
An Automatic Approach for Parameter Optimization of Material Flow Simulation

Models based on Particle Swarm Optimization

Christoph Laroque

Institute of Applied Computer Science
Technical University of Dresden

Dresden, Germany
christoph.laroque@tu-dresden.de

Jan-Patrick Pater

Heinz Nixdorf Institute
University of Paderborn

Paderborn, Germany
ppater@hni.upb.de

 Abstract - The analysis of production systems by the use of

discrete, event-based simulation is widely used and accepted as

decision support method. It aims either at the comparison of

competitive designs or the identification of a “best possible”

configuration of the simulation model. Here, combinatorial

techniques of simulation and optimization methods support the

user in finding optimal solutions, which typically result in long

computation times and though often prohibit a practical

application in today’s industry. This paper presents a fast

converging procedure as a combination of a swarm heuristic,

namely the particle swarm optimization, and the material flow

simulation to close this gap. Faster convergence is realized by a

specific extension of classic PSO implementations. First results

show the applicability with a simulation reference model.

Keywords-Design of Experiments; DES; meta-heuristics;

particle swarm optimization; parameter optimization.

I. MOTIVATION

 Modern business computing, especially in the area of

operations research, offers a wide variety of methods for

complex problem solving for planning, scheduling and

control of production and logistic processes. Those

processes, which are to be designed or improved, are

typically projected to mathematical models and then

optimized by the use of simulation and/or optimization

technologies. In both disciplines, models as an abstraction

of the real-world system are used to improve decision

variables and resulting key performance indicators under a

given set of restrictions, e.g., the identification of the

maximum throughput of a production site or network. In

simulation, this improvement is usually achieved by the

iterative evaluation of multiple scenarios and their

subsequent simulation results. In the case of optimization,

the optimal configuration is achieved by mathematical

optimization algorithms or (meta-) heuristic approaches

[12].

 Due to the high computational demand of these

methods, specific procedures as a combination of both

simulation and optimization were derived, to combine both

advantages: an optimization algorithm can be used to

automatically generate a specific model configuration,

which can be evaluated by simulation runs [9]. Especially

for simulation models with stochastic influence factors,

which need a high amount of simulation runs, these

procedures can lead to faster identification of improving

model configurations than standard methods for the design

of simulation experiments [9].

 This paper presents a feasibility study for a specific

combination of simulation and optimization, where material

flow simulation for production processes is combined with

the meta-heuristic approach of particle swarm optimization.

The goal is the development of a fast converging procedure

model, which can be applied in a practical, industrial

environment. Especially in this area, the given complexity

of the underlying production system, and thereby the

simulation model, is very high, so that the application of

standard combinatorial approaches of mathematical

optimization and material flow simulation is prohibited,

since it needs an excessive amount of computational power.

 The paper presents in the following sections in short the

necessary state-of-the-art in discrete, event-based

simulation, methods for the design of experiments as well as

particle swarm optimization. The conceptual approach of

the procedure is presented in Section 3, followed by the

prototypical implementation in the material flow simulation

tool d³FACT. The first evaluation results of the procedure

are shown in Section 5. The paper closes with an outlook on

future work in this area.

II. STATE-OF-THE-ART

A. Discrete, event-based material flow simulation

 Simulation, especially material flow simulation is a

methodology in operations research, which uses a model to

describe a real world system, which in turn is a collection of

entities, interacting together [9]. It has some distinct

advantages, since it enables the observation of a system’s

behavior even before it exists in reality and furthermore for

very complex, dynamic models. Based on the generated

insights, users are able to validate the design of the system,

to develop strategies for its operation or to determine

optimal operating configurations. It is particularly suitable

to determine how the system can be configured in the best

way, especially when it is difficult or very costly to change

an actual system design or to test control rules for a specific

material flow in real. Time periods can be reviewed much

quicker, sensitivity analysis and a graphical representation

of the simulation model and its dynamics are further

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

advantages. Consequently, this will apply, where analytical

methods fail due to system’s complexity and if there is no

other way to analyze an existing or designed system

[6],[13].

B. Design of Experiments

Design of experiments (also DOE [11] or experimental

design) refers to the use of statistical techniques to create an

efficient, systematic set of controlled experiments for

collecting data efficiently in order to estimate relationships

between independent and dependent variables through

measurement. DOE is used in engineering to design

physical experiments to determine physical relationships

(e.g., effect of pressure and temperature on yield in a

manufacturing process). In the area of simulation, DOE is

used for the systematic evaluation of simulation models in

order to identify a set of model parameters, which leads to

the desired simulation results. Each simulation run hereby

evaluates a concrete set of parameters. Typically, the

simulation models include stochastic influence factors, so

that a single simulation run is not sufficient for the

evaluation of the parameter set and multiple simulation runs

for each of the configuration sets are to be performed.

Efficient procedures like 2
k
-factorial-Design, fractional

designs, Plackett-Burman-experiments as well as response-

surface method (RSM) or evolutionary optimization

(EVOP) are used [11].

As mentioned above, the combination of simulation

and optimization methods is also used and known, but today

leads typically to high computational demands, which the

practical application. Key factor for a successful application

of such combinatorial approach is the fast convergence of

the designed procedure.

C. Particle swarm optimization

 Optimization algorithms can be distinguished in two

areas, namely exact and heuristic methods [12]. Exact

methods like linear or dynamic programming are based on a

mathematical model and deliver an optimal solution. A great

drawback is, however, that these procedures cannot solve

some problems in an acceptable time period. Furthermore,

they may not deliver solutions at all. Heuristics or meta-

heuristic approaches are able to find a feasible solution in a

shorter period of time, but cannot guarantee optimality. The

GAP, the difference between the solution and an optimal

solution, may not be reached [12]. Heuristics are problem

specific procedures and can be divided into heuristics for

generating intial solutions and heuristics, improving a given

solution. Meta-heuristics are more generalized procedures,

which can be applied to a broader range of problem

instances. Typical examples in this domain are Taboo-

Search, Simulated Annealing, Iterative Locale Search as

well as Evolutionary Algorithms, Ant Colony Optimization,

Swarm algorithms and Neuronal Networks [12].

 The particle swarm optimization approach (PSO) was

initially formulated by Kennedy and Eberhart in 1995 [8]. It

is an evolutionary algorithm with a fixed population out of

the group of meta-heuristics. It utilizes a population of

individuals which create a set of solutions. A member of this

population is called particle. Each particle has a specific

position within the solution space, spanned by the sum of

restrictions. Its basic idea is based on the Boid model of

Reynolds, Heppner and Grenander [7]. Here, a boid is an

individual, that moves in the same direction as its neighbor

(alignment), but also tries to move to the middle of the

group (cohesion). At the same time the individual tries to

maintain a minimum distance to the others (separation).

This behavior is inspired by natural phenomena, well known

e.g. by bird or fish flocks. The information exchange

between the individuals implements a social behavior.

Kennedy and Eberhart developed collision-free particles,

that search an optimal fitness value, the so called ‘cornfield

vector’ [8]. Each particle stores the best positions found by

the entire group as well as its personal best position

III. IDEA

A. Fundamental approach

 The combined procedure of simulation and meta-

heuristic presented in this section differs in an essential way

from existing PSO-approaches, since the evaluation of the

fitness of a particle is not possible in a direct way, but has to

be derived through at least one, in most cases multiple

simulation runs. Nevertheless, the core issue remains, that

the simulation runs claims time and computing capacity and

therefore a major objective to study is the determination of

appropriate parameters for the algorithm, so that the number

of required fitness evaluations is minimized.

Figure 1. Principle procedure for parameter optimization.

 Figure 1 shows the designed process of an automatic

experimental design procedure as a combination of

simulation and the PSO. Based on an initialization of the

simulation model the input factors of the simulation model

and their modeled limitations are derived. The PSO-

algorithm then creates particles for a given number of

configurations, which are to be evaluated in a first iteration.

The simulation runs are fed by this configuration and

evaluate the configuration by simulating and generating key

performance indicators that allow the determination of the

fitness value of each particle. The best solution found is

stored and distributed to each particle and its position in the

solution space, meaning the configuration of the simulation

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

parameters, is adjusted. Then, the next iteration for the

simulation-based evaluation of the adjusted particles starts.

The procedure repeats until a given termination criteria is

reached (e.g., number of iterations, no improvement of the

KPIs).

 An important point of interest by using this approach is

the application to complex systems with stochastic

influences. This is due to their stochastic nature which

always has a different result - and therefore a different

fitness. A problem which arises here is the emergence of

noise. One way of addressing this problem is evaluating a

location several times to form an average (multisampling),

or to exploit the history for sequential scanning. Here, the

last values are smoothed to calculate a trend. The noise also

causes particles not to reach the global optimum, as this

cannot be precisely identified [2].

Additional improvements have been studied and

introduced [3]. As the number of iterations of the algorithm

is crucial for the computational effort, in conjunction with

simulation, some modifications were made, that proved to

be suitable in preliminary investigations. These were in

detail:

 Intelligent positioning - The particles are specifically

placed in certain areas of the solution space.

 Subdivision in three phases - exploration, exploitation

and intensification. (further referred to as 3-phase PSO,

cp. Section 3.2)

 Adaptive velocity - In the first phase (3 phase-PSO) the

velocity of the particles is reduced to contain the

explosion of the particles in the solution space.

 Selection - The particles of supposedly poor regions of

the search space are relocated in good areas.

 Multisampling - The positions of the particles are

evaluated several times and averages are calculated to

reduce stochastic effects.

 Threshold - An additional stop criterion

B. Construction of the 3-Phase-PSO algorithm

 The extensions to the PSO in the previous chapter

provided some starting points. A compromise between

exploring the search space and the convergence is to be

found.

 After an intelligent initialization the solution space can

be subsequently investigated with a limited number of

iterations and the adapted behavior of the particles. The next

step is to select particles by their fitness values which are

better than the rest. A further potential is obtained by

exploiting a history for the previous positions as a particle

could be pulled out by the global best position in the course

of iterations from a good range. When only the current

information is used, good areas might be neglected under

certain circumstances. History allows that at the end of the

first phase of the algorithm, the particles are repositioned in

a well-defined number of top positions throughout the

history. This selection has another positive side effect. The

starting position of the particles has already been evaluated

and is known. This again saves computational effort for the

first iteration of the second phase. In total this adjustable

first phase increases the diversification and the probability

to find the global optimum [2].

 In a second phase, the identified good areas have to be

examined more closely, which is known as intensification in

the domain of meta-heuristics. Here, the behavior of the

particles is adapted to this stage. They are now trying to find

the best possible solution in the subspace of the whole

solution space that is being reinforced by an increased

concentration of particles in this area. Furthermore, through

formation of subpopulations reinforcement of behavior is

achieved. The basic idea here is to examine defined regions

of the search space in more detail and therefore not to be

affected by disturbing influences of other areas. After a

further, well chosen number of iterations, the areas can now

be compared. Is the range on average substantially worse, it

can be neglected; the parameterized essentials can be set by

the decision maker.

 As a part of the particles was filtered, the solution

quality can be increased, with more iteration at the same

computational effort as before. Because of the convergence

properties of meta-heuristics few iteration at the beginning

lead to some significant improvement in the objective value,

while the last iterations achieve only marginal improvement.

In the third and final phase, with a reduced number of

particles, an improved result is searched as long as a

predetermined number of iterations is not exceeded or

improvement of a certain percentage level can be achieved.

IV. IMPLEMENTATION

A. Standard PSO-algorithm

The implementation of the PSO-algorithm was on a

pre-implementation by Cingolani [5]. This is only an

implementation of the initially described PSO algorithm and

will be referred to as the ‘Standard PSO’. The basic

algorithm consists of a swarm S of particles xi, and a fitness

function f(xi). The swarm itself is a set of particles with a

position vector

),...,,(21 niiii xxxx 


,

where i denotes particle xi and x1 the index of the vector

component. The velocity

),...,,(21 niiii vvvv 


is defined equally. The particles also consist of a memory of

their personal best found position pi so far as well as the

current fitness value. The bound for every component of the

position form the search space and all positions within are

valid solutions, thus the solution space. For the swarm

however, the global best found position pg as well as the

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

global best found fitness are stored together. The position

represents an allocation of numbers, which serves as input

variables for the fitness function (here: the specific

simulation model to be evaluated). The result of the fitness

function is the fitness of the particle (here: the resulting

simulation models KPIs). At the beginning of the

optimization run, the positions are assigned randomly within

the solution space. Then all positions are evaluated. The

difference between the actual and the best position within

the swarm results in a direction – the velocity. With this

velocity a new position is calculated and the first iteration

finishes. The next iterations form a cycle of position

evaluation, velocity calculation and repositioning the

particles. This is executed until stopping criteria is fulfilled.

 In every iteration the global best position is evaluated

which is formally defined as follows (here for a

minimization, for maximization it would be arg max{…}):

    )(),...,(minarg,..., 11

k

n

kk

i

k

n

kk

g pfpfpppp 

The velocity is calculated per vector component:

)()(2211

1 k

idgd

k

idid

k

id

k

id xprcxprcvv 

,

where r1 and r2 are random numbers within an interval [0 ;

1], which results in a randomness of the particles movement.

They can be calculated once and be applied as a scalar to the

vector or calculated per component. c1 and c2 are called

acceleration coefficients and as a result from their concrete

assignment, it is determined whether the particle is attracted

stronger to his personal or to the global best position.

)(11

k

idid xprc 

is also called the cognitive and

)(22

k

idgd xprc 

the social component. If the velocity is also set at

initialization it can be restricted to keep within the solution

space after the first iteration.

With a new velocity vector the positions can be refreshed as

follows:
11   k

i

k

i

k

i vxx


.

 Since the particles move free through the solution space

it must be taken into consideration, that recalculated

positions could be out of range. Most optimization problems

are defined by restrictions, which are predetermined. A

possibility to resolve these cases are so called walls

(dimension limits). When the particles encounter the

dimension limits, multiple methods exist, to set the position

of the particle back within the solution space. Three

methods are common and have been implemented [14]:

  Absorbing Walls: When a particle hits one of the

dimensions limits, the speed in this dimension is set to

0. This creates the possibility that particles are set back

into the solution space.

 Reflecting Walls: When a particle comes up against one

of the limits, the algebraic sign of the velocity

component in this dimension is inverted. The particle is

set back in the direction of the solution space.

 Invisible walls: In this method, the particles can exceed

the dimension limits. Particles that are outside these

limits will not be evaluated. The motivation of this

method is to save computational effort

Another common extension is inertia weight formulated

by Shi and Eberhart [15]. Inertia weight is a factor and

multiplied with previous speed of a particle
k

idv to contain

explosion of the swarm, meaning that the velocity rises

without limit. Inertia weight is by implication meant to

accelerate the convergence of the swarm. An extended

velocity formula results as follows:

)()(2211

1 k

idgd

k

idid

k

id

k

id xprcxprcvv  

Shi and Eberhart investigated  within the interval [0 ; 1.4].

They revealed that within [0.8 ; 1.2] a quicker convergence

can be achieved, while higher values (>1.2) result in a

failure to converge. To small values can cause the swarm to

get stuck in local optima.

Angeline [1] noticed that the classic PSO algorithm had

an implicit weak selection of particles regarding the

personal best fitness. The purpose of selection aims at

placing particles in supposedly good regions of the solution

space discovered earlier. Angeline proposed a method to

perform an explicit selection:

 For each particle in the swarm: compare the fitness

value with those of the others – each time the current

particle has a better fitness it is rewarded.

 Sort particles ascending by number of rewards.

 Choose upper half of particles and copy their position

to those from the lower half, while preserving the

personal best position of each particle copied.

This procedure has to be performed before calculating new

velocity vectors. Evangeline revealed that solution quality

within local optima increased, while weakening the ability

to find global optima. Consequently this extension improves

the convergence of the PSO

 Finding global optima requires the procedure to

maintain diversity. Suresh et al. [16] proposed two

modifications. One is about adjusting the inertia weight

depending of the distance current global best position. They

formulated it as follows:

)1 ; 5,0(with 1 0

max

0 randi 









 



 ,

with i denoting the Euclidian distance in a d-dimensional

space and max the greatest possible distance:

 



D

d

k

idgdi xp
1

2
 .

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

As a result Suresh et al. revealed that this adaptive

adjustment substantially improved performance. As being

intensively investigated, these extensions, modifications and

improvements have been proposed to the standard PSO.

To address the issue of random influences in the

fitness function we used multisampling as an further

extension. This means that the same position is evaluated

multiple times and an average fitness value is returned. The

work of Bartz-Beielstein et al. [2] was a foundation. Using

history data and smoothening of fitness values over a

specified amount of iterations, inspired to abuse this feature

in combination with the selection extension described

earlier.

B. 3-Phase PSO implementation

 According to the conceptual design, the implementation

of the PSO algorithm was refined by the realization of the 3-

Phase PSO according to the following 3 phases:

Phase I:

1. Initialization of n particles using intelligent

positioning,

2. Initialization of the velocity vectors as null-vectors,

3. Evaluate fitness of each particle using distributed

simulation runs and update velocity vectors with a

weak attraction towards the global best position,

4. Save fitness values in history data,

5. Generate new position for each particle,

6. Repeat step 3-5 till termination criteria achieved.

Phase II:

1. Select n best found fitness values from history data

and set particles to these positions,

2. Initialize velocity vector, aiming at the best found

fitness for each group,

3. Evaluate fitness and update history data,

4. Update velocity vector,

5. Repeat 2-4 as long as improvement is gained.

Phase III:

1. Identify best group of particles,

2. Delete other particles,

3. Initialize velocity vector, aiming at the overall best

found position,

4. Evaluate fitness and update velocity vectors,

5. Repeat, until criteria for termination are realized.

 The selection feature presented in [1] was investigated

with the result that the 3-Phase-PSO was stuck in a local

optimum. The intelligent initialization with the greatest

possible dispersion strongly reduced this risk. Here, the

particles are scattered evenly in the feasible solution space

so that the swarm of particles is provided with a rough

overview. An original random initialization of the starting

positions could lead to the fact that all particles concentrate

only in a certain region of the solution space. The remaining

solution space would not be evaluated. Selection in

conjunction with an intelligent initialization and an adaptive

swarm behavior can strongly reduce the number of fitness

evaluations. The objective of the fast converging procedure

needs to quickly identify good areas and to concentrate the

particles in these regions and to achieve good improvements

in fitness in as few iterations as possible, without limiting

the global search.

C. Material flow simulation with d³fact

 d³fact is a discrete, event–based material flow

simulation framework, designed and implemented at the

Heinz Nixdorf Institute of the University of Paderborn,

Germany. Designed as a multi-user environment, it allows

simultaneous, collaborative modeling and simulation of a

model by multiple simulation experts. d³fact consists of a

modeling tool, a simulation server, that runs the simulation

and few visualization options from 2D to 3D. The freeware

software is based on the Eclipse Rich Client Platform (RCP)

and is implemented in Java [6],[13].

 For a first evaluation of the feasibility study a rather

simple simulation model was selected, which is presented in

Figure 2. Reason for such a selection was to crosscheck the

conformability of the generated solutions by the designed

procedure with a simple reference model. The resulting

parameter configurations could easily be evaluated by just

logical thinking.

 Another advantage of this simple reference simulation

model was a significant lower amount of necessary

simulation time for each evaluation. Since all developed

improvements of the standard PSO-algorithm, the 3-Phase-

PSO and overall procedure had to be evaluated by multiple

simulation runs, the evaluation could be limited in time.

Figure 2. Simple material flow reference model in d³fact.

D. Graphical user interface

 For a more user-friendly evaluation of the different

configuration parameters of the PSO as well as the 3-Phase-

PSO algorithm, a simple, graphical user interface was

developed. Based on the initial simulation model, the

parameter limits for the simulation configuration set as well

as the PSO algorithms can be configured. Based on that, out

of the GUI, the overall procedure process is started. The

application starts the simulation runs with each particle’s

simulation configuration and shows the simulation results.

Figure 3 shows a screenshot of the graphical user interface

for the procedure testing.

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

Figure 3. Screenshot of the user interface PSOptmizer.

V. RESULTS

 To ensure the correct operation of the PSO, a

mathematical test function has been used initially. The

functions global optimum is predictable by analytical

methods. It also has multiple local optima. The evaluation of

the simple simulation model was realized in d³FACT. The

material flow network is built at runtime with a model

configuration, which corresponds to the starting position of

the particle in the solution space. The solution space is

defined on the GUI in the ranges of model parameters. After

establishing the model, it is simulated for the set duration

and the material flow is returned as fitness to the PSO.

 The test runs were conducted on several computers with

two core processors and four gigabytes of memory. There

were as many instances of the PSOptimizer started as cores

available. These were assigned to a core to reduce losses

through the operating system scheduler. Note that it could

still come to computational losses due to simultaneous

access to the working main memory. Run time played a

minor role in these first investigations and therefore such

losses have been neglected. Early trials showed, that there

can be significant variations in the best objective value test

run. This was caused by the stochastic factors in the model

as well as in the PSO. So, each configuration was calculated

200-times to get a sample, which then was evaluated by

statistical methods. The arithmetic mean for the iterations of

the algorithm was calculated as the best achieved objective

function values. For this, the GAP could be determined.

A. Mathematical test function

 Besides demonstrating the feasibility of the designed

procedure, a first investigated objective was to evaluate the

PSO-extensions according to the reduction of necessary

iterations, especially in conjunction with the simulation

environment. Here, the focus was set on the PSO algorithm

so that a minimum possible number of iterations was

necessary for the best possible solution. In order to allow a

fast evaluation of the PSO-algorithm configuration sets, a

simple mathematical function was used:

 () () ()

Table 1 shows some resulting GAP-values of the

implemented PSO-algorithms according to the test function:

TABLE I. RESULTING GAP FOR MATHEMATICAL TEST FUNCTION

Error for test function

particle standard

PSO

standard

PSO

(int.

position.)

3-Phase

PSO

3-Phase

PSO

(int.

position)

6 4,64% 0,65% 2,39% 0,25%

9 2,25% 0,42% 1,44% 0,12%

11 1,03% 0,35% 0,42% 0,07%

22 0,30% 0,10% 0,10% 0,03%

33 0,26% 0,06% 0,01% 0,01%

GAP

(mean)
1,70% 0,32% 0,87% 0,10%

 The most important and up to date new extension was

the intelligent positioning of a set of particles in the solution

space. This option significantly increased solution quality

and nearly zeroed the possibility of getting stuck in a local

optimum. Figure 4 displays the impact of this feature in

iteration counts.

Figure 4. Iteration count for Standard PSO on test function.

B. Reference simulation model

 The model was deliberately kept simple to determine

the theoretical maximum throughput by analytical means.

This eased an investigation of GAPs. The design of the

experiment and the data obtained were analyzed, processed

and are presented below. In addition to the preset maximum

15

20

25

30

6 9 11 22 33

It
er

at
io

n
s

Particles

w/o

intell.

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

iteration number, a threshold as a criterion was selected. For

the analysis presented below the threshold was set at ten.

 Table 2 shows some resulting GAP-values of the

implemented PSO-algorithms according to the simulation

model in d³fact.

TABLE II. RESULTING GAP FOR D³FACT SIMULATION MODEL

Error for simulation

particle standard

PSO

standard

PSO

(int.

position.)

3-Phase

PSO

3-Phase

PSO

(int.

position)

6 10,47% 9,00% 8,80% 4,79%

9 7,27% 3,51% 5,75% 0,77%

11 6,85% 0,60% 3,86% 0,75%

22 2,61% 0,26% 1,42% 0,07%

33 5,70% 2,82% 4,11% 1,29%

GAP

(mean)
6,58% 3,24% 4,79% 1,54%

C. Conclusion of results

Figure 4 demonstrates that the swarm parameters

chosen for every phase are far from best in term of iteration

count. Considering the GAP values listed in table 1 and

table 2 the goal has been fulfilled. In terms of solution

quality, it has to be considered that the random input in the

swarm results in random behavior of the particles. In one

run the particles may have more “luck” than the next. In

conjunction with simulation based optimization such a case

is inconceivable. Since the possibility of such a result is

nearly zeroed and result quality can be raised at least

without increase in total runtime the presented options still

perform quite well.

However, not all proposed extensions lead to the

desired reduction in iteration count. The adaptive velocity

option seemed to slow down the algorithm especially in

when the number of particles is low. It turns out that the

PSO can manage the velocity of the particles better by itself

than when interfering with a bound.

Since the swarm parameters were chosen with respect

to the quality of the solution and a parameter study for those

was not conducted at this point, potentials for improvement

may left open. Another reason for this result is that the

swarm parameters in the distinct phases were set to values

that are boundaries of internals that have been investigated

by researchers earlier [15].

 Due to model characteristics the difference between

both algorithms is not big as depicted in Figure 5. The

models optimal solution lies at the fringe of the solution

space. The implemented restriction violation procedure

fosters the identification of solutions in these regions.

Figure 5. Iteration count for 3-Phase vs. Standard PSO with d³fact.

 Not all modifications introduced had the desired

success. The test runs, however, show a first conclusion: the

configuration of the swarm is not arbitrary. Parameters such

as population size and the choice of the threshold have to be

done carefully. Population size is a key success factor for

the necessary effort and solution quality. A higher threshold

does not significantly increase the solution on average, but

the effort is considerably. The investigated threshold was 10

and 20. The difference between the GAPs for all standard

test runs of these two values is only 0.17%, while the

average duration almost doubled.

 The solution quality can be improved significantly by

activation of intelligent positioning (cp. Figure 6). The

studies show that the particle number and dimensionality

may cause weaknesses. This plays a particular role as the

last two particles are set. As a possible improvement, those

two positions should always be occupied.

Figure 6. Iteration count for 3-Phase vs. Standard PSO with the test

function.

 The studies have also shown that the implemented

selection in the 3-phase algorithm in conjunction with a

history of positions leads to an improvement of GAP. It can

also be shown that the question whether the selection should

be performed several times remains open. Potentials for

improvement exist. An investigation regarding the swarm

parameters was impossible till today due to the complex

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

combination possibilities. There is need for further

experimentation as the swarm parameters implemented in

each respective phase are adapted according to the behavior

of the swarm, but their quality remains unclear at this stage.

Overall, the studies show that the 3-phase PSO-algorithm

construction is a solid basis for further developments.

VI. OUTLOOK

With the implemented toolkit, it has been successfully

shown that simulation models, in particular the

configuration of parameters, can be optimized by a

combination of simulation and the meta-heuristic particle

swarm optimization. The test model differs in its complexity

still far from real-life simulation models, since simulation

itself is only useful for such complex models that deny an

exact mathematical analysis. Nevertheless, as a proof of

concept, the feasibility was shown in principle with the

existing prototype.

 Initial findings are collected on the behavior and the

duration of the 3-phase PSO. It turns out that this first draft

can be furthermore improved. Potential still exists in a more

intensive use of selection and a better adaptation of the

swarm parameters itself in the various phases; this would

again improve the needed computational time. The

solution’s quality has already been significantly improved

by the introduced modifications, described and presented in

this paper. Further calculations and tests on the PSO-

algorithms parameter setting are to be made in near future.

 Another desirable future work was the evaluation of

other heuristics as the optimization component in this

approach, e.g., genetic algorithms. Even the combined

approach of multiple heuristics for the optimization of the

parameters could be taken into consideration.

ACKNOWLEDGEMENTS

 This work was significantly influenced by the student

work of Barthold Urban as well as the strong support of

Markus Eberling, PhD-student at the chair of knowledge-

based systems at the University of Paderborn.

REFERENCES

[1] P. Angeline, Evolutionary optimization versus particle swarm
optimization: Philosophy and performance differences. In V. W.
Porto, N. Saravanan, D. Waagen, & A. E. Eiben (Eds.), Proceedings
of evolutionary programming VII, 1998, pp. 601–610, Berlin,
Springer.

[2] T. Bartz-Beielstein, D. Blum and, J. Branke, Particle swarm
optimization and sequential sampling in noisy environments. In
Metaheuristics International Conference, edited by R. Hartl and K.
Doerner. 2005, pp. 89-94. University of Vienna.

[3] F. van den Bergh, An Analysis of Particle Swarm Optimizers. Ph.D.
thesis, University of Pretoria, Pretoria, South Africa, 2002

[4] M. Clerc and J. Kennedy. The particle swarm - explosion, stability
and convergence in multi-dimensional complex space. In IEEE
Transactions on Evolutionary Computation. Volume 6. 2002, pp. 58-
73, Washington, IEEE Computer Society.

[5] P. Cingolani, Open source particle swarm optimization library written
in Java. Available via <http://jswarm-pso.sourceforge.net/> [accessed
November 8, 2012].

[6] W. Dangelmaier and C. Laroque, Immersive 3D-Ablaufsimulation
von richtungsoffenen Materialflussmodellen zur integrierten Planung
und Absicherung von Fertigungssystemen. In Leobener Logistik
Cases - Management komplexer Materialflüsse mittels Simulation.
2007, DUV Verlage.

[7] F. Heppner and U. Grenander, A stochastic nonlinear Model for
coordinated Bird Flocks. In The Ubiquity of Chaos, edited by E.
Krasner, 1990 pp. 233-238. AAAS Publications.

[8] J. Kennedy and R.C. Eberhart, Swarm Intelligence, San Francisco,
Morgan Kaufmann Publishers Inc, 1995

[9] A.M. Law and W. D. Kelton, Simulation modeling & analysis. 3rd ed,
New York: McGraw-Hill, Inc., 2000

[10] Leandro dos Santos Coelho, A quantum particle swarm optimizer
with chaotic mutation operator, In: Chaos, Solitons & Fractals:
Volume 37, Issue 5, 2006 pp. 1409-1418.

[11] D.C. Montgomery, Design and Analysis of Experiments, 7E
International Student Version, John Wiley & Sons, Limited, 2008

[12] R.L. Rardin, Optimization in Operations Research, Prentice Hall,
1997

[13] H. Renken, C. Laroque and, M. Fischer, An Easy Extendable
Modeling Framework for Discrete Event Simulation Models and their
Visualization. In: Proceedings of The 25th European Simulation and
Modelling Conference (ESM’2011), 2011

[14] J Robinson and Y. Rahmat-Samii, Particle Swarm Optimization in
Electromagnetics. In Journal of Artificial Evolution and Applications.
2008, doi:10.1109/TAP.2004.823969

[15] Y. Shi and R. C. Eberhart, A Modified Particle Swarm Optimizer. In
Proceedings of World Congress on Computational Intelligence, 1998,
pp. 69-73. Anchorage, IEEE Computer Society.

[16] K. Suresh, S. Ghosh, D. Kundu, A. Sen, S. Das, and A. Abraham,
Inertia-Adaptive Particle Swarm Optimizer for Improved Global
Search, In Proceedings of the 2008 Eighth International Conference
on Intelligent Systems Design and Applications. Volume 2, 2008, pp.
253-258. Washington, IEEE Computer Society.

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

