SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

System Dynamics Inspired Sensor Modeling and Simulation

Soren Schweigert
OFFIS e.V.
Oldenburg, Germany
Soeren.Schweigert@offis.de

Abstract—Applications within the automotive and robotics
domain highly depend on the correct sensor perception. In
order to validate the partial safety-critical requirements for
sensor processing, simulation tools are prevalent. The com-
parison between simulated and perceived environments allows
conclusions about the quality of the sensor processing. To
obtain accurate quality estimations, the simulation has to
provide realistic sensor measurements. This is important in
order to facilitate a subsequent integration with the physical
sensors. In this work a system dynamics inspired modeling and
simulation approach is presented, that allows describing both
the sensors, as well as the so far often neglected environmental
conditions and sensor interferences. In addition the model is
capable to be transferred into a context specific shader program
at simulation runtime to enable fast and efficient computation
on the used graphics hardware.

Keywords-sensor simulation; system dynamics; ground truth
generation; error models

I. INTRODUCTION

Autonomous guided vehicles (AGV) are increasingly
used in logistics and factory automation. Currently these
systems operate either in closed environments like factory
halls with limited access or have to operate at very low
speed to ensure the safety of other participants, e.g.,
humans or other (human guided) vehicles. To increase the
speed and thus the effectiveness, while maintaining a high
safety level, the AGV handles many sensor data in order
to construct an image of the environment. Some commonly
used sensors for this task include both; optical sensors
such as cameras, and rangefinders such as laser scanners,
ultrasound or Photonic Mixing Devices (PMD cameras).
Since the sensor perception is essential for the safety
aspects, it has to be comprehensively tested under various
conditions. As testing in the real world is time-consuming,
expensive, and especially in the first development phase
risky, sensor simulations can be used for early tests. In
addition simulation provides the possibility to compare
the captured environmental image against the simulated
environment and thus allows evaluating the sensor
processing. However to obtain a realistic validation for the
processing quality, the simulated sensors have to provide
realistic sensor measurements, taking into account different
error models and environmental influences.

Copyright (c) IARIA, 2012.  ISBN: 978-1-61208-234-9

The rest of the paper is structured as follows. Section
II discusses requirements for sensor simulations in general
and in terms of quality. These requirements are compared
to currently available simulations. In Section III a modeling
approach is introduced, that allows to model environmental
influences on sensor measurements to fulfill the requirements
discussed in Section II.

II. REQUIREMENTS

To use simulation for AGV development, certain require-
ments must be met. Some of these requirements concern
integration issues; others are related to simulation quality,
yet others are useful for testing purposes.

A. Integration requirements

Simulations are used to develop AGV in a safe and con-

venient environment. This does speed up the development
process since a lot of technical issues do not need to be
considered in the early stages. However, when porting the
developed algorithm from simulation to real hardware inte-
gration issues on how to access resources like laser scanners
or cameras arise. To address this problem, most simulation
environments skip along with a sensor/actor middleware
that harmonizes the access to simulated and real hardware.
One of the most famous representatives of this technique is
the Player/Stage/Gazzebo project, started in 2000 [1]. The
Robot Operating System (ROS) [2] and the Mobile Robotic
Programming Toolkit (MRPT) [3], mainly use the same
approach. The major drawback of this technique is that the
developer is forced to use a given architecture.
Another approach is to recreate the interfaces of the real
sensor within the simulation, including the real protocols.
The described simulation uses a combination of both ap-
proaches. If possible, we recreate the interface provided by
the real sensor. If the recreation is not possible, for example
due to hardware limitations, a self-designed data structure is
used, that allows easy transformation to other formats.

B. Testing requirements

Using simulation allows to use a user defined test envi-
ronment, with all states formally described. This information
should be used to provide symbolic information about the
objects within a certain area or an accurate occupancy
grid (containing only free or occupied cells) within the

64



SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

environment. This information can be collected manually,
as it is done in the Tunnel Simulator [4] or extracted from
the simulation.

To test the quality of a certain sensor processing algorithm
additional information about the sensor ground truth should
be provided. For example the disparity map for a stereo-
scopic camera or a symbolic representation of all objects
within a camera image.

A useful but yet not essential requirement is real time

performance. If the simulation can provide real time
sensor measurements, the performance of complex sensor
processing pipelines can be measured. Faster than real-time
may allow the usage of optimization or learning algorithms
on both sides the sensor processing or the simulation itself.
For example to learn the boundaries of the processing
algorithms.
Some simulation platforms like Player/Stage/Gazzebo
or the simulation component of the MRPT are using a
simplification of the sensor data generation process, to
gain more than real-time performance. Rossmann et al.
[5] follows an interesting approach, to use VR-Hardware
for efficient and accurate laser scanners. Others like the
RoboCup-Rescue League simulator USARSim [6] are
designed to run in real-time. Yet others like VANE [7]
or the Tunnel Simulator produce highly accurate sensor
measurements but cannot simulate in real-time.

C. Quality requirements

The most important factor for testing is the quality
or accuracy of the provided sensor measurements. Since
simulation tends to generate ideal measurements, real
sensors do not. The following subsection will discuss
some of the influences according to sensor measurement
generation accuracy.

When talking about quality of virtual or simulated sen-
sors, it has another meaning than the sensor processing
community. In case of simulation, sensor quality means the
availability to masquerade the existence of the simulation,
by providing realistic sensor measurements, like described
in Siegel et al. [8]. Within the real world there are several
factors, having an impact on the quality of sensor measure-
ments. These Factors need to be considered, when creating
a sensor simulation:

1) stochastical noise

2) systematical noise

3) context sensitive noise

4) environmental influence

5) influence of other (active) sensors
Whereas the first two factors are commonly known and may
be caused by thermal noise, in case of stochastical noise, or
due to small errors in sensor-production and ageing effects,
in case of systematical noise. (A more detailed description

Copyright (c) IARIA, 2012.  ISBN: 978-1-61208-234-9

for these errors can be found in [9].)
The other factors are quite complex and often ignored during
sensor simulation.

Context sensitive noise refers to the current situation
within the simulation. Meaning, these errors result through
interaction with other objects inside the simulation envi-
ronment. In most cases they are reasoned by the physical
principle of taking measurements. One example is an ul-
trasonic sensor mounted on a vehicle at low height. Even
if the expected range is 6m, the device could measure
the ground at a distance of 1m. As result the effective
range for this device would be less than one meter. Similar
examples for laser scanners can be found in Goodin et
al. [10] where the beam divergence is taken into account.
To observe these effects inside the simulation, the physical
principle implemented in the real sensor needs to be matched
as close as possible.

Each off these effects considers only one instance of the
simulated sensor. However environmental factors like rain,
fog and temperature do not affect only one sensor. Thus
if the sensor processing detects that the range of a laser
scanner is reduced because of fog, a camera near to this
scanner should also indicate the existence of fog, to support
reasoning algorithms.

The last effect, influence by other (active) sensors,
can easily be observed when using the Microsoft Kinect
sensor, emitting an infrared dot pattern [11]. This pattern
can influence normal Webcams and thus have an important
effect for computer vision algorithms that may be part of
the processing pipeline that is under test.

III. MODELING APPROACH

This section provides a general overview of the proposed
modelling approach and how it is intent to solve the above
discussed requirements, especially the quality requirements.
A distinction is made between simulation and virtual
sensors. While the simulation is used to generate an
accurate representation of the environment, the sensors
perceive the provided data to calculate their return values. It
follows that the measured values always refer to an object
in the simulated environment. In case of optical sensors it
can be broken down into specific points on the surface of a
three dimensional object. A prominent example is the light
calculations in modern computer games which simulate the
interaction between a light source and a surface. The usual
approach is to manually define a computation rule for each
surface. Since 3D games often consist of a variety of static
and dynamic lights the defined computation rule needs to
consider all kinds of light sources. Modern 3D engines like
OGRE [12] use shader generators to automatically create
such computation rules.

This technique should be applied to other sensors than
cameras and other emitters as light sources. Since each

65



SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

sensor needs a different input for a reasonable calculation of
sensor measurements, a modeling methodology is introduced
inspired by system dynamics. [13]

The model consists of three sub-models which are converted
automatically into a computation model that is used to gen-
erate shader code during runtime of the simulation. Thereby
the current context of the sensor and its environment is taken
into account. The tree sub-models are:

1) Emitter Model: Defines the factor of influence (FOI)
that is required to perform the calculation for at least
one class of sensors.

2) Sensor Model: Defines how the specified FOI needs
to be combined for one sensor class, thus defines the
sensor itself.

3) Sensor Instance Model: This model allows a differ-
entiation between two sensors of the same class. It
mainly defines a post processing step, and allows to
define error models for individual sensors.

A. Emitter Model

src. position
direction

Directional Light
(900nm)

Figure 1. Example Emitter model containing two emitter classes, that do
both emit directed light with a wavelength of 900nm.

The emitter model defines an FOI that is required by at
least one class of sensors as input. It is associated with all
object classes which have an influence on this factor. As
can be seen in Figure 1. Each factor may consist of several
attributes. In the example, the directed light is determined
by its source position, direction and intensity. An emitter
is a class of objects that have an impact on the FOI in
a certain area. They serve as global input variables in the
model and thus represent the parameter of the simulation. In
most cases they are associated with a 3D object within the
simulation containing some basic properties like position,
and orientation. Their emitted values can be described by
either a constant value or a temporally resolved function.
In Figure 1, there are two FOI, the sun that represents a
temporarily resolved function, which provides intensity over
one day, and the Laser range finder, that emits a light beam
of constant intensity. The auxiliary node describes how the
emitted value can be transformed into the FOI. This is done
by functions for each attribute of the FOIL.

B. Sensor Model

The sensor model describes how the FOI interacts with a
surface. As input the previously defined FOI, properties of
the surface and optionally further emitters can be used. The

Copyright (c) IARIA, 2012.  ISBN: 978-1-61208-234-9

Remission

Directional

Figure 2. Example Sensor model that represent a simple laser range finder.

result is a new surface property that can be perceived by the
sensor. Figure 2 shows an example for the sensor model.
It contains the FOI defined in Figure 1, and an additional
emitter for fog. To specify the interaction with the surface
some of the basic surface properties like normal, reflection
and position need to be known. These properties can either
be defined as scalar or per point on the surface by using
a texture, as usual in shader programming. This allows to
model high precise sensor responses like described in [5].

C. Sensor Instance Model

Figure 3. Example Sensor Instance model for a specific laser range finder.
Whereas this device is sensitive to temperature fluctuations.

The results calculated in the sensor model, refer to a
class of sensors, for example laser range finder and thus
are calculated for each instance equally. They can be seen
as ideal measurements, without noise or instance specific
errors. Within the sensor instance model, a concrete instance
of a sensor can be modeled. The previously defined surface
properties serve as input. Properties with the same name but
a different value define the final result. Like in the model
above, further optional FOI, may be used as additional input.
In Figure 3 an additional symbol is introduced, the decision
between Distance and the final result. In this example it
is used to describe the sensitivity of the light receiver of
the laser range finder. In other words, if the received light
lies below a certain threshold, the measured distance will
be set to unknown or zero. Also first used in Figure 3 are
random number generators, to model statistical noise. To

66



SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

cover most of the real noise distribution, random numbers
can be generated using different probability distributions and
combined if necessary. This post processing step is also
intended to model sensor faults, that could follow from an
incorrect parameterization or calibration.

D. Computational Model

Distance ]

-
Gensmvi(y )

Diameter )
<\ o

Figure 4. Generated computational model for two active sensors and three
emitters of environmental influences.

Figure 4 shows the three previously defined models,
summarized within the computational model. The major
change is that the emitter (Directional Light in Figure 1)
of the emitter model will be replaced by concrete instances
of the corresponding class (Laserl, Laser2 and Sun in Figure
4) during combination. In this example, two laser scanners,
the sun and fog have an impact on the observed surface. This
was determined by the combination of the area observed by
the sensor in charge, and the area affected by the emitters.
Only those emitters will be considered which have an impact
on the perceived surface properties. This is mostly described
within the sensor model section.

The computational model is reviewed and newly generated
whenever a sensor is intended to record new measurements.
Finally the shader code is generated using the computational
model in order to enable efficient computation on the
graphics hardware. This needs to be done for all objects
or surfaces, within the area observed by the current sensor.

IV. CONCLUSION AND FUTURE WORK

This paper has dealt with the dynamic simulation of
environmental factors and cross interferences between sen-
sors. First, the requirements for creating a simulation en-
vironment, with the goal to produce realistic sensor data,
has been discussed and compared with currently available
simulations. It was found, that in favor of performance,
correct influences and error models are often ignored.

In the second part, a method to model environmental
influences and sensors has been presented which allows a
comfortable way to model realistic sensors. The separation
between environmental conditions, sensors and hardware
specific errors, helps to incrementally increase the simulation
detail until the desired degree of realism is reached.

Since the computational model is reviewed every frame the
model can adapt to the currently simulated situation. The
usage of shader programs during simulation runtime allows

Copyright (c) IARIA, 2012.  ISBN: 978-1-61208-234-9

an efficient execution of the computational model which can
be interpreted as a system dynamics simulation for each
point on objects surfaces.

ACKNOWLEDGMENT

This work has been supported by the Federal Ministry
of Economics and Technology (BMWi) under the grant
0IMAO09037. This text reects the views only of the authors.

REFERENCES

[1] B. Gerkey, R. Vaughan, and K. Stoy, “Most valuable player:
A robot device server for distributed control,” International

Conference on Intelligent Robots and Systems, no. Iros, pp.
1226-1231, 2001.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source
robot operating system,” in /ICRA Workshop on Open Source
Software, 2009.

[3] (2012) The Mobile Robotik Programming Toolkit . Retrieved:
July. 2012. [Online]. Available: http://http://www.mrpt.org/

[4] S. Van Hoecke, S. Verstockt, K. Samyn, M. Slembrouck, and
R. de Walle, “Tunnel simulator for traffic video detection,” in
SIMUL 2011. International Academy, Research, and Industry
Association (IARIA), 2011, pp. 57-62.

[5] J. Rossmann, N. Hempe, and M. Emde, “New methods
of render-supported sensor simulation in modern real-time
VR-simulation systems,” in Proceedings of the 15th WSEAS
international conference on Computers. Stevens Point,
Wisconsin, USA: WSEAS, 2011, pp. 358-364.

[6] S. Balakirsky and C. Scrapper, “USARSim : Providing a
Framework for Multi-robot Performance Evaluation,” Simu-
lation, pp. 98-102.

[7] C. Goodin, P. J. Durst, B. Gates, C. Cummins, and J. Priddy,
“High Fidelity Sensor Simulations for the Virtual Au-
tonomous Navigation Environment,” pp. 75-86, 2010.

[8] M. Siegel, “Sensor modeling and simulation: can it pass the
Turing test?” VIMS 2001. 2001 IEEE International Workshop
on Virtual and Intelligent Measurement Systems (IEEE Cat.
No.01EX447), pp. 92-96, 2001.

[9] C. Rosen, U. Jeppsson, L. Rieger, and P. a. Vanrolleghem,
“Adding realism to simulated sensors and actuators.” Water
science and technology, vol. 57, no. 3, pp. 337-44, Jan. 2008.

[10] C. Goodin, R. Kala, A. Carrrillo, and L. Y. Liu, “Sensor mod-
eling for the Virtual Autonomous Navigation Environment,”
2009 IEEE Sensors, pp. 1588-1592, Oct. 2009.

[11] K. Khoshelham and S. O. Elberink, “Accuracy and resolution
of Kinect depth data for indoor mapping applications.” Sen-
sors (Basel, Switzerland), vol. 12, no. 2, pp. 1437-54, Jan.
2012.

[12] (2012) OGRE. Retrieved: Sept. 2012. [Online]. Available:
http://www.ogre3d.org/

[13] F. Ford, Modeling the environment: an introduction to system
dynamics models of environmental systems. Island Pr, 1999.

67



