
Towards Internet Scale Simulation

Anthony J McGregor
Computer Science Department, The University of Waikato

Hamilton, New Zealand
Email: tonym@cs.waikato.ac.nz

Abstract—Simulation of the Internet has long been un-
derstood to be very challenging mostly because of its scale,
diversity and the lack of detailed knowledge of many of its
components. However, two recent developments (macroscopic
topology discovery and large memory servers) mean that some
of these problems are now more tractable. Although problems
like the lack of detailed link information remain, models are
are useful for some problems that require an understanding
of how an application interacts with the Internet as a whole.
The paper presents is-0, an Internet Simulator. is-0 derives
its model of Internet topology directly from the output of
an Internet topology mapping project. Efficient design allows
is-0 to simulate packet-by-packet, hop-by-hop behaviour at
Internet scale. Validation of is-0, an example application and
performance measurements are included.

Keywords-Discrete Event Simulation, Internet Simulation.

I. I NTRODUCTION

Understanding the performance of the Internet and the
way that new applications and protocols will perform and
interact is a challenging problem that has been noted by
many authors. For example, in 1997, Paxon and Floyd wrote:

“As the research community begins to address
questions of scale, however, the utility of small,
simple simulation scenarios is reduced, and it
becomes more critical for researchers to address
questions of topology, trafc generation, and multi-
ple layers of protocols.” [1]

The main challenges they noted were: heterogeneity in
nodes, links and protocols; rapid rate of change including
size, applications, protocols and traffic characteristics; large
size; and the difficulties of building traffic models [1],
[2]. These problems are “moving targets”. Not only is
the Internet big and diverse, it is growing rapidly in both
respects. The challenges of Internet simulation, especially
the scale of the Internet, has been reiterated by many others
including [3] [4] [5] [6] [7].

Two developments have made it possible to make progress
towards simulation of the Internet as a whole. These are:
Internet macroscopic topology discovery projects and a large
increase in the memory capacity of commodity servers. In
recent years, there have been several projects that are pro-
ducing useful maps of the Internet. These include CAIDA’s
ARC infrastructure [8] running the Scamper mapping tool
[9] and Dimes [10]. Further progress on mapping the

macroscopic topology of the Internet can be expected in
the coming years with projects like the RIPE NCC Atlas
[11]. The entry of large memory servers to the commodity
market is driven by the trend towards vitalisation. Computers
with up to 512GB of RAM are now available at less than
US$40,000.

Together these two developments mean, it is now possible
to build a packet, node and link level simulation model
for the Internet as a whole that will run on commodity
server hardware. There are still many challenges that prevent
high fidelity simulation of the Internet including lack of
knowledge of the characteristics of each link and the cross
traffic links carry. However, it is possible to make models
that are useful for some problems including those where
the topology of the Internet interacts with a system in com-
plex ways but where fine grained temporal results are less
important. Examples include content distribution, reducing
peer-to-peer traffic loads and multicast optimisation.

In this paper, we describe the use of simulation to in-
vestigate the traffic load created by large scale use of the
DoubleTree optimisation [12] for topology discovery. This
was motivated by the desire to implement a Hubble [13] like
application on Atlas [11]. We present a new, open source,
simulation system,is-0. The system includes a discrete
event simulator and surrounding infrastructure to support
the process of converting the output of an Internet mapping
project to a topology model suitable for simulation, running
a set of simulations across a range of parameters values
utilising the massively parallel nature of most simulation
experiments and presenting outputs.

There are other open source, discrete event simulators.
Some, like ns-2 [14] are well established and we might
have based this project on one of them. However, the core
of a discrete event simulator is simple and most of the
contribution of this project lies in managing scale and in
supporting the whole process of taking an Internet topology
map through to the result of simulation experiment, possibly
involving many individual simulations (see Figure 1).is-0
must meet the needs of a large topology and, potentially,
billions of packet events. On the other hand, it provides less
fine grained temporal behaviour than many other simulation
projects. The need to optimise performance in terms of
both memory and CPU cycles leads to the requirement for
an implementation tailored to meeting these needs in the

175Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

simulator post−
processing

paramer based
scheduler

graphs

data
skitter

topology

other
inputs

(e.g. trace
list)

logs
and

traces

graph

tool

pre−
processor

Figure 1. is-0 Architecture

context of an Internet model.
There is a great deal more planned foris-0. We are pre-

releasing it now because it has already demonstrated its
usefulness to us in an important research area. We believed
that, other researchers will findis-0 useful. The rest of
this paper describes the system in more detail. An example
application and performance statistics are presented.

II. is-0 OVERVIEW

A. Topology

The current version ofis-0 builds its topology from
Scamper [9] output files. Scamper measures the global
macroscopic Internet topology from a set of measurement
points to one destination in every routed IPv4/24. The
output from Scamper is a set of runs where each run contains
a traceroute style probe to every destination address from
one monitor (team probing).

From this data,is-0 builds a topology model of the
Internet based on nodes and links between them. The nodes
and links alone are not enough to route packets; routing
information is also required. In the simulator, routing infor-
mation at each node represented as a table of destinations
and the associated next-hop. This information is inherent
in the Scamper data set and it is simply maintain in the
simulator topology. For conciseness, we refer to the data
structure as the “topology model” even though it contains
elements of topology and routing. The following sections
refine the topology model as it is built from Scamper data.

B. Interfaces vs Routers

Scamper, like all traceroute based tools, discovers in-
terfaces not routers; the raw data does not show which
interfaces are on the same router. The simulator topology is,
therefore, also built in terms of interfaces not routers. This is
not normally problematic because simulations are performed
in terms of packets being passed from interface to interface.
References in this paper to nodes in the topology model are
to a particular interface (not a router). Similarly, links are
between interfaces.

C. Discarded paths

Some of the paths in the Scamper data are not usable in
the simulator, mostly because they are not well formed. For
example, Scamper discovers loops in some paths. In others,
it abandons tracing because too many nodes do not reply
with a TTL expired message. In these cases, a complete
path from the source to the destination is not discovered
and the path can not be used in simulation. The Scamper
data set used for the example in section example had 5.6
million paths discovered in part or full by Scamper. Of these,
241,763 (4%) were omitted because of the reasons described
above.

D. Alternative Paths

In some cases, Scamper discovers alternative paths be-
tween nodes. Alternative paths may arise because of load
balancing or because the topology has changed during
the measurement. Scamper may discover different paths
between the same nodes when it probes between different
source/destination pairs. These alternatives are maintained
in the topology model. The same path variant is used when
packets are sent from a source to a destination as was
discovered when Scamper measured the route between the
two. In the topology data structure, this is done by including
a source as well as the destination in the next-hop table.

match the behaviour of the Internet in all cases, however
it is likely to be correct in most cases. If the source of
the alternative paths is a path change during Scampers
probing, either path is acceptable for the simulation. It isnot
required that we maintain both paths in this case but it is
acceptable. In the case where there are alternative paths due
to load balancing, using the same path as the one Scamper
discovered for this source/destination pair will mostly match
the behaviour of the Internet. This is because per-destination
and per-flow load balances are more common than per-
packet load balances in the Internet [15].

E. Unknown Paths

Scamper data does not provide a complete map of the
Internet. While it contains paths from the monitors to most
destinations it does not have the reverse paths or paths
between destinations. The extent of this missing topology
is not currently known.

The lack of return paths is resolved in the simulator
by adding a symmetric path from the destination back to
the source. It is known that Internet paths are not always
symmetric [16] . For many simulations, it is the overall
structure of the Internet (i.e., path lengths and branching)
not the exact details of particular paths that is important.If
this is the case, the symmetric nature of paths will not unduly
influence simulation results. However, without a measured
non-symmetric topology, there is no way of demonstrating
that this is true for a particular experiment.

176Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

The omission of paths between destinations is not prob-
lematic for simulations where packets are only sent between
sources and destinations (as is mostly the case in our
example). If this is not the case, the simulator has the ability
to add extra paths to the topology. These paths are, by
necessity, not based on measured topology. Extra paths are
discovered using a breadth first search from the source to
the destination using links that were discovered by scamper.
If paths from single source to multiple destinations are
required, a single search can create all the paths.

Added paths do not necessarily follow the same route as
in the Internet. The breadth first search finds the shortest
path based on the hops that were discovered by Scamper.
While Internet routing is designed minimise path length this
is in terms of the ASs that a path passes through. This may
use a link Scamper did not discover or, within an AS, the
shortest path may not be followed. Internet routing may also
includes policy which restricts the choices for a path.

An understanding of the extent to which this affects the
results of a particular simulation may be gained from a
comparison of the performance of Scamper measured paths
and the equivalent paths formed by the methodology above.
A future release ofis-0 will include automated sensitivity
analysis including the effect of added paths (although cross
traffic sensitivity is the highest priority for automated sensi-
tivity analysis).

F. Missing hops

During traceroute style probing, it is common for some
hops to not reply with a TTL expired message. Often the
hop is known to exist, because later hops do respond, but the
address of the hop is unknown. In the data set used for the
example in section VII, approximately 22% of hops are not
identified. Within the simulator, these non-responding nodes
are given a unique address.

This procedure may not exactly replicate the structure of
the Internet at the time Scamper was probing. It is possible
that, a missing hop in two different paths might be the
same interface, however, this approach inserts two different
interfaces. Automated sensitivity analysis could also allow
the impact of this effect to be determined.

G. Topology Data Structure

Within the simulator, the topology is represented in a
data structure based on nodes and links. Links contain a
reference to the node at each end of the link, the link
latency, serialisation rate, and the current link state (queue
length and when the current packet, if there is one, will have
been completely added to the the link). Links also contain
performance metrics including packets dropped, packets sent
by packet type and the peak queue length.

Nodes include their address (IP address or missing node
address) and a table of references to links that leave this
node. The table is indexed by either the destination (of the

Type Hooks
Packet
Events

newPacketHook,

packetQueuedHook,

packetArrivedHook,

packetDropHook, ttlExpiredHook,

changePacketTypeHook

Simulation
Start and
Termination

startHook, usageHook, argsHook,

logConstantsHook, cleanupHook,

heapMapValidHook, buildHook,

newNodeHook,

saveBuildGlobalsHook,

restoreBuildGlobalsHook

Hash Man-
agement

newHashEntryHook,

freeHashElementHook

Reporting progressHeaderHook,

progressHook, printStatsHook,

packetInfoHook,

summaryStatsHook,

specialAddrHook,

nodeSummaryHook

Figure 2. API Event Hooks

path, not the next hop) or, where there is more than one path
to a destination (see section II-D), the source (of the path)
and the destination.

H. Building The Data Structure

The raw Scamper data is pre-processed into a record for
each node that contains the next hop links from that node.
The resulting files are large. For the example application
described in section VII, they total a little over 2GB. Before
a particular simulation can be run, this information must be
built into the internal simulator data structures including the
hash tables, initialisation of performance metrics etc. Any
additional paths must also be added to the topology. The
resulting data structure is large (in the order of 8GB for the
example application) and it takes several minutes to load and
build. If many simulations are to be run (around 8,000 were
needed for our example experiment) the total time taken to
repeatedly load and build the data structure is significant
and the size of the data structure may limit the number of
simultaneous simulations that can be run on a machine.

is-0 can store the topology data structure in a memory
mapped file. This has two advantages. Firstly, the data
structure can be reused, avoiding most of the time otherwise
required for building it. Secondly, memory mapped files can
be shared and only a single copy kept for their read only
components. This may allow more simulations to be run in
parallel reducing the time required for large topologies on
machines with many cores.

177Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

III. PARAMETER EXPLORATION

Scripts that manage the process of concurrently running
as many parallel simulations as the hardware supports with
different parameters are included with the simulator. These
scripts manage the process of running simulations, recording
the results in appropriately named files, first cut checking
that simulations complete successfully, re-starting batches
after an interruption and logging and reporting overall
progress.

Scripts that produce plots over different combinations of
parameters are also included. Users can select the parameter
for the x- and y-axes and also an additional parameter (and
perhaps some specific values of this parameter) if more than
one line is to be drawn per plot.1 While much of this is
mundane, in a typical simulation experiment considerable
researcher time is spent on these mundane matters and
is-0 can significantly reduce this effort. A future release
will include more sophisticated parameter space exploration
inspired by Nimrod [17] and other similar tools. This will
reduce the number of simulations that need to be run as
part of an experiment by focusing attention on parts of the
parameter space that cause significant variations.

IV. API

The simulator API has three components: data structure
augmentation, event hooks and utility routines. These are
described in the following sections.

A. Data Structure Augmentation

Application related data structures (like packets and
nodes) can be extended. Our example application imple-
ments a traceroute like protocol so we have added a probe
packet type that contains, amongst other things, the value
that the TTL field had when the probe ended its outward
journey and began to return to its source. The data structures
that can be augmented in this way are: packets, which
can have new packet types and/or additional generic fields
in all packets; nodes; hash tables; and the set of global
variables that is saved when a memory image is created and
then restored when the image is reloaded for a particular
simulation run (see section II-H above).

B. Event Hooks and Calls

The second component of the API is a set of event routines
that can be called when simulation events occur that might
be important to an application. For example, the example
application usesttlExpiredHook. There are currently
25 hooks as shown in Figure 2.

The API also includes 51 function calls (and related
constants, macros and data structures) as shown in Figure 3.

1Currently, these scripts have not been fully generalised and are some-
what tailored to our example problem. However, changes required for other
applications are not expected to be great.

Type Calls
Sim.
Infrastructure

intArg boolArg usage queueEvent

warpTime simMalloc simFree

Hash makeHash freeHash

makeSpaceInHash hashSize

changeHashSize find

dumpHashTable forEachHashEntry

Address addr2str str2addr extractAddr

addrEqual addrCpy setAddr2null

Topology addLink queueLength

findDistances makeDistancesFile

processDistances addExtraPath

Packet disposeOfPacket

changePacketType makePacket

packetInfo queuePacket4nextHop

queuePacket addPacket2link

swapAddrs

Utility and
progress
reporting

chopNl commas comment flag2bool

processEachLine add2file

lastModified fileSize

skipUnknownTags getTaggedLine

registerProgressReport

unRegisterProgressReport

recordTraceEvent

For
parameters

newExploreNode freeExploreList

packetArrivedEvent

Figure 3. API Calls

V. VALIDATION

The goal of the project is to simulate the Internet as a
whole. As a consequence, it is not possible to compare
the results of simulation with the real system. However,
four other types of validation have been performed. These
are: internal consistency, manual validation against a simple
network scenario, external generic behaviour validation and
external application specific validation.

A. Internal Validation

The simulator contains a substantial amount of internal
consistency checking. There is liberal use ofasset state-
ments, particularly for pre-and post conditions (currently,
there are> 400 asset statements in the C code base of
12,500 lines). The C code also contains a hierarchy of
more extensive tests. These include, for example, checks
on the consistency of data structures, sensibility checks on
behaviours (e.g. that packets leave a FIFO queue in the
order they entered) and event queue checks. There are none
levels of the hierarchy and approximately 120 blocks of
checking code. The simulator is also run undervalgrind
to ensure there are no uninitialised variables, accesses to
freed memory or memory leaks.

178Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

D1

10.0.0.1

10.0.0.3

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.9

10.0.0.10

(controller)

10.0.0.6

10.0.0.7

10.0.0.8

S1

S2

D2

Figure 4. Network used for Hand Validation

B. Hand Validation

A simple network (see Figure 4) and test scenario was
designed and the example application simulated. This in-
volved nine nodes, nine links, including a diamond topology
and alternative load balanced paths, and two traces. The
simulator was configured to record a full trace of all events
for each link and packet. These traces were then analysed
by hand to check for consistency, errors and correct path
discovery.

C. External Validation

Simulator trace files can also be checked for correct
behaviour using a separate programme once a simulation is
complete. Separate tests check that all packets are delivered
exactly once, that they are delivered in sequence and that
the transmission and queueing time is consistent with the
links latency and serialisation rate.

The external validator was written by the same program-
mer who coded the main simulator but several months after
the original coding and in a different language (perl). It is
much slower and uses a lot more memory than the simulator
so it is not suitable for use with every run of the simulator,
rather it is normally used to check a representative set of
results. It was used to check the simulations that were hand
validated.

In addition to generic validation, which only relies on
features of the base simulator, external validation was also
applied to the example application. This involved running
traceroutes over a network configuration and then running a
program that checked that the paths discovered were correct.
This program was coded in a similar way to the generic
external validation.

VI. PERFORMANCE

Achieving the required performance, including balanc-
ing memory use and CPU cycles, required careful im-
plementation. This was informed by extensive use of the
kcachegrind/valgrind tool set. The following sections de-
scribe two optimisations in the design (but there are may

others). Section VII-A contains further performance statis-
tics in the context of the example application.

The simulator uses five different types of hash table to
improve performance. There are millions of hash tables in
use in any particular simulation run. For example, any node
can be found from its address via a hash table and the table
of next hops within a node has an associated hash table.

A common hash mechanism is used across all hashes. It
supports look up from one or two keys (e.g. the destination
or source/destination pair), insertion and deletion, chaining
through all valid entries, resizing of the hash table, and hash
performance statistics. Collision resolution is managed via
an alternate hash calculation and, if that also collides, by
linear chaining. Use of indirection minimises the memory
use of hash tables which normally have many unused entries.

The hash infrastructure includes (optional) performance
metrics and automatic hash resizing to maintain sufficient
head space for efficient operation. Resizing is relatively
expensive (especially for large hashes) so it is avoided where
possible. The topology pre-processing produces size hints
that remove the need for most resizing.

A. Event Queue

The simulator event queue is optimised for Internet sim-
ulation. In particular, most events are added for times in the
near future and there are often many events at the same time.
A fixed size, event hint look-aside table allows the correct
queue location for most events to be found with a single
table look up.

VII. E XAMPLE

The initial motivation for development ofis-0 was to
investigate the potential for DoubleTree [12] to reduce the
cost of measuring the path from many sources to a few
destinations. This problem stems from the desire to design
an implementation of an application like Hubble [13] on an
infrastructure consisting of up to 100,000 vantage points (a
design goal for the RIPE Atlas [11] project). In previous
DoubleTree work, the few sources, many destinations sce-
nario was investigated. [12]

The code for this application is included with the simu-
lator as an example. It is divided into two parts, traceroute
and extensions to traceroute for DoubleTree. Implementing
traceroute took 950 lines of code including comments,
checking and reporting code.. DoubleTree required an ad-
ditional 1,300 lines of code.

Donnet built a simulator to explore DoubleTree’s be-
haviour but was not totally happy with the level of detail that
it provided. [18]. We believe that, hadis-0 been available at
that time, he would have had access to detailed modelling
with less effort. In turn, this may have allowed more
development of DoubleTree for the same effort.

179Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000
 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

M
em

eo
y

(G
B

)

R
un

tim
e

(m
in

)

Concurrent Packets in Flight (millions)

Performance by Packets Sent and Concurrent Packets

Packets Sent (billions)

Packet Memory Use
Packet Event Rate

Figure 5. Resources by Number of Packets Sent and Concurrent Packets

A. Performance

The Internet model in this example used a Scamper
run from 3 Jan 2009. The typology had 4,300,000 nodes
and 55,000,000 links (source/destination based next hops).
22,000 traceroutes were performed in each simulation. A
total of 1835 simulations were run for each investigation
with different parameters (e.g. starting TTL, trace schedule,
stop set exchange).

The resources used per simulation varied as the
simulation parameters were changed. A typical
example (DoubleTree=yes, sources=many,
scheduling=1stage, probing=team, ttl=1
stopSetBin=250ms) required simulation of
sending 25,000,000 packets, had a peak and mean
memory usage of 8GB and ran in 945s real
time. A small number of (pathological) parameter
combinations required far greater resources. For
example, (DoubleTree=yes, sources=many,
scheduling=1stage, probing=team, ttl=1
stopSetBin=1ms) required simulation of sending 2.3
billion packets, peak and mean memory usage of 15GB and
10GB (respectively) and ran for 4,103s. At the time of peak
memory usage, there were 123 million packets in flight.

It is likely that, over time, growth of the Internet and more
extensive topology discovery will result in larger topology
models.is-0 was designed to permit multiple CPU cores to
be used in parallel on a single simulation. While this is not
yet fully implemented, planning for it is well underway and
it will be one of the first extensions implemented in future
release.

Figure 5 shows the relationship between the number of
events simulated and the memory use and real time taken for
the example application. The graph demonstrated event rates

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0 5 10 15 20 25 30 35 40 45 50 55 60

M
em

or
y

U
se

 (
G

B
)

Nodes (millions)

Memory use by Nodes and Links

Links (millions)

nodes
links

Figure 6. Memory Use Against Nodes and Links in the Topology

of around 650,000 events/s on our hardware2 Figure 6 shows
the relationship between the number of nodes and links in
the topology and the total simulator memory required for a
null simulation. This data was collected by building the data
structure for the firstn nodes in the topology.

More details of this simulation and its results are available
in [19].

VIII. C ONCLUSION

is-0 only addresses a few of the challenges of simulation
of the Internet as a whole. However, it has proven useful
and we believe others will find it helpful in exploring
problems that interact with the Internet as a whole.is-0
supports simulations with millions of nodes and billions of
packets on commodity hardware. It builds its topology model
directly from the Scamper Internet macroscopic topology
discovery project data. It also includes parameter exploration
and graphing tools to reduce the time required to undertake
Internet simulation experiments.

Some of the plans for extendingis-0 have already been
mentioned. These include: using other sources of topology
data (e.g. Dimes [10]); Nimrod [17] style parameter space
exploration; and automated sensitivity analysis.

Currently, parallel use ofis-0 relies on the embarrassingly
parallel nature of most simulation experiments by running
multiple simulations concurrently. Support exists to reduce
the memory overhead in this case. However, some simula-
tions are long and this is expected to be more common as the
Internet continues to grow and better models of the Internet
become available. Support for employing multiple cores
within a single simulation has been designed and will be in-
cluded in a future release. The code foris-0 is available from
http://research.wand.net.nz/software/.

2Intel Xeon X5570, 2.93GHz, 8192KB cache, 800Mhz DDR3 triple
channel memory, 12 concurrent simulations over 8 physical cores with two
hyper-threads each.

180Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

ACKNOWLEDGEMENTS

This work was undertaken, in part, while the author was
on sabbatical with the RIPE NCC. My thanks for their
support both practical and academic during this time. I
am grateful to the RIPE NCC and CAIDA for making the
data used in this work available. Support for the CAIDA
IPv4 Routed /24 Topology Data set is provided by the Na-
tional Science Foundation, the US Department of Homeland
Security, the WIDE Project, Cisco Systems, and CAIDA
Members.

REFERENCES

[1] V. Paxson and S. Floyd, “Why we don’t know how to simulate
the internet,” inProceedings of the 29th conference on Winter
simulation, ser. WSC ’97. Washington, DC, USA: IEEE
Computer Society, 1997, pp. 1037–1044.

[2] S. Floyd and V. Paxson, “Difficulties in simulating the inter-
net,” IEEE/ACM Trans. Netw., vol. 9, pp. 392–403, August
2001.

[3] M. Liljenstam, Y. Yuan, B. J. Premore, and D. Nicol,
“A mixed abstraction level simulation model of large-scale
internet worm infestations,” inProceedings of the 10th
IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
ser. MASCOTS ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 109–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=882460.882592

[4] M. Crovella, C. Lindemann, and M. Reiser, “Internet perfor-
mance modeling: the state of the art at the turn of the century,”
Performance Evaluation, vol. 42, no. 2-3, pp. 91 – 108, 2000.

[5] S. Wei, J. Mirkovic, and M. Swany, “Distributed worm
simulation with a realistic internet model,” inProceedings of
the 19th Workshop on Principles of Advanced and Distributed
Simulation, ser. PADS ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 71–79.

[6] J. H. Cowie, D. M. Nicol, and A. T. Ogielski, “Modeling
the global internet,”Computing in Science and Engineering,
vol. 1, pp. 42–50, 1999.

[7] H. Ringberg, M. Roughan, and J. Rexford, “The need for sim-
ulation in evaluating anomaly detectors,”SIGCOMM Comput.
Commun. Rev., vol. 38, pp. 55–59, January 2008.

[8] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov,
“Internet mapping: From art to science,” inProceedings of the
2009 Cybersecurity Applications & Technology Conference
for Homeland Security. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 205–211.

[9] M. Luckie, “Scamper: a scalable and extensible packet prober
for active measurement of the internet,” inProceedings of the
10th annual conference on Internet measurement, ser. IMC
’10. New York, NY, USA: ACM, 2010, pp. 239–245.

[10] Y. Shavitt and E. Shir, “Dimes: let the internet measure
itself,” SIGCOMM Comput. Commun. Rev., vol. 35, pp. 71–
74, October 2005.

[11] R. N. C. Centre. The ripe atlas website.Last Accessed 5
June 2011. [Online]. Available: http://atlas.ripe.net/

[12] B. Donnet, B. Huffaker, T. Friedman, and K. Claffy,NET-
WORKING 2007. Ad Hoc and Sensor Networks, Wireless
Networks, Next Generation Internet, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2006, vol.
4268, ch. Evaluation of a Large-Scale Topology Discovery
Algorithm, pp. 193–204.

[13] E. Katz-Bassett, H. V. Madhyastha, J. P. John,
A. Krishnamurthy, D. Wetherall, and T. Anderson, “Studying
black holes in the internet with hubble,” inProceedings of
the 5th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 247–262. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1387589.1387607

[14] S. McCanne and S. Floyd. ns–network simulator.Last
Accessed 5 June 2011. [Online]. Available: http://www.isi.
edu/nsnam/ns/

[15] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Fried-
man, M. Latapy, C. Magnien, and R. Teixeira, “Avoiding
traceroute anomalies with paris traceroute,” inProceedings of
the 6th ACM SIGCOMM conference on Internet measurement,
ser. IMC ’06. New York, NY, USA: ACM, 2006, pp. 153–
158.

[16] V. Paxson, “End-to-end routing behavior in the internet,”
SIGCOMM Comput. Commun. Rev., vol. 36, pp. 41–56,
October 2006.

[17] D. Abramson, J. Giddy, and L. Kotler, “High
performance parametric modeling with nimrod/g: Killer
application for the global grid?” in Proceedings of
the 14th International Symposium on Parallel and
Distributed Processing. Washington, DC, USA: IEEE
Computer Society, 2000, pp. 520–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=846234.849304

[18] B. Donnet, personal communication, 2011.

[19] T. McGregor, “DoubleTree with many sources,” inICIMP11:
The Sixth International Conference on Internet Monitoring
and Protection. Sint Maartin Island, The Netherland Antilies:
IARIA, March 2011.

181Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

