
Review of Spatial Simulation Tools for Geographic Information Systems

Luís Moreira de Sousa
Instituto Superior Técnico

Lisbon, Portugal
luis.moreira.de.sousa@ist.utl.pt

Alberto Rodrigues da Silva
INESC-ID

Instituto Superior Técnico
Lisbon, Portugal

alberto.silva@acm.org

Abstract—Spatial simulation has been largely absent from
traditional Geographic Information Systems (GIS) software
packages. Both the advanced skills needed to use this technique
and the relative specificity of its application has resulted in a
myriad of independent tools, each with different features. The
choice of a proper tool for disclosing the dynamics of change in
a GIS context is anything but obvious. This work presents a
comparative review of different types of tools available for the
development of Spatial Dynamics models. These tools are
compared along three different vectors: application domain,
ease of use by non-programmers (the typical GIS technician)
and interoperability with geo-referenced data. Unlike for other
disciplines (e.g. systems engineering) a simulation tool for GIS
with a wide variety of application domains but accessible to
non-programmers seems largely lacking.

Keywords: Spatial Simulation; Cellular Automata; Agent
Based Modelling;

I. INTRODUCTION

The data stored in an information system usually portraits the
world as it is now, or was at a specific point or interval in
time. This is especially true for spatial data but in this case
with the added certainty that it will also evolve. The patterns
of land cover and land use, of social, economic, and
demographic variables in general, constantly change with
time. Objectively, any piece of spatial data is valid only
within a specific time frame, just as if any cartographic
composition was a still picture taken to the elements
represented.
In order to deal with this reality, entire organizations exist
with the sole purpose of collecting and updating spatial data,
by field campaigns with on site visits, by air borne or space
borne data acquisition [1]. Nonetheless, regular data
collection provides at best a periodic picture of the changing
reality, which for some applications might not be enough [2].
Stakeholders of an information system may need to know not
only how the data changed in the past, but in order to plan
ahead or otherwise reason upon the data, they may also need
to understand why it changed the way it did and how it might
continue to evolve in the future.
This need is met recurring to two processes that are part of
the same scientific domain: Spatial Modelling and Spatial
Simulation. Modelling is the process by which the
fundamental drivers of change - the Spatial Dynamics - are
captured into mathematical, logic or functional constructs.

Simulation is a process through which a model is applied to a
set of data during a certain period of time. Modelling and
Simulation can be seen as a single technology, for the
process of Modelling is chiefly a trial version of Simulation.
Spatial Dynamics is captured by applying heuristic or
hypothetical models to periods of time for which the data
evolution is known, thus allowing for validation and/or
calibration. When the model reaches a satisfactory level of
success against known data it can then be applied to periods
of time for which knowledge is scarce (usually the future)
producing new sets of data, pictures of time epochs missing
from the base data [2].
The oldest of the techniques used in Spatial Simulation are
Cellular Automata (CA) [3] in which the world is discretized
in a grid of equal sized cells that evolve in accordance to a
fixed set of rules. More recently, Agent-based Simulations
have become a popular paradigm that has also been applied
to spatial simulation. An agent can be defined as an
autonomous object that perceives and reacts to its
environment [4,5], a concept that largely benefited from the
emergence of Object Oriented (OO) programming. Agent-
based Simulations and CA are two concepts that
superimpose to some extent in the GIS context, though the
former brought new planes of processing where geographic
entities not only react to stimuli but also store knowledge and
reason before acting. Beyond that, agents can be used to
model phenomena that do not have precise geographic
meaning, such as social or economic interactions.
On the GIS related sciences, Spatial Simulations have been
used extensively, of which the following fields can de
highlighted

 Urban Planning - understanding and forecasting
changes in the urban landscape to allocate new
infrastructure [2];

 Land Use - studying the dynamics of land use, e.g.
changes between agricultural, urban and forest
areas [6];

 Forestry/Wild Fire - understanding forest growth,
studying and anticipating fire spread [7];

 Biology - modelling habitat evolution and studying
population dynamics [8].

Of the several spatial analysis techniques, Spatial Simulation
is the most complex; a simple statistical or mathematical
trend analysis, predictive enough for most data recorded in
regular information systems, is insufficient in GIS due to the
multi-dimensional and heterogeneous character of spatial

169Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

data. Furthermore, the augmented degrees of freedom of
spatial data result in highly specific models, only usable
within the particular application in focus. Thus, most spatial
dynamics models are developed ad hoc by the end user
organization, developing its own software libraries. Modern
GIS packages continue largely lacking tools dedicated to this
technology.
Using a general purpose programming language to build a
Spatial Simulation the majority of the instructions coded are
extraneous to the concepts in the underlying model. Besides
implementing the model, the program has to control the flow
of execution, manage system resources, and manipulate data
structures. Burdening the model with these tasks can lead to
several problems [9]: (i) difficulties verifying the correct
model implementation by the program; (ii) limited model
generality due to difficult modification and/or adaptation;
(iii) difficulty comparing computer models, usually restricted
to their inputs and outputs [10]; (iv) problematic integrating
with other models or tools (e.g. GIS or visualization
packages), often limited to the exchange of output files.
Beyond general purpose programming languages, presently a
spectrum of Spatial Simulation tools can be devised, ranging
from those that present support at Program-level, closer to
the programming language, to those that operate at Model-
level, closer to the conceptual model that represents reality
[9]. Somewhere in the middle of this spectrum lay Domain
Specific Languages (DSL). For each of these categories there
is a set of advantages and drawbacks that must be carefully
weighted before choosing a particular tool.
This article reviews a series of spatial modelling/simulation
tools in the GIS context, in which of the categories
presented: Program-level tools (Section II), Model-level
tools (Section III) and Domain Specific Languages (Section
IV). Section V compares the set of tools reviewed along
three vectors: application domain, ease of use and
interoperability with geo-referenced data. Section VI sums
up the article and its conclusions.

II. PROGRAM-LEVEL TOOLS

Program-level support tools extend the facilities available in
general-purpose programming languages, usually providing
useful software libraries for building specific classes of
models. This approach substantially reduces coding time and
can increase program reliability. Higher-level code, usually
in a general-purpose OO programming language, specifies
how objects are used to produce the desired model
behaviour. These tools can be called code packages, code
libraries or toolkits.
The main advantage of this type of tools is the encapsulation
of the model from functionality not directly related to spatial
dynamics. These include, graphical display, data input and
output, statistical data collection, etc, for which a plethora of
functions is provided in the form of a code library. The
improvements are two fold: (i) it relieves the modeller from
banal programming tasks, allowing a higher focus on
dynamics; (ii) it produces leaner and easier to read code, for
much complexity is isolated and standardized by the code
library.
On the downside these tools require an extra learning effort
for their proper use. Beyond having relevant knowledge on
the base programming language, a modeller wishing to use

on of these tools must learn to some detail the behaviour of
at least part of the functions/objects/methods provided by the
tool-kit. The more the functionality it has to offer, the longer
will it take to fully learn its usage. Besides that, Bennenson
and Torrens [11] suggest that with denser libraries,
programmers can eventually run into some discomfort with
conflicting or incompatible functionality that is only found at
later development stages. These disadvantages have been
mitigated to some extent with the emergence of user
communities that share experience and assistance and by
opening and sharing the tool-kit's source code.
De Smith et. al. [12] reported that by 2007 more than 100 of
these toolkits were available worldwide. A selection of the
most popular is described below.
Swarm was the first of these tools, developed during the
1990s at the Santa Fé Institute, delivering a set of objects
and methods for the development of spatial simulations and
results presentation [13]. It yearned great popularity in its
early days, but integration with GIS is weak, limited to
raster data.
The Recursive Porous Agent Simulation Tool-kit
(RePAST) is a newer Java library that evolved from an
eclectic package at the Chicago University, supporting
different techniques that go well beyond spatial simulation,
which have made it very popular [14]. Perhaps the most
useful of these tools today, it also provides good integration
with GIS.
The Multi-Agent Simulator Of Neighbourhoods (MASON)
is also a Java library but conceived with the aim of being
light, fast and portable. Conceived at the George Mason
University, it is a modern tool, highly compact, that
although providing less functionality than RePAST [15],
already supports interaction with both vector and raster data
sets.

III. MODEL-LEVEL TOOLS

Model-level support tools allow the usage of spatial
simulation models without requiring programming. These
are pre-programmed models, designed for specific
application fields that can be parametrized by the user. The
larger the number of parameters the user can set and update,
the larger the tool's flexibility. They allow faster model
development and provide fairly straightforward mechanisms
for implementation, though invariably constraint the
modeller to a specific application and dynamics framework.
The Object-Based Environment for Urban Simulation
(OBEUS) is a tool dedicated to Urban Planning and
Management, developed at the Tel Aviv University, as an
implementation of the theory of Geographic Automata
Systems [11]. The tool allows the development of models
through a graphical interface that then generates a C# coded
simulation which maybe further refined by coding in a
commercial C# workbench.
AnyLogic is an eclectic commercial tool supporting various
areas of simulation, with pre built models on specific areas.
It provides several graphical languages to develop model
behaviour through state charts and flow diagrams, plus a
code library to be used with Eclipse for model refining. It

170Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

also ships with a GIS API that allows the input of spatial
data.
The Tool for Exploratory Landscape Scenario Analyses
(TELSA) is a program specialized in ecosystems, the
typical commercial tool for spatial simulation, allowing the
study of different management scenarios. It completely
dispenses programming and is parametrizable through a
diagrammatic language (VDDT) developed by the vendor,
ESSA Technologies [16]. It is dependent on several third
party commercial software, included those that provide GIS
interoperability.
LANDIS is the result of a joint project of the US Forest
Service with several universities of that country, is a
simulation for the forest land cover at large scale. The user
provides a set of input spatial variables in the form of raster
layers for which a number of pre-defined behaviours is
available [17].
SLEUTH is the oldest of the tools of this genre, created
back in the mid 1990s at the University of California and
dedicated to urban development. It uses only six spacial
raster layers as input, for which a set of behaviours can be
adjusted. It became a popular tools in its domain, being
successfully applied to different parts of the world [18].

IV. DOMAIN SPECIFIC LANGUAGES

Midway between Program-level and Model-level support
tools are domain specific tools, usually providing Model-
level support for a range of application domains. They make
fewer assumptions about the underlying model structure than
do pre-programmed models, often providing ways of
developing new behaviours. Programming is often required
but in a restricted environment where behaviour is described
using simple constructs, encapsulating most of the traditional
coding activities. A pure DSL provides a programming
language, either textual or graphical, as the sole developing
infrastructure.
StarLogo/NetLogo is the last of a generation of languages
that evolved at the MIT from the functional language Logo,
specialized on agent-based simulation. Closed source, it has
been used as teaching tool due to the simplicity of the code
it produces. Nevertheless, it may also be a useful option for
prototyping in real life problems [19]. Interaction with GIS
is supported, but only for input data sets.
AgentSheets is a simulation tool funded by the National
Science Foundation in the United States , developed for
teaching purposes whereby models are built in a drag-and-
drop interface using graphical stereotypes [20]. It is being
used as the basis of several educational courses mostly
aimed at high school. Though simulations with a spatial
meaning can be developed, no integration with GIS data is
available.
The Spatially Explicit Landscape Event Simulator (SELES)
is a declarative language for landscape dynamics modelling,
resulting froma research project at the Simon Fraser
University. It tries to balance the flexibility of programming
with the ease of use of pre-programmed models [9]. A
dedicated development environment is provided, that though

closed source, is freely distributable. GIS interoperability is
guaranteed by the input and output of raster datasets.
Financed by the Institut National de la Recherche
Agronomique (INRA) in France, ,the Modelling Based on
Individuals for the Dynamics of Communities (MOBYDIC)
project produced a programming language dedicated to
population dynamics. It allows the development of complex
models from simple primitives, close to natural language
[21], in reality being a code library for the OO language
Smalltalk. It provides no direct interoperability with spatial
information.

V. COMPARISON AND PRESENT DIFFICULTIES

In this section a comparative classification is performed
of each tool according to three vectors of analysis:
applications domain, ease of use and GIS interoperability. A
three grade system is used: good, medium and weak, denoted
respectively by three, two and one stars. In cases where a
particular tool doesn't provide support no grade is attributed
(represented with the “-” character).
Table I compares the application domain of each tool. In this
comparison not only are taken into account the native
application areas, but also the tools' underlying platform and
distribution flavour. While a certain tool may present itself as
a one-size-fits-all solution for spatial simulation, it is
important to assess other constraints to its application, such
as platform dependency, extensibility or portability. What
can be observed from this comparison is that Program-level
tools are much more broad reaching in this regard than other
tools. Model-level tools or DSL not only narrow their scope
in their native application field but also invariably introduce
dependencies on third parties, either be it on other software
or operating systems. Only two of these tools stand out in
this regard: AnyLogic and NetLogo, which attempt at wider
portability by adopting Java as platform; nonetheless, being
closed source tools, are always at a disadvantage against
Program-level tools, especially in scientific applications
where verifiability is paramount.
In Table II is compared the ease of use of each tool. Without
surprise Model-level tools appear as those easier to learn and
use without programming training. These are also almost
exclusively those tools that provide graphical interfaces for
model development. RePAST provides a diagrammatic
interface for behaviour description, but it is somewhat
restricted to a single aspect of development. Of the DSL,
only AgentSheets provides a graphical development
interface, an aspect that casts these tools at visible
disadvantage against Model-level solutions.
The last comparison vector, GIS integration, is presented in
Table III. Each tool was assessed in terms of its capability to
interact with spatial datasets in common formats (Shapefile,
TIFF, etc) both as inputs to models and as outputs to
visualize results in GIS software. This assessment also
distinguished between vector and raster formats, for some
data may only be available in one of them (e.g. satellite
imagery). The first point to make is that specialization seems
also to impose a loss of GIS interoperability. Of the twelve
tools surveyed, only five can both read and write some form
of geo-referenced data, and of these, only two - MASON and
RePAST - operate with both raster and vector datasets. Two

171Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

of the DSL don't even allow any sort of direct interaction
with GIS data. Spatial result output, particularly, seems to be
an area where many spatial simulation tools are yet to reach
maturity.
Looking at Program-level tools in general, they can alleviate
some of the burdening of directly using a general purpose
programming language, but still require good programming
skills from the modeller [22]. The full knowledge of one of
these code libraries is something achievable only with
several months of practice [23]. Today these tools are
tendentiously open source, by one way or another operating
on several computer platforms and providing good GIS
integration. Coupling this characteristic to their wider
application scope, Program-level tools usually gather around
them large communities of users, that provide informal, but
extensive, support.
Model-level support tools tend to be quite specific, and much
of the model behaviour and assumptions are hidden in the
program and may not be explicit or modified; their use in
other application fields is largely impossible. The modeller
can in fact dispense programming skills using this kind of
tools but gets constrained to a specific field and overall
simulation behaviour. They also tend to narrow the
interaction with geo-referenced data, by imposing certain
formats or in some cases by lacking output functionality.
Evolution or generalization of these tools can sometimes
become too expensive and fate them to extinction.
Traditionally they take advantage of market niches providing
for the needs of a specific and restricted group of users, thus
the commercial nature of many of them. Community support
is usually weak or non-existent; more often, support is a paid
service.
The use of DSL facilitates modelling and reduces the build-
up time of Spatial Simulations, but existing languages do not
avoid the need of programming skills. As with any other
programming language, the user has to understand keyword
meaning and how to compose a set of instructions into a
program. Also, in general, these languages produce final
models with lower computational performances than those
produced with Program-level support tools. DSL for spatial
simulation are found mainly for educational purposes, in
some cases more resembling toys than analysis tools. This is
also patent in the lack of GIS integration most of them show,
some even totally lacking such sort of functionality. Users
communities tend to be larger than those of Model-level
tools, but on the other hand platform dependency is often an
issue.
The survey presented can be used as a guide to choose a
spatial simulation tool for GIS applications, but the weight of
each comparison vector should always be adapted to each
particular case. For applications where GIS integration is a
relevant need, with both input and output of geo-referenced
data being a requisite then MASON and RePAST are nearly
the only options. On the other hand, if ease of use is a more
important necessity, then models like LANDIS or SLEUTH
can be options if matching the application domain.
Somewhere in between can be found SELES, that too
imposes a relevant application narrowing, and NetLogo,
which essentially trades ease of use for GIS integration and
extensibility.

VI. SUMMARY

 Techniques for Spatial Simulation have existed in one way
or another for many decades, actually preceding the
emergence of GIS software. It was only with the maturing of
the latter that Simulation was envisioned on large scale
spatial datasets. In the wake of the OO maturing process, a
host of software tools appeared throughout the 1990s
providing support for spatial simulation in most (if not all)
GIS fields of application.
The main objective of these techniques is to study Spatial
Dynamics, the set of local rules or constructs that when
repeatedly applied to the variables and space considered
produce unanticipated macroscopic results. Spatial
Dynamics analysis is a process composed by two main steps:
Modelling and Simulation. The Modelling phase discloses
the rules by which the variables in analysis changed the way
they did; this is usually a prototyping process against a set of
historical data. With the model fully developed, it is then
applied to the last known state of the space domain for
predictive purposes. The results of this process are the
drivers of change (the Dynamics) and future evolution of the
spatial domain being studied.
Existing software tools for Spatial Simulation can be
classified in three types: Program-level, Model-level and
DSL. Program-level tools are code libraries providing
specific methods for the rapid coding of models with popular
OO languages; usually multi-purpose and cross-platform,
they gather large user communities. Model-level tools are
parametrizable pre-programmed models aimed at strict fields
of application; largely dispensing programming skills, they
tend to be used by small groups of users and are usually
dependent on commercial software or are commercial
themselves. DSL try to bridge between the two other types,
providing easier model set-up environments without
compromising application scope as much as model-level
tools; whilst gathering relevant communities in some cases,
DSL tend to be mostly educational tools, with fewer
examples of real-life application.
Of a set of twelve different simulation tools surveyed only
two showed to be fully matured when it comes to the
integration with GIS data, both Program-level libraries:
MASON and RePAST. A trend is apparent whereby ease of
use implies a loss of functionality regarding geo-referenced
data input and output; some Model-level tools show some
degree of GIS integration but impose a significant scope
limitations. NetLogo is the tool closest to bridge this gap,
though impaired by a closed source philosophy and lack of
geo-referenced data output.
All the tools considered, with no exception, present
important compromises in their choice for spatial simulation
in the GIS domain. Space for improvement in the field seems
to exist.

REFERENCES

[1] Kraak, M. and Ormeling, F., "Cartography: Visualization of
Spatial Data". Prentice Hall; 3rd edition. 2009.

[2] Batty, M., "Cities and Complexity", MIT Press, 2007.
[3] Wuensche, A. and Lesser, M., "The Global Dynamics of

Cellular Automata", Addison-Wesley, 1992.
[4] Ferber, J., "Multi-Agents Systems. In: An Introduction to

Distributed Artificial Intelligence", Addison-Wesley, 1999.

172Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

[5] Weiss, G., ed., "Multiagents Systems: a Modern Approach to
Distributed Artificial Intelligence", MIT Press, 1999.

[6] Messina, J.P. and Walsh, S.J., "The application of a cellular
automaton model for predicting deforestation", In:
Proceedings of the 4th International Conference on
Integrating GIS and Environmental Modelling: Problems,
Prospects and Research Needs, Banff, Canada, 2000.

[7] Li, X. and Magill, W., "Modeling fire spread under
environmental influence using a cellular automaton
approach", Complexity International, 8, 1–14, 2001.

[8] Ermentrout, G.B. and Edelstein-Keshet, L., "Cellular
Automata Approaches to Biological Modeling", Journal of
Theoretical Biology, 160, 97–133, 1993.

[9] Fall, A. and Fall, J., "A domain-specific language for models
of landscape dynamics", Ecological Modelling, 141, 1–18,
2001.

[10] Olde, V. and Wassen, M., "A comparison of six models
predicting vegetation response to hydrological habitat
change", Ecological Modelling, 101, 347–361, 1997.

[11] Benenson, I. and Torrens, P., "Geosimulation: Automata-
based modeling of urban phenomena", London: John Wiley &
Sons, 2004.

[12] de Smith, M.J., Goodchild, M.F., and Longley, P.A.,
"Geospatial Analysis: A Comprehensive Guide to Principles,
Techniques and Software Tools", Troubador Publishing Ltd,
2007.

[13] Minar, N., Burkhart, R., Langton, C. and Askenazi, M., "The
Swarm simulation system: a toolkit for building multi-agent
simulations", 1996.

[14] Collier, N., Howe, T., and North, M., "Onward and upward:
the transition to Repast 2.0", In: First Annual North American

Association for Computational Social and Organizational
Science Conference, Pittsburgh, Pa, 2003.

[15] Luke, S., et al., "MASON: A Multi-Agent Simulation
Environment". Simulation: Transactions of the society for
Modeling and Simulation International, 82(7), 517–527, 2005.

[16] Merzenich, J. and Frid, L., "Projecting Landscape Conditions
in Southern Utah Using VDDT", In: M. Bevers and T.M.
Barrett, eds, Systems Analysis in Forest Resources:
Proceedings of the 2003 Symposium, Portland, OR, 157–163,
2005.

[17] Mladenoff, D., "LANDIS and forest landscape models".
Ecological Modelling, 180 (1), 7 – 19, 2004.

[18] Yi, W. and He, B., "Applying SLEUTH for Simulating Urban
Expansion of Beijing", In: 2009 International Joint
Conference on Artificial Intelligenc, Vol. 2, 652–656, 2009.

[19] Railsback, S.F., Steven, L.L., and Jackson, J.K., "Agent-based
Simulation Platforms: Review and Development
Recommendations", Simulation, 82 Issue 9, 2006.

[20] Repenning, A. and Ioannidou, A., "Broadening Participation
through Scalable Game Design", In: in Proceedings of the
ACM Special Interest Group on Computer Science Education
Conference, (SIGCSE 2008), 305–309, 2008.

[21] Ginot, V., Le Page, C., and Souissi, S., "A multi-agents
architecture to enhance end-user individual based modelling",
Ecological Modelling, 157, 23–41, 2002.

[22] Tobias, R. and Hofmann, C., "Evaluation of free Java-
libraries for social-scientific agent based simulation", Journal
of Artificial Societies and Social Simulation, 7 (1), 2004.

[23] Samuelson, D. and Macal, C., "Agent-Based Simulation
Comes of Age", OR/MS Today, 33 (4), Lionheart Publishing,
Marietta, GA, USA, 2006.

TABLE I. COMPARISON OF THE TOOLS SURVEYED REGARDING APPLICATION RANGE.

Application Programming
Platform

Distribution

Program-level
tools

Swarm Multi-purpose Objective-C Open Source

MASON Multi-purpose Java Open Source

RePast Multi-purpose Java, .NET Open Source

Model-level
tools

OBEUS Urban Planning .NET Shareware

AnyLogic Several Specific Java Commercial

TELSA Landscape Management unknown Commercial

LANDIS Forest Succession .NET Shareware

SLEUTH Urban Development C Open Source

Domain
Specific

Languages

NetLogo Multi-purpose Java Shareware

AgentSheets Educational unknown Commercial

SELES General Landscape unknown Shareware

MOBIDYC Population Dynamics Smallralk Open Sourcea

a. Dependent on commercial software.

173Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

TABLE II. COMPARISON OF THE TOOLS SURVEYED REGARDING EASE OF USE.

Modelling
Language

Development
GUI

Programming
Skills

Community

Program-level
tools

Swarm Objective-C, Java none high Wiki, Mail-list

MASON Java none high Mail-list

RePAST Java, C#, others Eclipse high Mail-list

Model-level
tools

OBEUS C# yes low to high none

AnyLogic Diagrammatic, Java yes low to high none

TELSA VDDT yes none none

LANDIS Parametric none none Forum

SLEUTH Parametric none none Forum

Domain
Specific

Languages

NetLogo Logo specialization none low to medium Mail-list

AgentSheets Conversational Prog. yes none to high none

SELES Declarative DSL none none to medium Wiki, Forum

MOBIDYC Declarative DSL none none to medium none

TABLE III. COMPARISON OF THE TOOLS SURVEYED REGARDING GIS INTEROPERABILITY.

Input Output Vector Raster

Program-
level tools

Swarm

MASON

RePast

Model-level
tools

OBEUS

AnyLogic

TELSA

LANDIS

SLEUTH

Domain
Specific

Languages

NetLogo

AgentSheets -

SELES

MOBIDYC -

174Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

	I. Introduction
	II. Program-level Tools
	III. Model-level Tools
	IV. Domain Specific Languages
	V. Comparison and Present Difficulties
	VI. Summary

