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Abstract — Large-scale simulations often use multiple models 

to find a balance between run-time performance and number 

of simulated entities. Although these approaches are effective, 

they do not always offer the needed level of analysis, especially 

when this one is between the resolutions of the models used. In 

this paper, we aim at offering a finer resolution in exploring 

this trade-off by introducing an intermediate level between two 

given resolutions, which can apply to all agent models and 

allows a more progressive transition to offer the desired 

analysis level. We introduce a framework for such a 

methodology and evaluate it through the extension of an 

existing approach along two criteria: its impact on the 

computational resources, and an estimate of the dissimilarity 

between a simulation with our methodology and one without. 

Initial experiments show that the consistency is almost 

maintained while the CPU gain varies from low to significant 

depending on the context. 

Keywords – Agent-based and Multiagent Systems; Model-Based 

Systems; Large-scale simulations; Level of Detail. 

I.  INTRODUCTION 

To understand the complex world surrounding them, 
humans often resort to models. Models are abstractions of 
the reality, extracting and simplifying some aspect of the real 
world to understand its process and predict it. All models are 
built with a given resolution – or Level Of Detail (LOD) – 
which depends on the representation level of the entities 
composing the system and of their behaviors, on the input 
and output domains and on the scope of the system [1]. The 
LOD can vary from high-resolution – microscopic – levels, 
where each component of the system is fully detailed, to 
lower-resolution – macroscopic – levels that simplify or omit 
parts of the system to focus only on a behavior of interest. 
For example, a microscopic description of a gas may be 
given by the description of each of its particle whereas its 
macroscopic model may be obtained using the so-called 
ideal-gas equation law. 

Each of those LOD levels addresses different issues and 
has advantages and drawbacks. High-resolution models 
allow for a precise grasp of a specific phenomenon and tend 
to simulate the world more realistically, but they can be very 
difficult to design due to their high number of parameters. 
Moreover, their accuracy is often achieved at the cost of 
huge computational cost. A possible microscopic description 
of a gas is the position and velocity of each particle as well 
as the model of their interactions. Considering there are 
roughly          molecules / cm

3
 at room temperature and 

pressure, it is actually impossible to simulate such a system 
within a reasonable time. On the other hand, low-resolution 

models allow a better overall understanding, by focusing on 
the forest rather than the trees, and are therefore more 
suitable for decision support. They can be calculated faster 
but are less accurate and may not fit all situations. Indeed, 
the ideal gas law requires a few parameters and is far more 
accessible and usable for engineering applications, although 
it is restricted to equilibrium states. 

Several approaches exist between the molecular model 
and the ideal gas law, such as Kinetic Molecular Theory, 
Brownian Motion or high level Boltzmann and Navier–
Stokes equations [3]. Each of them is designed for a specific 
purpose and only works in a particular context – such as low 
pressure or homogeneity of the molecules – outside of which 
it is usually inoperative. Thus, there may be questions whose 
answers lie at the intersection of multiple resolutions, part in 
the microscopic and part in the macroscopic. In our example, 
taking care of the particles’ motion in a gas while monitoring 
the whole temperature of a room is impossible because this 
answer needs both models to be run simultaneously – which 
cannot be done for the microscopic one. To be obtained, this 
answer requires a new model. 

Those points are particularly important in computer 
agent-based simulation where the right level of resolution 
must be found to get the best compromise between the 
genericity of the system, its intelligibility and its need for 
CPU and memory resources. In this context, we present here 
a novel approach for multi-level agent-based simulations, by 
introducing an intermediate level between microscopic and 
macroscopic resolutions, which can apply to all agent 
models. This level, referred here as mesoscopic, allows a 
more progressive transition between two models to offer the 
desired analysis level given the context of the simulation and 
the user needs. To do so, we first extend the generic notions 
of dynamic change of representation and spatial aggregation 
introduced in previous work on the dynamic LOD for agent 
models [6]. Then, we position ourselves in the context of 
multi-agent simulations and define several environments in 
which we evaluate the approach experimentally. Finally we 
discuss the results obtained and propose enhancements for 
future work. 

In this study, we define several criteria to evaluate the 
models, such as their scalability – their capacity to simulate a 
high number of entities – and their precision, thus their 
ability to give accurate results. We also focus on the design 
cost needed to implement them as well as the 
understandability of their results, which is the ease with 
which the users can understand what is happening. 
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II. RELATED WORK 

Finding the resolution that best suits a given problem, 
among several models of a given phenomenon, has been 
widely studied within the Multi Representation Modeling 
(MRM) field through the joint execution of multiple models. 
In selective viewing, only the highest resolution model is 
executed at all times, and all other models are emulated by 
abstracting the representation of the most detailed one [7]. 
This approach is used when the simulation requires a 
phenomenon to be modeled in detail. Although it may be 
efficient for applications, which need high precision, it 
requires huge computational resources. Moreover, multiple 
models do not necessarily have hierarchical relationships 
between them, preventing designers to define which model is 
the most detailed. Finally, executing the most detailed model 
does not facilitate decision making. 

In aggregation / disaggregation techniques, one model is 
executed at a given time; but, here it is not necessarily the 
most detailed one. Aggregation corresponds to the transition 
from high-resolution entities to a low-resolution one, while 
disaggregation is the opposite process. The choice of model 
depends on the user’s need or the necessity to match the 
resolution of other interacting entities. Several variants exist, 
such as full disaggregation [10], partial disaggregation [5], 
playboxes [9] and pseudo-disaggregation [8]. Each of them 
can lead to speedup when a balance between complexity and 
simulation needs is found. But they require huge resources 
when moving from one model to another, and problems – 
such as chain disaggregation – may arise in case of cross-
levels interactions. Finally, transition latency, network 
flooding and thrashing may impact simulation consistency. 

Variable Resolution Modeling (VRM) allows the 
creation of families of models that support dynamic changes 
in resolution [7] by introducing several constraints. Thus, all 
the models parameters are standardized within a dictionary 
and inserted in a hierarchical structure symbolizing their 
dependencies. Rules are defined between models to match 
the computation time steps, ensure the consistency of the 
simulation and allow the calibration. Following those rules, a 
designer can create a family of models that can adapt their 
resolution level to the simulation needs. But this approach is 
mainly theoretical and is not suitable when the models are 
pre-designed and cannot be adapted to the VRM approach. 

Multiple Representation Entities [4] is a last example 
from the MRM field that is of particular interest here. This 
approach maintains, at all time in the simulation, all 
representations through all available models of a given 
phenomenon, using appropriate mapping functions to 
translate changes between two representations. This allows 
interactions between all the representations, and avoids loss 
of resources when scaling from one model to another. MRE 
is a powerful way to deal with complex MRM, which offers 
a remedy for the weakness of aggregation / disaggregation 
methods and requires lower resources than simultaneous 
execution of multiple models. But, it only gives 
mathematical requirements for mapping functions, through 
the use of attributes dependency graphs. Also, it does not 

identify the representation at any level nor relationships 
between representations. 

Some approaches in Multi-Agent Simulation (MAS) field 
also exploit the principle of simultaneous use of microscopic 
and macroscopic models, by partitioning the environment 
and running a model in each zone. The pedestrian’s 
simulation described in [13] uses high-level flow and 
distribution models to steer non-visible agents along a 
network of nodes that describe the accessible areas of a city, 
and a microscopic collision avoidance model with speed 
adjustment for visible actors. Similarly, Bourrel and Henn 
[11] and El Hmam et al. [12] describe traffic simulations 
using a static predesigned world. Thus, a macroscopic model 
based on the flow theory is used in low interest areas without 
crossroads, and a microscopic multi-agent car-following 
model in high interest areas. Those architectures can handle 
several thousand agents with high consistency level and offer 
a good interactivity with the agents’ behavior within both 
macroscopic and microscopic areas. But, they require a 
preprocessed environment and predefined transition 
functions between the agent models. 

III. MESOSCOPIC LEVEL 

A. The mesoscopic representation 

Our approach start from the foundations defined in [6], 
where a method to go from several microscopic agents to a 
single macroscopic aggregate is detailed. Our goal here is to 
create an intermediate level between the microscopic and the 
macroscopic ones. Unlike the macroscopic level in which all 
agents are aggregated into a single one, this mesoscopic level 
centralizes parts of the computation performed on the 
microscopic agents in order to free computational resources 
while letting other parts be updated according to their initial 
level. 

We define an agent model   as a computational 
abstraction of the global behavior of a synthetic actor. Thus, 
it takes as input the representation of the agent being driven 
and a representation of its environment, and outputs an 
action or a modification of the agent’s representation. This 
representation – denoted by    ( ) – is the set of attributes 
needed by the agent model to perform its task and is usually 
assimilated to the internal state of the agent. Similarly, the 
representation of an agent    in   at time   is the vector of 
attributes’ values, denoted    (      ) such as: 

   ( )  {  }  [   | |]and   (      )  (

     ( )

 
    | |( )

)

An agent model can usually be split into several distinct 
processes, each being a mostly autonomous module leading 
to a particular skill of the agent such as navigation, decision, 
emotions, planning, communication or social interactions. 
For example, in well-known cognitive architectures such as 
SOAR and ACT-R [2], the processes could be the emotional, 
decisional or sensitive / short term / long term memories 
modules for the first one, or the declarative procedural 
memory, pattern matching, and production execution 
modules for the second. Those processes are themselves 
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models, taking as inputs a subset of the agent model’s inputs 
and outputting modifications of the agent’s representation as 
well as specific data. They are usually chained, each of them 
requiring others to do their work before it can execute its 
own. For example, in SOAR, the decision process needs the 
elaboration process to fire all production rules, meaning that 
the working memory has been previously updated by the 
perception module. Thus, it is often possible to identify a 
hierarchy of dependencies between processes within a single 
agent model. 

We consider that the agent model   is composed of a set 
of m processes   {             }. The goal, schematized 
in Figure 1, is to allow the subset         to be run at the 
mesoscopic level while                will remain at 
the microscopic level. The microscopic representation of an 
agent    and the one of a set of n agents 
  {             }  in          at time   are 
respectively denoted by         (       )  and 
        (      ) such as: 

        (        )  (

    
 ( )

 
   |  |

 ( )
)          (  )     ( )

        (       )  (        (        )           (        ))

 (

    
 ( )      

 ( )

   
   |  |

 ( )     |  |
 ( )

)

For a process         , we need to compute the 

mesoscopic representation of   at time   denoted by 

       (      ) . To do so, we use the methodology 

described in [6]. Firstly, we partition the representation of 

the agents in   among several attributes classes in which 

each attribute share the same meaning and therefore a 

common dynamics. Then, we link each class with an 

aggregation operator and its corresponding disaggregation 

and memory operators. Then, we are able to define 

aggregation, disaggregation and memory functions, 

respectively denoted by    ,        and      and for the 

process    such as: 

   [        (       )]         (      )

    [       (      )         (       )]     (       )

 (

    
 ( )      

 ( )

   
   |  |

 ( )     |  |
 ( )

)

      [       (      
 )     (       )]          (       

 )

This method allows a single process to work at the 

mesoscopic level. However, this process is part of a 

hierarchy and may have dependencies with other processes. 

In order to avoid inconsistencies in the computation of the 

agent model, we must consider the attributes of    ( ). If 

an attribute   is only used at the microscopic level, then it is 

ignored. On the other hand, if   is only used at the 

mesoscopic level, meaning that   ⋃    (  )         
, it 

is aggregated once. Finally, if   is used at both level, we 

need to maintain both microscopic and mesoscopic values 

of   when it is updated by any process, with the 

aggregation, disaggregation and memory functions 

described above for the attributes class to witch   belong. In 

practice, it is possible to restrict such computation – which 

can be CPU intensive – by updating the microscopic values 

of an attribute only if a mesoscopic process has updated it 

earlier in the agent model update and vice versa. 
Such approach permits the migration of any process 

constituting the agent model from the microscopic to the 
mesoscopic level, resulting in the freeing of computation 
time. The choice of the aggregation functions – and their 
corresponding disaggregation and memory operators – must 
be done wisely in order to maintain simulation consistency 
as defined in [7]. The choice of the process to migrate is also 
an important issue. It is better to migrate processes that 
require high computation resources, and it is easier to 
migrate those that have few dependencies with others. 
However, the choice of the processes to migrate has also an 
impact on the simulation consistency. Finally, it is important 
to notice that migrating all processes from the microscopic to 
the mesoscopic level is equivalent to aggregating the set of 
agents to a macroscopic one driven by the same agent model 
as defined in [6]. 

B. Spatial aggregation 

This section tackles the problem of finding the agents 

that should be aggregated to form a mesoscopic agent, and 

which processes of this new agent must be migrated to the 

mesoscopic level. The philosophy employed here is similar 

to the one detailed in [6] with the definition of a spatial 

distance   , and a psychological distance    combined to 

estimate an affinity between two agents    and   , denoted 

by    (     ), and the affinity between two agents    and 

   and a set of M events   {          }, denoted by  

   (       ), such as: 

   (     )   [  (     )   (     )]

   (       )     
  ⟦  | |⟧

[ [  (          )   (          )]]

     {
  (         )     

 
[  (     )    (     )]

  (        )     
 

[  (     )    (     )]


Figure 1. Example of the macroscopic and mesoscopic aggregation of 4 

agents implemented as a set of P processes. 
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However, the definition of    and    is not trivial 

because parts of the physical or psychological processes 

may be at the microscopic or the mesoscopic level. In [6], 

the affinities are combined to define the aggregation utility 

    between two agents, which represents the usefulness of 

creating a mesoscopic entity considering those agents and 

the simulation context. This functionality is enhanced here 

by the ability to choose which process should migrate to the 

mesoscopic level while the others stay at the microscopic 

one. To do so, we define for each process an aggregation 

threshold, thus creating a total order over them, meaning 

that the lower the threshold, the more likely the process is to 

be migrated to the mesoscopic level. Those thresholds do 

not depend on the dependency hierarchy described above. 

However, choosing the processes order according to the 

hierarchy lowers the risk of having attributes at microscopic 

and mesoscopic levels which, as seen before, need to be 

maintained in both representations to ensure the consistency 

of the processes computation. Of course, it may happen that 

two processes cannot be separated because of some 

characteristics of their implementation or of the high 

number of attributes they share. In this case, a possible 

solution would be to assign the same threshold to both. 

The disaggregation of a mesoscopic agent proceeds of 

the same idea, via the definition of a disaggregation utility. 

However, unlike the macroscopic approach where this 

utility has to be computed once for the whole aggregate, it 

must here be computed for each microscopic entity 

composing the mesoscopic agent, because some of its 

processes might remain at the microscopic level and are 

involved in the calculus of    and   . Although this 

approach requires significant computational resources, it 

allows disaggregating a single microscopic agent due to the 

simulation context, which was not possible with the 

macroscopic aggregate. For example, if a microscopic agent 

tries to communicate with some microscopic entities of a 

mesoscopic agent, and if the communication process is still 

at the microscopic level, then the disaggregation utility of 

the communicating entities – and only them – will allow a 

partial disaggregation of the mesoscopic agent. We then 

have, for a mesoscopic agent  : 

   (    )     
  ⟦  | |⟧

[   (     )]      

The method described above only applies when the 

aggregation and disaggregation utilities between two agents 

must be computed. However, it does not allow the processes 

to migrate dynamically when the mesoscopic agent is alone. 

However, it is possible to define a representation change 

utility for a mesoscopic (or macroscopic) agent  , denoted 

by    ( ), such as: 

   ( )   [    
  ⟦  | |⟧

[ [  (     )   (     )]]] 

The representation change utility has nearly the same 

meaning as the aggregation utility except that it applies to a 

single agent. As a result, comparing it to the processes 

aggregation thresholds lets the aggregate adapt dynamically 

the computation level of its own processes. While this 

approach allows a complete control over the processes 

migration, it may require additional CPU resources if it is 

applied at each LOD update for every single agent. 

IV. EXPERIMENTAL EVALUATION 

The approach described above has been implemented 

and evaluated within a Thales proprietary multi-agent 

simulator named SE-*. This system is a synthetic 

environment engine in which each agent has a motivational 

tree containing predefined attributes, internal variables, 

emotion and motivations, and can exhibit complex adaptive 

behaviors. The agent model contains several processes on 

which our approach can work, such as perceptions, 

emotions, decision, planning, navigation and interaction 

with the environment through Smart Objects. Currently, SE-

* can animate up to 20,000 agents driven by more than 20 

motivations within a complex environment. 

For these experimentations, and to keep a common 

context with [6], we split the representation of the agent 

model between two main attributes classes: physical and 

psychological. We do the same for the processes, thus 

linking the mental processes – emotions, decision and 

planning – to a unique aggregation threshold while the other 

physical processes – perception and navigation – are 

assigned an infinite threshold. The goal is to allow only the 

processes working on psychological attributes to migrate at 

the mesoscopic level. Doing so, the microscopic agents will 

share their thoughts through the mesoscopic one while their 

bodies will remain on the simulation. This LOD approach 

tries to reflect the human ability to be more sensitive to the 

physical or visual inconsistencies – wrong trajectories, 

oscillations, bad avoidance – than the psychological ones. 

By keeping the physical parts of the microscopic agents, 

we hope to solve the spatial inconsistencies observed during 

the experimentations in [6]. Thus, letting the perception 

process at the microscopic level means that the perception 

of the mesoscopic agent are an automatic aggregation of 

those of its microscopic entities. Moreover, the choice of 

leaving the process manage the interactions with the 

environment at the microscopic level implies that all parts of 

the mesoscopic agent interacting with a Smart Object will 

be disaggregated, following the definition of the 

disaggregation utility defined above. Such a choice leads to 

an additional cost in computing resources, but is the easiest 

way to handle interactions here. Indeed, migrating this 

process to the mesoscopic level would require specific 

interaction models in the objects themselves, giving them 

the ability to interact with only a part of a mesoscopic agent. 

This point is the most important functional difference 

between macroscopic and mesoscopic simulations.  

We use two scenarios that were already defined in [6]. 

The first one takes place in a subway station initially empty, 

including various objects such as ATMs, ticket vending 

machines, beverage dispensers and ticket barriers. The 
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second one occurs in a large city that incorporates the 

subway station described above. In each scenario, the agents 

are driven by a dozen different motivations, such as going to 

work, drinking, wondering, destroying or repairing a 

machine, or fleeing. Each incoming agent in the simulation 

has random internal traits and inventory. We run each 

scenario with different values for the maximum number of 

actors allowed in the environment and the maximum size 

allowed for an aggregate. 

As in [6], each scenario is run twice – one as a fully 

microscopic simulation without any LOD process and one 

with our dynamic aggregation method activated – during 30 

minutes on an Intel Core i5 2.50 GHz laptop with a memory 

of 4 GB. Three criteria are computed: the actual size of the 

aggregates, the CPU gain and the consistency. The actual 

size tends to estimate the actual impact of the approach on 

the simulation and to link it with the two other criteria. The 

CPU gain is computed by comparing the time needed by 

both simulations to compute 60 frames. Finally, the 

consistency is calculated by comparing the cumulative 

number of uses of each object as a function of time between 

both simulations. With   ( ) the cumulative number of uses 

of object   at time   during the microscopic simulation, and 

  
 ( ) the cumulative number of uses of the same object at 

the same time during the LOD simulation, then: 

               (  
 

        

∑ {
∑ [  ( )    

 ( )] 
   

∑   ( )
 
   

}

        

   

)

The results of the experimentations done on the subway 

station are shown in TABLE 1. It appears that the 

mesoscopic level allows a slight gain in CPU while the 

consistency reaches a very high level. Moreover, the real 

group size is relatively low, regardless of the configured 

maximum size. As the maximum number of entities in the 

station increases, the CPU gain decreases and the 

consistency remains stable. Finally, unlike the simulations 

with macroscopic aggregates, the strong dissimilarity 

observed when the maximum number of agents exceeds 500 

no longer exists. 

TABLE 1. EXPERIMENTATION RESULTS ON THE SUBWAY STATIONS. 

 

This evolution of the criteria can be explained by the 

preservation of the interaction process at the microscopic 

level. Indeed, all agents entering the station have at least one 

interaction with the ticket barriers – and most of them have 

2 or 3 more interactions – before reaching a train or an exit. 

Thus, a lot of disaggregation occurs and the microscopic 

agents queuing at the machine lower the mean group size as 

well as the CPU gain. Moreover, only the mental processes 

were set to migrate to the mesoscopic level, leaving some 

heavy processes with quadratic complexity, like navigation 

or perception, at the microscopic level. This explains why 

the CPU gain is not linear in the actual group size. 

The impact of the interactions can be observed in the 

second experimentation. Here, only a few agents among the 

10000 want to take the train in the subway station, the 

others just walk randomly in the city. Thus, the number of 

interactions with objects is smaller than in the first scenario. 

TABLE 2 shows that the actual group size is nearly the 

same for the macroscopic and the mesoscopic scenario, 

meaning that the limiting parameter is only the aggregation 

threshold applied to the aggregation utility. As a 

consequence, the mesoscopic CPU gain is far higher in this 

scenario. This result is encouraging as it implies that the 

approach can save more computational resources in large 

spaces where agents limit their interactions with the 

environment. 

TABLE 2. EXPERIMENTATION RESULTS FOR THE CITY ENVIRONMENT. 

Entities 
Group 

Size 

Actual Group Size CPU Gain (%) 

Macro Meso Macro Meso 

10000 

5 5.0 4,9 69,0 31,3 

10 9,2 9,4 73,4 36,4 

20 13,7 13,4 81,7 42,2 

The comparison between the approach in [6] and the one 

described here shows that in terms of CPU gain and 

consistency, the mesoscopic level is an intermediate 

between the microscopic and macroscopic resolutions. This 

point is of particular interest here as the mesoscopic level is 

– by construction – an intermediate toward the construction 

of the macroscopic one. Thus, if we link the non-mental 

processes to a second aggregation threshold which value is 

higher than the one defined for the mental processes, then 

this second aggregation would lead to the creation of a 

unique macroscopic aggregate as detailed in [6]. The 

mesoscopic state is then an intermediary step to another 

resolution level, possibly driven by a different agent model. 

Moreover, the stability of the consistency of the 

mesoscopic level for the simulations involving more than 

500 actors, where the macroscopic level shows an important 

dissimilarity, means that our approach can model the 

congestions in the station and the evacuation of the agents 

which are under psychological stress. Indeed, when the 

subway station is crowded, we see agents that cannot access 

the machines getting nervous and leaving the station. This 

phenomenon, which does not exist in the fully macroscopic 

simulation, remains in the mesoscopic experimentations. 

Entities 
Group 

Size 

Actual Group 

Size 
CPU Gain (%) 

Consistency 

(%) 

Macro Meso Macro Meso Macro Meso 

100 

5 2,8 2,1 53,1 10,8 98,0 98,8 

10 3,6 2,3 58,3 11,9 97,6 97,2 

20 4,3 2,4 61,2 13,2 92,3 97,6 

300 

5 3,6 1,7 69,9 7,6 92,6 98,9 

10 4,7 1,9 74,5 9,5 90,7 98,7 

20 5,4 1,9 77,5 10,1 87,4 99,1 

500 

5 3,5 1,5 71,1 4,8 78,0 98,7 

10 4,0 1,6 74,0 7,0 80,1 98,9 

20 4,6 1,7 76,3 7,6 81,8 98,7 

1000 

5 3,6 1,1 71,4 2,0 76,3 99,3 

10 4,3 1,3 74,6 3,6 77,8 99,5 

20 4,6 1,3 73,9 3,7 78,1 99,0 
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Moreover, we observe that the stress of the mesoscopic 

agent is increasing due to its perceptions leading it to leave 

the station. This shows that the interaction between both 

resolution levels in the mesoscopic agent leads to consistent 

actions and can reproduce microscopic behaviors observed 

in real settings. 

V. DISCUSSION AND FUTURE WORK 

In this paper, we presented a novel approach for multi-

levels simulations, by introducing an intermediate level 

between microscopic and macroscopic resolutions, which 

allows a smoother resolution change between models. 

Indeed, it supports the definition of several aggregation 

steps, each corresponding to a process composing the initial 

agent model, and the migration of the agents to the 

appropriate aggregation step in regard to the context of the 

simulation. It corresponds to a kind of continuum between 

the lowest and highest level of simulation. 

The results detailed in Section IV show a very high and 

steady consistency between the fully microscopic and the 

LOD simulations. On the other hand, the computational gain 

is not significant in constrained environments where the 

agents must often interact, but significant when those 

interactions are less intensive. So, our approach is able to 

reduce computational needs with no consistency loss as long 

as the processes maintained at the microscopic level do not 

need recurrent interactions with their counterpart in other 

mesoscopic agents, creating partial disaggregation. 

This point highlights the importance given to model 

design in this approach. Indeed, to apply our method, one 

needs to have a precise view of the available processes, as 

well as the complete representation of the agent model. 

While this is always theoretically possible, in practice this 

may require some modifications of a simulator to control the 

update of each process and catch the transiting data between 

them. Moreover, the choice of the aggregation threshold is 

fundamental as it has a direct impact on the resources, 

because the processes do not have the same complexity – 

thus not the same interest to migrate to the mesoscopic level 

– and because having attributes involved in both 

microscopic and mesoscopic representations requires the 

use of the aggregation and disaggregation functions 

associated with their attribute class. It would be interesting 

to study the rules that define the optimal aggregation 

thresholds, depending on the complexity of the processes 

and their dependency hierarchy. Machine learning 

approaches could also help find the best values for the 

aggregation thresholds. 

Finally, it would be particularly interesting to enhance the 

experimental part of our work. Thus, by setting different 

aggregation thresholds we could test mesoscopic agents 

having shared perceptions but separate decision and 

navigation processes, or having only a common long term 

memory, to test the impact on the consistency. Moreover, 

we could create enhanced scenarios. Firstly, we could use a 

train station with a larger scale than our subway station, 

allowing the agents to have complex behaviors without 

having too many interactions. We could see if the CPU gain 

tends to reach the one observed on the city while the 

consistency remains maximal. Secondly, and more 

important, we could add more mesoscopic aggregation steps 

and combine mesoscopic and macroscopic approaches into a 

unique scenario to verify that the smooth aggregation has an 

impact on consistency. 
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