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 Abstract - The analysis of production systems by the use of 

discrete, event-based simulation is widely used and accepted as 

decision support method. It aims either at the comparison of 

competitive designs or the identification of a “best possible” 

configuration of the simulation model. Here, combinatorial 

techniques of simulation and optimization methods support the 

user in finding optimal solutions, which typically result in long 

computation times and though often prohibit a practical 

application in today’s industry. This paper presents a fast 

converging procedure as a combination of a swarm heuristic, 

namely the particle swarm optimization, and the material flow 

simulation to close this gap. Faster convergence is realized by a 

specific extension of classic PSO implementations. First results 

show the applicability with a simulation reference model. 

Keywords-Design of Experiments; DES; meta-heuristics; 

particle swarm optimization; parameter optimization. 

I. MOTIVATION 

 Modern business computing, especially in the area of 

operations research, offers a wide variety of methods for 

complex problem solving for planning, scheduling and 

control of production and logistic processes. Those 

processes, which are to be designed or improved, are 

typically projected to mathematical models and then 

optimized by the use of simulation and/or optimization 

technologies. In both disciplines, models as an abstraction 

of the real-world system are used to improve decision 

variables and resulting key performance indicators under a 

given set of restrictions, e.g., the identification of the 

maximum throughput of a production site or network. In 

simulation, this improvement is usually achieved by the 

iterative evaluation of multiple scenarios and their 

subsequent simulation results. In the case of optimization, 

the optimal configuration is achieved by mathematical 

optimization algorithms or (meta-) heuristic approaches 

[12]. 

 Due to the high computational demand of these 

methods, specific procedures as a combination of both 

simulation and optimization were derived, to combine both 

advantages: an optimization algorithm can be used to 

automatically generate a specific model configuration, 

which can be evaluated by simulation runs [9]. Especially 

for simulation models with stochastic influence factors, 

which need a high amount of simulation runs, these 

procedures can lead to faster identification of improving 

model configurations than standard methods for the design 

of simulation experiments [9]. 

 

 This paper presents a feasibility study for a specific 

combination of simulation and optimization, where material 

flow simulation for production processes is combined with 

the meta-heuristic approach of particle swarm optimization. 

The goal is the development of a fast converging procedure 

model, which can be applied in a practical, industrial 

environment. Especially in this area, the given complexity 

of the underlying production system, and thereby the 

simulation model, is very high, so that the application of 

standard combinatorial approaches of mathematical 

optimization and material flow simulation is prohibited, 

since it needs an excessive amount of computational power. 

 

 The paper presents in the following sections in short the 

necessary state-of-the-art in discrete, event-based 

simulation, methods for the design of experiments as well as 

particle swarm optimization. The conceptual approach of 

the procedure is presented in Section 3, followed by the 

prototypical implementation in the material flow simulation 

tool d³FACT. The first evaluation results of the procedure 

are shown in Section 5. The paper closes with an outlook on 

future work in this area. 

II.    STATE-OF-THE-ART 

A.     Discrete, event-based material flow simulation 

 Simulation, especially material flow simulation is a 

methodology in operations research, which uses a model to 

describe a real world system, which in turn is a collection of 

entities, interacting together [9]. It has some distinct 

advantages, since it enables the observation of a system’s 

behavior even before it exists in reality and furthermore for 

very complex, dynamic models. Based on the generated 

insights, users are able to validate the design of the system, 

to develop strategies for its operation or to determine 

optimal operating configurations. It is particularly suitable 

to determine how the system can be configured in the best 

way, especially when it is difficult or very costly to change 

an actual system design or to test control rules for a specific 

material flow in real. Time periods can be reviewed much 

quicker, sensitivity analysis and a graphical representation 

of the simulation model and its dynamics are further 
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advantages. Consequently, this will apply, where analytical 

methods fail due to system’s complexity and if there is no 

other way to analyze an existing or designed system 

[6],[13]. 

B.     Design of Experiments 

Design of experiments (also DOE [11] or experimental 

design) refers to the use of statistical techniques to create an 

efficient, systematic set of controlled experiments for 

collecting data efficiently in order to estimate relationships 

between independent and dependent variables through 

measurement. DOE is used in engineering to design 

physical experiments to determine physical relationships 

(e.g., effect of pressure and temperature on yield in a 

manufacturing process). In the area of simulation, DOE is 

used for the systematic evaluation of simulation models in 

order to identify a set of model parameters, which leads to 

the desired simulation results. Each simulation run hereby 

evaluates a concrete set of parameters. Typically, the 

simulation models include stochastic influence factors, so 

that a single simulation run is not sufficient for the 

evaluation of the parameter set and multiple simulation runs 

for each of the configuration sets are to be performed. 

Efficient procedures like 2
k
-factorial-Design, fractional 

designs, Plackett-Burman-experiments as well as response-

surface method (RSM) or evolutionary optimization 

(EVOP) are used [11].  

 

As mentioned above, the combination of simulation 

and optimization methods is also used and known, but today 

leads typically to high computational demands, which the 

practical application. Key factor for a successful application 

of such combinatorial approach is the fast convergence of 

the designed procedure.  

C.     Particle swarm optimization 

 Optimization algorithms can be distinguished in two 

areas, namely exact and heuristic methods [12]. Exact 

methods like linear or dynamic programming are based on a 

mathematical model and deliver an optimal solution. A great 

drawback is, however, that these procedures cannot solve 

some problems in an acceptable time period. Furthermore, 

they may not deliver solutions at all. Heuristics or meta-

heuristic approaches are able to find a feasible solution in a 

shorter period of time, but cannot guarantee optimality. The 

GAP, the difference between the solution and an optimal 

solution, may not be reached [12]. Heuristics are problem 

specific procedures and can be divided into heuristics for 

generating intial solutions and heuristics, improving a given 

solution. Meta-heuristics are more generalized procedures, 

which can be applied to a broader range of problem 

instances. Typical examples in this domain are Taboo-

Search, Simulated Annealing, Iterative Locale Search as 

well as Evolutionary Algorithms, Ant Colony Optimization, 

Swarm algorithms and Neuronal Networks [12]. 

 

 The particle swarm optimization approach (PSO) was 

initially formulated by Kennedy and Eberhart in 1995 [8]. It 

is an evolutionary algorithm with a fixed population out of 

the group of meta-heuristics. It utilizes a population of 

individuals which create a set of solutions. A member of this 

population is called particle. Each particle has a specific 

position within the solution space, spanned by the sum of 

restrictions. Its basic idea is based on the Boid model of 

Reynolds, Heppner and Grenander [7]. Here, a boid is an 

individual, that moves in the same direction as its neighbor 

(alignment), but also tries to move to the middle of the 

group (cohesion). At the same time the individual tries to 

maintain a minimum distance to the others (separation). 

This behavior is inspired by natural phenomena, well known 

e.g. by bird or fish flocks. The information exchange 

between the individuals implements a social behavior. 

Kennedy and Eberhart developed collision-free particles, 

that search an optimal fitness value, the so called ‘cornfield 

vector’ [8]. Each particle stores the best positions found by 

the entire group as well as its personal best position 

III. IDEA 

A.     Fundamental approach 

 The combined procedure of simulation and meta-

heuristic presented in this section differs in an essential way 

from existing PSO-approaches, since the evaluation of the 

fitness of a particle is not possible in a direct way, but has to 

be derived through at least one, in most cases multiple 

simulation runs. Nevertheless, the core issue remains, that 

the simulation runs claims time and computing capacity and 

therefore a major objective to study is the determination of 

appropriate parameters for the algorithm, so that the number 

of required fitness evaluations is minimized. 

 

 
Figure 1. Principle procedure for parameter optimization. 

 

 Figure 1 shows the designed process of an automatic 

experimental design procedure as a combination of 

simulation and the PSO. Based on an initialization of the 

simulation model the input factors of the simulation model 

and their modeled limitations are derived. The PSO-

algorithm then creates particles for a given number of 

configurations, which are to be evaluated in a first iteration. 

The simulation runs are fed by this configuration and 

evaluate the configuration by simulating and generating key 

performance indicators that allow the determination of the 

fitness value of each particle. The best solution found is 

stored and distributed to each particle and its position in the 

solution space, meaning the configuration of the simulation 
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parameters, is adjusted. Then, the next iteration for the 

simulation-based evaluation of the adjusted particles starts. 

The procedure repeats until a given termination criteria is 

reached (e.g., number of iterations, no improvement of the 

KPIs). 

 

 An important point of interest by using this approach is 

the application to complex systems with stochastic 

influences. This is due to their stochastic nature which 

always has a different result - and therefore a different 

fitness. A problem which arises here is the emergence of 

noise. One way of addressing this problem is evaluating a 

location several times to form an average (multisampling), 

or to exploit the history for sequential scanning. Here, the 

last values are smoothed to calculate a trend. The noise also 

causes particles not to reach the global optimum, as this 

cannot be precisely identified [2]. 

 

Additional improvements have been studied and 

introduced [3]. As the number of iterations of the algorithm 

is crucial for the computational effort, in conjunction with 

simulation, some modifications were made, that proved to 

be suitable in preliminary investigations. These were in 

detail: 

 Intelligent positioning - The particles are specifically 

placed in certain areas of the solution space. 

 Subdivision in three phases - exploration, exploitation 

and intensification. (further referred to as  3-phase PSO, 

cp. Section 3.2) 

 Adaptive velocity - In the first phase (3 phase-PSO) the 

velocity of the particles is reduced to contain the 

explosion of the particles in the solution space. 

 Selection - The particles of supposedly poor regions of 

the search space are relocated in good areas. 

 Multisampling - The positions of the particles are 

evaluated several times and averages are calculated to 

reduce stochastic effects. 

 Threshold - An additional stop criterion 

B.     Construction of the 3-Phase-PSO algorithm 

 The extensions to the PSO in the previous chapter 

provided some starting points. A compromise between 

exploring the search space and the convergence is to be 

found. 

 

 After an intelligent initialization the solution space can 

be subsequently investigated with a limited number of 

iterations and the adapted behavior of the particles. The next 

step is to select particles by their fitness values which are 

better than the rest. A further potential is obtained by 

exploiting a history for the previous positions as a particle 

could be pulled out by the global best position in the course 

of iterations from a good range. When only the current 

information is used, good areas might be neglected under 

certain circumstances. History allows that at the end of the 

first phase of the algorithm, the particles are repositioned in 

a well-defined number of top positions throughout the 

history. This selection has another positive side effect. The 

starting position of the particles has already been evaluated 

and is known. This again saves computational effort for the 

first iteration of the second phase. In total this adjustable 

first phase increases the diversification and the probability 

to find the global optimum [2]. 

 

 In a second phase, the identified good areas have to be 

examined more closely, which is known as intensification in 

the domain of meta-heuristics. Here, the behavior of the 

particles is adapted to this stage. They are now trying to find 

the best possible solution in the subspace of the whole 

solution space that is being reinforced by an increased 

concentration of particles in this area. Furthermore, through 

formation of subpopulations reinforcement of behavior is 

achieved. The basic idea here is to examine defined regions 

of the search space in more detail and therefore not to be 

affected by disturbing influences of other areas. After a 

further, well chosen number of iterations, the areas can now 

be compared. Is the range on average substantially worse, it 

can be neglected; the parameterized essentials can be set by 

the decision maker.  

 

 As a part of the particles was filtered, the solution 

quality can be increased, with more iteration at the same 

computational effort as before. Because of the convergence 

properties of meta-heuristics few iteration at the beginning 

lead to some significant improvement in the objective value, 

while the last iterations achieve only marginal improvement. 

In the third and final phase, with a reduced number of 

particles, an improved result is searched as long as a 

predetermined number of iterations is not exceeded or 

improvement of a certain percentage level can be achieved. 

IV. IMPLEMENTATION 

A.     Standard PSO-algorithm 

The implementation of the PSO-algorithm was on a 

pre-implementation by Cingolani [5]. This is only an 

implementation of the initially described PSO algorithm and 

will be referred to as the ‘Standard PSO’. The basic 

algorithm consists of a swarm S of particles xi, and a fitness 

function f(xi). The swarm itself is a set of particles with a 

position vector  

),...,,( 21 niiii xxxx 


, 

where i denotes particle xi and x1 the index of the vector 

component. The velocity  

),...,,( 21 niiii vvvv 


 

is defined equally. The particles also consist of a memory of 

their personal best found position pi so far as well as the 

current fitness value. The bound for every component of the 

position form the search space and all positions within are 

valid solutions, thus the solution space. For the swarm 

however, the global best found position pg as well as the 
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global best found fitness are stored together. The position 

represents an allocation of numbers, which serves as input 

variables for the fitness function (here: the specific 

simulation model to be evaluated). The result of the fitness 

function is the fitness of the particle (here: the resulting 

simulation models KPIs). At the beginning of the 

optimization run, the positions are assigned randomly within 

the solution space. Then all positions are evaluated. The 

difference between the actual and the best position within 

the swarm results in a direction – the velocity. With this 

velocity a new position is calculated and the first iteration 

finishes. The next iterations form a cycle of position 

evaluation, velocity calculation and repositioning the 

particles. This is executed until stopping criteria is fulfilled. 

 

 In every iteration the global best position is evaluated 

which is formally defined as follows (here for a 

minimization, for maximization it would be arg max{…}): 

    )(),...,(minarg,..., 11

k

n

kk

i

k

n

kk

g pfpfpppp 
 

The velocity is calculated per vector component: 

)()( 2211

1 k

idgd

k

idid

k

id

k

id xprcxprcvv 

, 

where r1 and r2 are random numbers within an interval [0 ; 

1], which results in a randomness of the particles movement. 

They can be calculated once and be applied as a scalar to the 

vector or calculated per component. c1 and c2 are called 

acceleration coefficients and as a result from their concrete 

assignment, it is determined whether the particle is attracted 

stronger to his personal or to the global best position.  

)(11

k

idid xprc   

is also called the cognitive and  

)(22

k

idgd xprc   

the social component. If the velocity is also set at 

initialization it can be restricted to keep within the solution 

space after the first iteration. 

With a new velocity vector the positions can be refreshed as 

follows: 
11   k

i

k

i

k

i vxx


. 

 Since the particles move free through the solution space 

it must be taken into consideration, that recalculated 

positions could be out of range. Most optimization problems 

are defined by restrictions, which are predetermined. A 

possibility to resolve these cases are so called walls 

(dimension limits). When the particles encounter the 

dimension limits, multiple methods exist, to set the position 

of the particle back within the solution space. Three 

methods are common and have been implemented [14]:

  Absorbing Walls: When a particle hits one of the 

dimensions limits, the speed in this dimension is set to 

0. This creates the possibility that particles are set back 

into the solution space. 

 Reflecting Walls: When a particle comes up against one 

of the limits, the algebraic sign of the velocity 

component in this dimension is inverted. The particle is 

set back in the direction of the solution space. 

 Invisible walls: In this method, the particles can exceed 

the dimension limits. Particles that are outside these 

limits will not be evaluated. The motivation of this 

method is to save computational effort 

 

Another common extension is inertia weight formulated 

by Shi and Eberhart [15]. Inertia weight is a factor and 

multiplied with previous speed of a particle
k

idv  to contain 

explosion of the swarm, meaning that the velocity rises 

without limit. Inertia weight is by implication meant to 

accelerate the convergence of the swarm. An extended 

velocity formula results as follows: 

)()( 2211

1 k

idgd

k

idid

k

id

k

id xprcxprcvv    

Shi and Eberhart investigated  within the interval [0 ; 1.4]. 

They revealed that within [0.8 ; 1.2] a quicker convergence 

can be achieved, while higher values (>1.2) result in a 

failure to converge. To small values can cause the swarm to 

get stuck in local optima. 

 

Angeline [1] noticed that the classic PSO algorithm had 

an implicit weak selection of particles regarding the 

personal best fitness. The purpose of selection aims at 

placing particles in supposedly good regions of the solution 

space discovered earlier. Angeline proposed a method to 

perform an explicit selection: 

 For each particle in the swarm: compare the fitness 

value with those of the others – each time the current 

particle has a better fitness it is rewarded. 

 Sort particles ascending by number of rewards. 

 Choose upper half of particles and copy their position 

to those from the lower half, while preserving the 

personal best position of each particle copied. 

This procedure has to be performed before calculating new 

velocity vectors. Evangeline revealed that solution quality 

within local optima increased, while weakening the ability 

to find global optima. Consequently this extension improves 

the convergence of the PSO 

 

       Finding global optima requires the procedure to 

maintain diversity. Suresh et al. [16] proposed two 

modifications. One is about adjusting the inertia weight 

depending of the distance current global best position. They 

formulated it as follows: 

)1 ; 5,0(   with 1 0

max

0 randi 









 



 , 

with i  denoting the Euclidian distance in a d-dimensional 

space and max  the greatest possible distance: 

 



D

d

k

idgdi xp
1

2
 . 
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As a result Suresh et al. revealed that this adaptive 

adjustment substantially improved performance. As being 

intensively investigated, these extensions, modifications and 

improvements have been proposed to the standard PSO.  

 

To address the issue of random influences in the 

fitness function we used multisampling as an further 

extension. This means that the same position is evaluated 

multiple times and an average fitness value is returned. The 

work of Bartz-Beielstein et al. [2] was a foundation. Using 

history data and smoothening of fitness values over a 

specified amount of iterations, inspired to abuse this feature 

in combination with the selection extension described 

earlier. 

B.     3-Phase PSO implementation 

 According to the conceptual design, the implementation 

of the PSO algorithm was refined by the realization of the 3-

Phase PSO according to the following 3 phases: 

 

Phase I: 

1. Initialization of n particles using intelligent 

positioning, 

2. Initialization of the velocity vectors as null-vectors, 

3. Evaluate fitness of each particle using distributed 

simulation runs and update velocity vectors with a 

weak attraction towards the global best position, 

4. Save fitness values in history data, 

5. Generate new position for each particle, 

6. Repeat step 3-5 till termination criteria achieved. 

Phase II: 

1. Select n best found fitness values from history data 

and set particles to these positions, 

2. Initialize velocity vector, aiming at the best found 

fitness for each group, 

3. Evaluate fitness and update history data, 

4. Update velocity vector, 

5. Repeat 2-4 as long as improvement is gained. 

Phase III: 

1. Identify best group of particles, 

2. Delete other particles, 

3. Initialize velocity vector, aiming at the overall best 

found position, 

4. Evaluate fitness and update velocity vectors, 

5. Repeat, until criteria for termination are realized. 

 

 The selection feature presented in [1] was investigated 

with the result that the 3-Phase-PSO was stuck in a local 

optimum. The intelligent initialization with the greatest 

possible dispersion strongly reduced this risk. Here, the 

particles are scattered evenly in the feasible solution space 

so that the swarm of particles is provided with a rough 

overview. An original random initialization of the starting 

positions could lead to the fact that all particles concentrate 

only in a certain region of the solution space. The remaining 

solution space would not be evaluated. Selection in 

conjunction with an intelligent initialization and an adaptive 

swarm behavior can strongly reduce the number of fitness 

evaluations. The objective of the fast converging procedure 

needs to quickly identify good areas and to concentrate the 

particles in these regions and to achieve good improvements 

in fitness in as few iterations as possible, without limiting 

the global search. 

C.     Material flow simulation with d³fact 

 d³fact is a discrete, event–based material flow 

simulation framework, designed and implemented at the 

Heinz Nixdorf Institute of the University of Paderborn, 

Germany. Designed as a multi-user environment, it allows 

simultaneous, collaborative modeling and simulation of a 

model by multiple simulation experts. d³fact consists of a 

modeling tool, a simulation server, that runs the simulation 

and few visualization options from 2D to 3D. The freeware 

software is based on the Eclipse Rich Client Platform (RCP) 

and is implemented in Java [6],[13]. 

 

 For a first evaluation of the feasibility study a rather 

simple simulation model was selected, which is presented in 

Figure 2. Reason for such a selection was to crosscheck the 

conformability of the generated solutions by the designed 

procedure with a simple reference model. The resulting 

parameter configurations could easily be evaluated by just 

logical thinking. 

 

 Another advantage of this simple reference simulation 

model was a significant lower amount of necessary 

simulation time for each evaluation. Since all developed 

improvements of the standard PSO-algorithm, the 3-Phase-

PSO and overall procedure had to be evaluated by multiple 

simulation runs, the evaluation could be limited in time. 

 

 
Figure 2. Simple material flow reference model in d³fact. 

D.     Graphical user interface 

 For a more user-friendly evaluation of the different 

configuration parameters of the PSO as well as the 3-Phase-

PSO algorithm, a simple, graphical user interface was 

developed. Based on the initial simulation model, the 

parameter limits for the simulation configuration set as well 

as the PSO algorithms can be configured. Based on that, out 

of the GUI, the overall procedure process is started. The 

application starts the simulation runs with each particle’s 

simulation configuration and shows the simulation results. 

Figure 3 shows a screenshot of the graphical user interface 

for the procedure testing. 
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Figure 3. Screenshot of the user interface PSOptmizer. 

V. RESULTS 

 To ensure the correct operation of the PSO, a 

mathematical test function has been used initially. The 

functions global optimum is predictable by analytical 

methods. It also has multiple local optima. The evaluation of 

the simple simulation model was realized in d³FACT. The 

material flow network is built at runtime with a model 

configuration, which corresponds to the starting position of 

the particle in the solution space. The solution space is 

defined on the GUI in the ranges of model parameters. After 

establishing the model, it is simulated for the set duration 

and the material flow is returned as fitness to the PSO. 

 

 The test runs were conducted on several computers with 

two core processors and four gigabytes of memory. There 

were as many instances of the PSOptimizer started as cores 

available. These were assigned to a core to reduce losses 

through the operating system scheduler. Note that it could 

still come to computational losses due to simultaneous 

access to the working main memory. Run time played a 

minor role in these first investigations and therefore such 

losses have been neglected. Early trials showed, that there 

can be significant variations in the best objective value test 

run. This was caused by the stochastic factors in the model 

as well as in the PSO. So, each configuration was calculated 

200-times to get a sample, which then was evaluated by 

statistical methods. The arithmetic mean for the iterations of 

the algorithm was calculated as the best achieved objective 

function values. For this, the GAP could be determined. 

A.     Mathematical test function 

 Besides demonstrating the feasibility of the designed 

procedure, a first investigated objective was to evaluate the 

PSO-extensions according to the reduction of necessary 

iterations, especially in conjunction with the simulation 

environment. Here, the focus was set on the PSO algorithm 

so that a minimum possible number of iterations was 

necessary for the best possible solution. In order to allow a 

fast evaluation of the PSO-algorithm configuration sets, a 

simple mathematical function was used: 

 (   )     ( )     ( )            

 

Table 1 shows some resulting GAP-values of the 

implemented PSO-algorithms according to the test function: 

TABLE I.  RESULTING GAP FOR MATHEMATICAL TEST FUNCTION 

 

Error for test function 

particle standard 

PSO 

standard 

PSO  

(int. 

position.) 

3-Phase 

PSO 

3-Phase 

PSO  

(int. 

position) 

6 4,64% 0,65% 2,39% 0,25% 

9 2,25% 0,42% 1,44% 0,12% 

11 1,03% 0,35% 0,42% 0,07% 

22 0,30% 0,10% 0,10% 0,03% 

33 0,26% 0,06% 0,01% 0,01% 

GAP 

(mean) 
1,70% 0,32% 0,87% 0,10% 

 

 The most important and up to date new extension was 

the intelligent positioning of a set of particles in the solution 

space. This option significantly increased solution quality 

and nearly zeroed the possibility of getting stuck in a local 

optimum. Figure 4 displays the impact of this feature in 

iteration counts. 

Figure 4. Iteration count for Standard PSO on test function. 

B.     Reference simulation model 

 The model was deliberately kept simple to determine 

the theoretical maximum throughput by analytical means. 

This eased an investigation of GAPs. The design of the 

experiment and the data obtained were analyzed, processed 

and are presented below. In addition to the preset maximum 
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iteration number, a threshold as a criterion was selected. For 

the analysis presented below the threshold was set at ten. 

 

 Table 2 shows some resulting GAP-values of the 

implemented PSO-algorithms according to the simulation 

model in d³fact. 

TABLE II.  RESULTING GAP FOR D³FACT SIMULATION MODEL 

 

Error for simulation 

particle standard 

PSO 

standard 

PSO  

(int. 

position.) 

3-Phase 

PSO 

3-Phase 

PSO  

(int. 

position) 

6 10,47% 9,00% 8,80% 4,79% 

9 7,27% 3,51% 5,75% 0,77% 

11 6,85% 0,60% 3,86% 0,75% 

22 2,61% 0,26% 1,42% 0,07% 

33 5,70% 2,82% 4,11% 1,29% 

GAP 

(mean) 
6,58% 3,24% 4,79% 1,54% 

C.     Conclusion of results 

Figure 4 demonstrates that the swarm parameters 

chosen for every phase are far from best in term of iteration 

count. Considering the GAP values listed in table 1 and 

table 2 the goal has been fulfilled. In terms of solution 

quality, it has to be considered that the random input in the 

swarm results in random behavior of the particles. In one 

run the particles may have more “luck” than the next. In 

conjunction with simulation based optimization such a case 

is inconceivable. Since the possibility of such a result is 

nearly zeroed and result quality can be raised at least 

without increase in total runtime the presented options still 

perform quite well. 

 

However, not all proposed extensions lead to the 

desired reduction in iteration count. The adaptive velocity 

option seemed to slow down the algorithm especially in 

when the number of particles is low. It turns out that the 

PSO can manage the velocity of the particles better by itself 

than when interfering with a bound. 

 
Since the swarm parameters were chosen with respect 

to the quality of the solution and a parameter study for those 

was not conducted at this point, potentials for improvement 

may left open. Another reason for this result is that the 

swarm parameters in the distinct phases were set to values 

that are boundaries of internals that have been investigated 

by researchers earlier [15]. 

 

 Due to model characteristics the difference between 

both algorithms is not big as depicted in Figure 5. The 

models optimal solution lies at the fringe of the solution 

space. The implemented restriction violation procedure 

fosters the identification of solutions in these regions.  

 
Figure 5. Iteration count for 3-Phase vs. Standard PSO with d³fact. 

 

 Not all modifications introduced had the desired 

success. The test runs, however, show a first conclusion: the 

configuration of the swarm is not arbitrary. Parameters such 

as population size and the choice of the threshold have to be 

done carefully. Population size is a key success factor for 

the necessary effort and solution quality. A higher threshold 

does not significantly increase the solution on average, but 

the effort is considerably. The investigated threshold was 10 

and 20. The difference between the GAPs for all standard 

test runs of these two values is only 0.17%, while the 

average duration almost doubled. 

 

 The solution quality can be improved significantly by 

activation of intelligent positioning (cp. Figure 6). The 

studies show that the particle number and dimensionality 

may cause weaknesses. This plays a particular role as the 

last two particles are set. As a possible improvement, those 

two positions should always be occupied. 

 

 
Figure 6. Iteration count for 3-Phase vs. Standard PSO with the test 

function. 

 The studies have also shown that the implemented 

selection in the 3-phase algorithm in conjunction with a 

history of positions leads to an improvement of GAP. It can 

also be shown that the question whether the selection should 

be performed several times remains open. Potentials for 

improvement exist. An investigation regarding the swarm 

parameters was impossible till today due to the complex 
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combination possibilities. There is need for further 

experimentation as the swarm parameters implemented in 

each respective phase are adapted according to the behavior 

of the swarm, but their quality remains unclear at this stage. 

Overall, the studies show that the 3-phase PSO-algorithm 

construction is a solid basis for further developments. 

VI. OUTLOOK 

With the implemented toolkit, it has been successfully 

shown that simulation models, in particular the 

configuration of parameters, can be optimized by a 

combination of simulation and the meta-heuristic particle 

swarm optimization. The test model differs in its complexity 

still far from real-life simulation models, since simulation 

itself is only useful for such complex models that deny an 

exact mathematical analysis. Nevertheless, as a proof of 

concept, the feasibility was shown in principle with the 

existing prototype. 

 

 Initial findings are collected on the behavior and the 

duration of the 3-phase PSO. It turns out that this first draft 

can be furthermore improved. Potential still exists in a more 

intensive use of selection and a better adaptation of the 

swarm parameters itself in the various phases; this would 

again improve the needed computational time. The 

solution’s quality has already been significantly improved 

by the introduced modifications, described and presented in 

this paper. Further calculations and tests on the PSO-

algorithms parameter setting are to be made in near future. 

 

 Another desirable future work was the evaluation of 

other heuristics as the optimization component in this 

approach, e.g., genetic algorithms. Even the combined 

approach of multiple heuristics for the optimization of the 

parameters could be taken into consideration.  
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