑
i=1

[Qi(c)
∫

D(ri)

G(ρ; c, di)g1(ρ)dρ]
(p) + [QN (c)φ(P, c)](p).

The following theorems hold true [4].
Theorem 4. If c < c∗ and first spatial derivatives of the

function {u(i)
k }, i = 1, . . . , p+1, are uniformly bounded in D̄

then |u(r)− Eη̃
(p)
1,ε | ≤ Cpε, r ∈ D, ε > 0.

Theorem 5. Under conditions of Theorem 4, for c < c∗/2
it holds, that

Dη̃
(p)
1,ε < Cp < +∞, ∀ε > 0.

In the expression of η̃
(p)
1,ε , we may to estimate the integrals

by one random point as follows∫
D(r)

G(ρ; c, d)g(ρ)dρ =

= d2

2n

∫
D(r)

p0(r, p)[G(ρ; c, d)/G(ρ; 0, d)]g(ρ)dρ =

= d2

2nE

{
G(ρ;c,d)
G(ρ;0,d)g(ρ)

}
,

(8)
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where ρ is a random point in D(r), its distribution function
is equal to (under n > 2)

p0(r, p) = 2nd−2G(ρ; 0, d) =

= 2n
(n−2)d2ωn

(
1

(ρ−r)n−2 − 1
dn−2

)
, |ρ− r| ≤ d

(9)

It is clearly that
∫
p0(r, ρ)dρ = 1. Under n=2, we obtain

p0(r, p) = 4d−2G(ρ; 0, d) =
2

πd2
ln

d

|ρ− r|
, |ρ− r| ≤ d

Since under various values c the Green’s functions have at the
point ρ = 0 a same order of poles the ratio of the function G
is bounded in (8) Then

˜̃η
(p)

1,ε =
N∑
i=0

{[
i−1∏
j=0

s(c, dj)

]
g1(ρi)

d2
iG(ρ;c,di)

2nG(ρ;0,di)

}(p)

+

{[
N−1∏
j=0

s(c, dj)

]
φ(rN , c)

}(p)

,

(10)

besides E˜̃η
(p)

1,ε = Eη̃
(p)
1,ε . It is clear that proof of the Theorem 6

still is valid after substitution of η̃ by ˜̃η, i.e. D˜̃η
(p)

1,ε < Cp <
+∞, ∀ε > 0.

IV. CALCULATIONS

A. Biharmonic equation solving

Consider the first boundary value problem for the inhomo-
geneous biharmonic equation

∆2u = −g, u|Γ = φ0, ∆u|Γ = φ1. (11)

in a domain D ⊂ Rn.
Under n = 3, the corresponding estimators ˜̃η

(1)

1,ε has the
following form

˜̃η
(1)

1,ε = 1
36

N∑
i=0

[
−

i∑
j=0

d2j + (di − νi)
2

]
d2i g(ρi)

− 1
6

(
N−1∑
j=0

d2j

)
φ1(rN ) + φ0(rN ).

(12)

The random variable νi distributed in interval (0, di) with
probability density 6x(1− x/di)d

−2
i and isotropic unit vector

ωi are simulated by well known formulas [11].
Under n = 2, we obtain that the estimator to the solution

to problem(14) has form

˜̃η
(1)

1,ε = 1
16

N∑
i=0

[
−

i−1∑
j=0

d2j −
d2
i−ν2

i −ν2
i ln(d/νi)

ln(d/νi)

]
d2i×

×g(νi, ωi)− 1
4

(
N−1∑
j=0

d2j

)
φ1(rN ) + φ0(rN ) =

=
N∑
i=0

Qig(ρi) + Q̂Nφ1(rN ) + φ0(rN ),

(13)

where ωi is a isotropic unit vector, νi/di is a random variable
is distributed in interval (0, 1) with a density −4x lnx.

In case g ≡ 0, the representation (12) may to get from
known estimate [13].

1) Numerical results: Let us consider the first boundary
value problem for the inhomogeneous biharmonic equation

∆2u = 9 exp(x) exp(y) exp(z),

u|Γ = exp(x) exp(y) exp(z),∆u|Γ = 3 exp(x) exp(y) exp(z).

in the unit cube D = [0, 1] × [0, 1] × [0, 1] ⊂ R3. The
solution to problem is u = exp(x) exp(y) exp(z). The solution
to problem is calculated numerically by formula (12). The
numerical results are given in the table 1.

TABLE I
CALCULATIONS FOR THREE-DIMENSIONAL BIHARMONIC

EQUATION

ε S · 10−4 u(r) ũ(r) |u(r)− ũ(r)|

±
√

σ2

N

10−2 1 4.48169 4.5120 0.030± 0.025
10−2 4 4.48169 4.4875 0.006± 0.012
10−2 16 4.48169 4.4882 0.0066± 0.0063
10−3 16 4.48169 4.4837 0.002± 0.063
10−3 256 4.48169 4.4815 0.0001± 0.0016

In the Table 1, we assume: r = (0.5; 0.5; 0.5) are the
coordinates of the point, S is the number of the modelling
trajectories, ũ(r) is the numerical solution, σ2 is the variance
of the random estimate u(r)− ũ(r).

B. Metaharmonic equation solving

Let us consider the following problem

∆2u+ cu = −g, u
∣∣∣
Γ
= φ0, ∆u

∣∣∣
Γ
= φ1. (14)

in a domain D ⊂ R2.
Suppose c is a random variable such that

Ec = 0, Dc ≪ 1, c < c∗,

g is a random field, φ0 and φ1 are random functions.
The aim of this subsection is to estimate covariance function

cov(r1, r2) = Eu(r1)u(r2). Using series expansion of u(r, c)
at the point c = 0 we change

u(r, c, g, φ0, φ1) ≈ u(r, 0, g, φ0, φ1)
+ cu(1)(r, 0, g, φ0, φ1).

(15)

We may assume that corresponding error δ is equal to

1

2
u(2)(r, 0, g, φ0, φ1)c

2.

Then

cov(u(r1, c, g, φ0, φ1), u(r2, c, g, φ0, φ1)) ≈
≈ Eu(r1, 0, g, φ0, φ1), u(r2, 0, g, φ0, φ1)+
+E

[
u(1)(r1, 0, g, φ0, φ1)u

(1)(r2, 0, g, φ0, φ1)
]
Dc,

2δ = E[u(2)(r, 0, g, φ0, φ1)u(r, 0, g, φ0, φ1)]Dc+
+E[u(2)(r, 0, g, φ0, φ1)u

(1)(r, 0, g, φ0, φ1)]E[c
3]

+E[u(2)(r, 0, g, φ0, φ1)u
(2)(r, 0, g, φ0, φ1)]E[c

4]
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The parametric derivative u(1)(r, 0, g, φ0, φ1) is a solution to
the following problem ∆4u = −g, u

∣∣∣
Γ
= 0, ∆u

∣∣∣
Γ
= 0,

∆2u
∣∣∣
Γ
= −φ0, ∆3u

∣∣∣
Γ
= −φ1.

(16)

The parametric derivative u(2)(r, 0, g, φ0, φ1) is a solution to
the following problem △6u = g, △ku

∣∣∣
Γ
= 0, k = 0, . . . , 3,

△4u
∣∣∣
Γ
= φ0, △5u

∣∣∣
Γ
= φ1

(17)

The corresponding estimates of the solutions to the problems
(16), (17) has form

˜̃η
(3)

1,ε =
N∑
i=0

{
3∑

k=0

Ck
3S

(3−k)
i (0)

G(k)(ρ; 0, di)

G(ρ; 0, di)

}
[−d2i g(ρi)]

24
+

+S
(3)
N (0)

φ1(rN )

6
− S

(2)
N (0)

φ0(rN )

2
,

˜̃η
(5)

1,ε =

{
N∑
i=0

5∑
k=0

Ck
5S

(5−k)
i (0)

G(k)(ρ; 0, di)

G(ρ; 0, di)

}
d2i g(ρi)

480
−

−S
(5)
N (0)

φ1(rN )

120
+ S

(4)
N (0)

φ0(rN )

24
,

where Si(c) =
i−1∏
j=0

s(c, dj).

1) Numerical results: Here we consider the following prob-
lem

∆2u+ cu = g, u
∣∣∣
Γ
= 0, ∆u

∣∣∣
Γ
= 0,

in the D = {x1, x2 : 0 ≤ x1, x2 ≤ 1}.
Suppose c is uniformly distributed in the (−1/2; 1/2), g

is a homogeneous, isotropic Gaussian field with the spectral
density

ρ(λ) =
1

2πα2
(1 + |λ|2/α2)−3/2, Eg = 0,

Corresponding covariance function of g is equal to e−α|x|,
where |x| =

√
(x1 − x′

1)
2 + (x2 − x′

2)
2. In the Table 2, we

TABLE II
CALCULATIONS FOR THE COVARIANCE ESTIMATOR

δ ε S (v ±
√

σ2
v

N
)∗ (△±

√
σ2
△
N

)∗
∗10−5 ∗10−11

0.0 10−2 103 1.078±0.041 1.08±0.12
0.0 10−2 105 1.085 ±0.005 1.26±0.03
0.1 10−2 103 1.026±0.071 1.26±0.03
0.1 10−4 105 1.010±0.007 1.40±0.00
0.2 10−2 105 0.885 ±0.006 1.04±0.03
0.3 10−2 105 0.654 ±0.006 0.81±0.04
0.4 10−2 105 0.343 ±0.004 0.41±0.18

assume: v(r, r′) is a covariance function of solution at the
point r = (0.5; 0.5) and r′ = (0.5 + δ; 0.5), σ2

v is the
variance of the random estimate for v, S is the number of
the modelling trajectories, △ is the error of approximation,
σ2
△ is the variance of the random estimate for △.

V. CONCLUSION AND FUTURE WORK

In this paper the parametric differentiation approach has
been considered as an efficient method for constructing scalar
’random walk by spheres’ estimates. This method is based
on parameter differentiation standard estimates of the solution
to the special constructed boundary value problem. Using
this approach and partial averaging method, ’random walk by
spheres’ estimates of covariance function were obtained for
the Dirichlet problems of the biharmonic equation. For testing
efficiency of this method, two examples for different types of
equations have been considered. The constructed algorithms
are particularly useful for estimating the covariance function
in the local domain. Another improvement is the need to store
only one trajectory of a random walk.

The developed algorithms find practical application in the
theory of elasticity, discussed in Section 2. Problems with
random functional parameters are suitable in the study of
vibrations of plates under the action of random forces such
as the wind or earthquakes.

Future work will focus on the development of similar
algorithms for boundary value problems of the second and
third type. Additionally, it is supposed to develop ’random
walk by spheres’ algorithms for biharmonic equations where
spectral parameter is a random value with high dispersion and
non-zero expectation.
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