
Hybrid Approach to Abstract Planning of Web Services

Artur Niewiadomski
Institute of Computer Science

Siedlce UPH
Siedlce, Poland

e-mail: artur.niewiadomski@uph.edu.pl

Wojciech Penczek
Institute of Computer Science

Polish Academy of Science and UPH
Warsaw, Poland

e-mail: penczek@ipipan.waw.pl

Jaroslaw Skaruz
Institute of Computer Science

Siedlce UPH
Siedlce, Poland

e-mail: jaroslaw.skaruz@uph.edu.pl

Abstract—The paper deals with the abstract planning problem
– the first stage of the Web Service Composition in the PlanICS
framework. Abstract planning consists in finding (multisets of)
service types which can potentially satisfy the user query. We
introduce a novel planning technique based on a combination of
Genetic Algorithm with a Satisfiability Modulo Theories Solver,
which allows to improve the efficiency of each separate method.
The paper presents also some experimental results which show
the advantages of the hybrid method when applied to large search
spaces with many alternative solutions.

Keywords-Web Service Composition; Abstract Planning; Genetic
Algorithm; Satisfiability Modulo Theories; Hybrid Algorithm

I. INTRODUCTION

The Web Service Composition (WSC) problem [1][2][3]
consists in composing simple functionalities, accessible via
well-defined interfaces, in order to achieve more complex
objectives. This is one of the main ideas of Service-Oriented
Architecture (SOA) [1]. Unfortunately, WSC is a complex and
hard problem and therefore requires an application of quite
sophisticated methods and tools.

PlanICS [4] is a framework aimed at WSC, easily adapting
existing real-world services. The main assumption in PlanICS

is that all the Web services in the domain of interest as well as
the objects that are processed by the services, can be strictly
classified in a hierarchy of classes, organised in an ontology.
Another key idea is to divide the planning into several stages.
The first phase deals with classes of services, where each class
represents a set of real-world services, while the other phases
work in the space of concrete services. The first stage produces
an abstract plan composed of service classes [5]. Then, the
Offer Collector (OC), i.e., a module of PlanICS, interacts with
instances of the service types constituting the abstract plan
and retrieves data used in the concrete planning (CP) phase.
As a result of CP, a concrete plan, i.e., a sequence of offers
satisfying the predefined optimization criteria is obtained. Such
a multiphase approach enables to reduce dramatically the
number of Web services to be considered and inquired for
offers.

This paper deals with the Abstract Planning Problem
(APP), which is known to be NP-hard [5]. Our previous works
employed several heuristic methods to solve APP: Genetic
Algorithm (GA) [6][7], a translation to Petri nets [8], and
Satisfiability Modulo Theories (SMT) Solvers [5]. The results

of the extensive experiments show that the proposed methods
are complementary, but every single one suffers from some
disadvantages.

The main disadvantage of an SMT-based solution is often a
long computation time, which is not acceptable in the case of
a real-world interactive planning tool. The translation to Petri
nets seems to be an efficient planning method, but only for
some specific types of ontologies. On the other hand, a GA-
based approach is relatively fast, but the probability of finding
a solution, as well as the number of solutions found, decrease
with the increase of the plan lengths.

Thus, our aim consists in exploiting the advantages of the
two abstract planning methods – based on GA and SMT – by
combining them into one hybrid algorithm. The main idea of
our hybrid approach involves a modification of the standard
GA in such a way that after every iteration of GA several
individuals are processed by the SMT-based procedure, which
aims at modifying them in order to obtain solutions of APP.

In our previous papers [9][10], we showed several variants
of hybrid algorithms for solving the Concrete Planning Prob-
lem (CPP). However, in the case of CPP we dealt with the
constrained optimisation problem. The main goal was to find
a concrete plan satisfying all the constraints and maximizing
the quality function. Here, in case of APP, the main aim is to
find all abstract plans with a fixed number of service types.
In practice, this means finding as many alternative plans as
possible, using available resources (e.g., computer memory and
computation time). Therefore, the main contribution of this
paper is a new version of a hybrid algorithm combining GA
with SMT, which finds abstract plans. Since we build upon our
previous work, the general idea is somehow similar to the one
applied in [9]. However, due to the fundamental differences
between CPP and APP, the realisation of the hybrid abstract
planner is substantially different than the hybrid concrete ones.
The details are discussed at the end of the next subsection.

A. Related Work

The existing solutions to the WSC problem are divided into
several groups. Following [11] our hybrid algorithm belongs to
the AI planning methods. Other approaches include: automata
theory [12], situation calculus [13], Petri nets [14], theorem
proving [15], and model checking [16]. In what follows, we

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

shortly review the literature on composition methods related
to our non-hybrid and hybrid algorithms.

A composition method closest to our SMT-based method
[5] is presented in [17], where the authors reduce WSCP
to a reachability problem of a state-transition system. The
problem is encoded as a propositional formula and tested
for satisfiability using a SAT-solver. This approach makes
use of ontologies describing a hierarchy of types and deals
with an inheritance relation. However, we consider also the
states of the objects, while [17] deals with their types only.
Moreover, among other differences, we use a multiset-based
SMT encoding instead of Propositional Satisfiability Problem
(SAT).

As far as our GA-based solution of APP is concerned, the
approach closest to ours is given in [18], where GA is used to
one phase planning, which combines an abstract and a concrete
one. The idea of a multiset representation of a GA individual
has been also used in [19]. However, contrary to our approach,
no linearization of a multiset is generated in order to compute
the fitness value.

Hybrid algorithms for WSC are also known in the litera-
ture. Jang et al. [20] use a combination of Ant Colony Algo-
rithm with GA to find a concrete plan. While the experimental
results are better than these obtained using a simple GA, the
number of service types and offers used are not sufficient to
draw general conclusions about efficiency of this approach. A
combination [21] of two evolutionary algorithms, Tabu Search
and GA, was also used to CP. Although this method allowed to
find good quality concrete plans, our hybrid algorithm allows
for dealing with much larger search spaces.

In our previous papers [9][10], we presented several vari-
ants of hybrid algorithms combining GA and SMT. One of
them exploits an SMT-solver in order to (partially) generate
the initial populations for GA. The other versions of hybrid
algorithms are sightly modified GAs using an SMT-solver as
a local search engine. That is, given an individual with a
relatively high fitness value, an SMT-based procedure tries
to change values of several genes in order to improve the
individual. This approach is the closest to the method proposed
in the present paper. Here, we also exploit an SMT-solver to
improve some individuals of a population maintained by GA,
but that is where the similarities end. The main differences
result from various domains and the definitions of the abstract
and concrete planning. Another difference is in what “the
improvement” means in each case. In the case of CPP one is
searching for such values of genes that satisfy the (predefined)
constraints. However, satisfiability of the constraints is just
one of the fitness function components, so such an improved
individual is usually helpful for GA, but it is unlikely a final
solution. On the other hand, in the case of the hybrid method
applied to solve APP, if the SMT-based procedure returns
an improved individual, then it already represents an abstract
plan. The next group of differences are the technical details of
the algorithms, like, e.g., the strategies regarding when, how
often, and how many times SMT-solver should be run, which
and how many genes are to be changed, and how to choose
the individuals being good candidates to an improvement.
Moreover, according to our best knowledge, there are no other
approaches combining symbolic and evolutionary methods into
hybrid algorithms.

abstract
planner

ontology
provider

concrete
planner

service registry

user interface:

ontology browser

service registration
 module

query creator

expression parser

plan viewer

plan executor etc.

web services interfaces

offers

service selection

abstract
plans

service registration

source
of semantics

execution
of plans

a user
query

ontology browsing

offer
collector

offer
plans

Figure 1. A simplified diagram of the PlanICS system architecture

The rest of the paper is structured as follows. In Section II,
the PlanICS framework is introduced and APP is formulated.
Section III presents the main ideas of our hybrid approach
as well as some technical solutions. Next, the preliminary
experimental results are given and discussed. The paper ends
with some conclusions.

II. PLANICS FRAMEWORK

This section sketches the main ideas behind the PlanICS

framework and gives all the intuitions necessary to formulate
the abstract planning problem. The formal definitions can be
found in [5].

An ontology contains a system of classes describing the
types of the services as well as the types of the objects they
process. A class consists of a unique name and a set of the
attributes. By an object, we mean an instance of a class. By a
state of an object, we mean a valuation of its attributes. A set
of objects in a certain state is called a world.

The main goal of the system is to find a composition of
services that satisfies a user query. The query interpretation is
defined by two sets of worlds: the initial and the expected one.
Moreover, the query may include several additional constraint
sets used at different planning stages. Figure 1 shows the
general PlanICS architecture. The bold arrows correspond to
computation of a plan while the thin arrows model the planner
infrastructure. While this paper concerns APP, in what follows
we focus on the abstract planning phase.

A. Abstract Planning Problem

The first stage of the composition in the PlanICS framework
is the abstract planning. It consists in matching services at
the level of input/output types and the abstract values. That
is, because at this stage it is sufficient to know if an attribute
does have a value, or it does not, we abstract from the concrete
values of the object attributes, and use two special values set
and null.

Thus, for a given ontology and a user query, the goal of the
abstract planning is to find such a (multi)set of service types
that allows to build a sequence of service types transforming
an initial world of the user query into some final world, which
has to be consistent with an expected world, also defined as a
part of the query. The consistency between a final world and an
expected one is expressed using the notion of the compatibility
relation, formally defined in [5]. Intuitively, a final world Wf

is compatible with an expected world We if the following

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

conditions are met: (i) for every object oe ∈We there exists a
unique object of ∈ Wf , such that both the objects are of the
same type or the type of of is a subtype of oe; (ii) both the
objects agree on the (abstract) values of the common attributes.

The result of the abstract planning stage is called a Context
Abstract Plan (CAP). It consists of a multiset of service types
(defined by a representative transformation sequence), contexts
(mappings between services and the objects being processed),
and a set of final worlds. However, our aim is to find not
only a single plan, but many (significantly different, and all
if possible) abstract plans, in order to provide a number of
alternative ways to satisfy the query. We distinguish between
abstract plans built over different multisets of service types.
See [5] for more details.

III. HYBRID APPROACH TO SOLVE APP

In this section, we recall some details of our GA-based
abstract planner, as a base of the new hybrid algorithm. Then,
an analysis of our previous experimental results obtained using
GA and SMT is provided. Finally, basing on this analysis, the
hybrid algorithm is proposed.

A. Application of GA to solving APP

The base of our hybrid approach is the standard GA
aimed at solving APP. GA is a non deterministic algorithm
maintaining a population of potential solutions during an
evolutionary process. A potential solution is encoded in a form
of a GA individual, which, in case of APP, is a sequence of
natural values representing service types. However, since each
abstract plan makes use of the multiset concept, the individuals
differing only in the genes ordering are indistinguishable. In
each iteration of GA, a set of individuals is selected for
applications of genetic operations, such as the standard one-
point crossover and mutation, which leads to obtaining a new
population passed to the next iteration of GA. The selection
of an individual and thus the promotion of its offspring to the
next generation depends on the value of the fitness function.

Before the fitness function is calculated, every individual
is processed by a procedure which is trying to find such an
ordering of genes that an individual starts with a transformation
sequence of a maximal length (see [6] for details). Moreover,
such an executable prefix of an individual consists of good
service types. Intuitively, a service type is good if it produces
or modifies objects that are a part of some expected world, or
they are an input of another good service type. Note that all
the abstract plans are built solely of good service types only.

More details on applying GA to abstract planning can be
found in [6][7].

B. Analysis

Let us begin with an analysis of the GA behaviour. Our
previous works on an application of GA to solve APP show
that a short computation time is certainly its advantage, but on
the negative side the probability of finding a solution decreases
along with the length of an abstract plan. Moreover, GA is
unable to find solutions for instances with more than 6 services
and several abstract plans in a search space.

Figure 2. Hybrid algorithm flowchart.

On the other hand, the computation time of the SMT-
based algorithm applied to APP is longer (comparing to GA),
but all the solutions are found for instances with up to 9
services. Moreover, SMT performs a (symbolic) exploration of
the whole search space to make sure that there is no other plan
up to the given length. However, for instances with 12 services
the SMT-solver is able to finish the computation within the
given time only for search spaces containing one plan. For the
remaining cases it indeed returns at least one solution, but it
does not guarantee that more plans do not exist. The above
discussion together with our previous successful applications
of the hybrid algorithms to CPP [9][10], lead to a conclusion
that a promising approach should consist in a combination of
both approaches exploiting their advantages. To this aim we
have to identify (and encode as an SMT formula) such a sub-
problem of APP, which is solvable for an SMT-solver in a
reasonable short time.

C. Algorithm

The problem we have encountered while solving some hard
APP instances is as follows. Quite frequently GA ends up
with unfeasible solutions containing only a few ’unmatched’
services. This leads to the main idea of our hybrid approach. It
relies upon an application of SMT to improve some number of
the best individuals in each iteration of GA. An improvement
consists in finding such good service types that can replace the
unmatched ones. If such service types exist, then the modified
individual represents an abstract plan. Figure 2 shows the
consecutive steps of the hybrid algorithm.

Our hybrid algorithm mimics the standard steps of GA,
which are modified in the following way. In each iteration of
GA, after an evaluation step, a fixed number of top individuals
(which do not yet constitute a complete abstract plan) are
considered as candidates for an SMT-based improvement. Let
I be an individual consisting of k genes. Let e(I) denote the
length of the maximal executable prefix of I and g(I) denote
the number of good service types of I . Then, the individual I is
passed to the SMT-based procedure if the following conditions
are met:

• dk2 e ≤ e(I) < k, and

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

• g(I) ≥ dk2 e.

Thus, only the individuals consisting at least in a half of good
service types are considered as candidates for an improvement.
Moreover, such a candidate should contain an executable prefix
consisting of at least dk2 e service types, but also having at least
one gene to be changed.

If an optimal solution is found by SMT, then it is passed
back to the GA population. The fixed number of individuals
passed to the SMT procedure assures that only the individuals
that have a real chance to be improved are considered for
passing to SMT. Otherwise, this could result in a too long
computation time of the SMT-based procedure. While an
optimal solution is unknown a priori, it is very difficult to
depict whether an individual is near to an abstract plan in the
search space and thus if it is suitable for an improvement. In
our approach this assessment is based on the two features of
an individual: the length of its maximal executable prefix and
the number of its good service types. Note that in the case of
an abstract plan both the values are equal to k.

D. SMT-based problem encoding

The SMT procedure combined with GA is based on the
encoding exploited in our “pure” SMT-based concrete planner
[5]. However, now the task for an SMT-solver is to check
whether the maximal (non-executable) suffix of an individual
can be modified to make an improved individual a solution of
APP. Thus, in addition to the user query q and the ontology,
the SMT-based procedure takes also as input an individual and
the length of its maximal executable prefix. The general idea
of the SMT task is depicted in Figure 3.

S1 S2 S3 S4 S5 S6

Individual

Initial
worlds

Executable prefix SMT task

Expected
worlds

Final
worlds

Figure 3. SMT role in the hybrid algorithm

Let I denote an individual in the form of a sequence of
service types and Ij be the service type at the j-th position
of the sequence. Let e denote the length of the maximal
executable prefix and let k be the total length of I . Then,
the task of an SMT-solver is reduced to checking satisfiability
of the following formula:

ϕq
k = Iq

∧
j=1..e

(
Cj∧(s = Ij)∧T s

j

) ∧
i=(e+1)..k

(
Ci
∨
s∈S
T s
i

)
∧ Eqk ∧ B

q
k

(1)
where Iq and Eqk are the formulas encoding the initial and the
expected world of the user query, respectively, Ci encodes the
i-th context function, S is the set of all service types from
the ontology, and T s

i encodes the worlds transformation by
a service type s. Bqk stands for a formula preventing from
finding the already known solutions, if there are any. See [5]
for more encoding details. Thus, an SMT-solver tries to find a
sequence of service types of length (k−e), which can replace
the non-executable suffix of I in such a way that the improved
individual is a (previously unknown) solution of APP.

IV. EXPERIMENTAL RESULTS

We have evaluated the efficiency of the hybrid algorithm
against the GA and SMT-based planners using the ontologies
and the user queries generated by our software - Ontology
Generator (OG). All ontologies are generated by OC in a
random manner meeting the semantic rules. Each query is also
generated randomly in such a way that the number of various
abstract plans equals to the value of a special parameter of OG.
This guarantees that we know a priori whether the planners
have found all solutions.

A. Configuration of the Experiments

In order to evaluate the efficiency of our planners, we
have conducted experiments using twenty four instances of
APP generated by OG, with the following parameter values:
the solution length (the number of service types constituting
a plan): k ∈ {6, 9, 12, 15}, the number of the service types
in the ontology: n ∈ {64, 128, 256}, and the number of the
plans in the search space: sol ∈ {1, 10}. Thus, the size of the
search space varies from 646 = 236 for the first and the fourth
experiment, up to 25615 = 2120 in the case of the 21st and the
24th instance.

Each experiment has been repeated 20 times on a standard
PC with 2GHz CPU, 8GB RAM, and Z3 [22] version 4.3 as an
SMT-solving engine. The experiments involving the “pure” GA
and hybrid planner have been performed using the following
parameters: the population size equals 100 for the instances
with one solution only and 500 for the instances with ten
plans in the search space, the number of the iterations equals
100, whereas the probabilities of crossover and mutation are
at levels of 95% and 0.5%, respectively. We impose the 2000
sec. time limit for every experiment.

B. Experimental Results Evaluation

A comparison of the experimental results of all the three
planners is presented in Table I. The best results are marked
with bold. The first four columns from the left contain the
experiment number and the OG parameters used to generate
the instances. The next six columns present the results of our
hybrid planner, such as the time consumed by the SMT-based
procedure calls and consumed by GA, the total computation
time, the average and the maximal number of plans found,
as well as the probability of finding a plan. Note that the
average number of plans found is computed taking into account
only these cases, where at least one solution has been found.
The next four columns contain the results obtained using the
GA-based abstract planner. That is, from left to right: the
computation time, the average and the maximal number of
plans found, and the probability of finding a plan. Finally,
the last two columns display: the time consumed by the
SMT-based abstract planner in order to find the first plan
and the total computation time. Since the SMT-based planner
always finds all the plans (provided it has enough time and
memory), we do not report any other results here. Note that
the memory usage does not exceed 2GB, even during the
experiments with the largest instances and the “pure SMT” as
the planning method. The SMT-based planner seems to be the
most memory-demanding in the last phase of searching, i.e.,
while checking that there is no more plans and (symbolically)

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

TABLE I. EXPERIMENTAL RESULTS

Hybrid Pure GA Pure SMT
Exp k n sol SMT GA Total Avg Max Prob. Time Avg Max Prob. First Total

[s] [s] [s] plans plans [%] [s] plans plans [%] [s] [s]
1 6 64 1 4.05 8.24 12.29 1 1 100 5.71 1 1 100 6.31 12.8
2 128 5.77 8.78 14.55 1 1 100 8.07 1 1 100 7.29 14.8
3 256 10.79 13.29 24.07 1 1 100 13.62 1 1 100 16.66 27.1
4 64 10 3.04 25.74 28.78 3.25 10 100 24.29 5.4 10 100 5.22 18.3
5 128 6.52 32.15 38.67 3.15 8 100 31.21 6.25 10 100 8.54 26.6
6 256 13.85 43.33 57.18 3.65 8 100 45.95 5.55 9 100 11.93 38.1
7 9 64 1 12.08 11.67 23.75 1 1 85 11.83 1 1 95 19.49 58.7
8 128 25.65 15.68 41.33 1 1 90 13.43 1 1 100 41.01 90.1
9 256 43.61 28.88 72.49 1 1 90 26.74 1 1 90 54.99 133
10 64 10 17.54 56.9 74.43 3.15 10 100 57.69 1.77 4 65 21.09 295
11 128 30.64 63.38 94.02 4.16 10 95 69.94 1.54 4 65 49.93 553
12 256 61.64 113.05 174.69 4.32 10 95 113.15 1.33 2 30 113.3 977
13 12 64 1 55.09 21.77 76.86 1 1 45 21.22 1 1 65 156.4 781
14 128 86.48 30.15 116.62 1 1 85 28.12 1 1 60 203.2 1962
15 256 118.7 46.82 165.52 1 1 55 46.31 1 1 60 315.4 1947
16 64 10 78.98 118.56 197.54 2.79 10 95 118.29 0 0 0 113.5 > 2000
17 128 109.89 139.96 249.84 2.38 10 80 148.65 250.5
18 256 193.17 253.22 446.39 1.85 6 65 260.94 325.8
19 15 64 1 119.09 33.68 152.77 1 1 25 34.56 1 1 30 469.7
20 128 185.34 43.17 228.51 1 1 30 40.45 1 1 25 382.1
21 256 247.3 68.26 315.56 1 1 35 68.69 1 1 35 1018
22 64 10 168.46 237.57 406.03 1.67 3 30 216.6 0 0 0 413
23 128 309.53 267.83 577.36 3 5 10 261.21 1850
24 256 304.88 450.63 755.5 3 3 5 437.59 931

exploring the whole search space. The memory usage of the
“pure” GA algorithm remains below several hundred MB, and
in the case of the hybrid method it does not exceed 1GB for
the largest instances.

It is easy to observe that in the case of the instances with
only one plan in the search space the “pure” GA algorithm
is superior to the other algorithms due to its relative low
computation time. However, it is worth noticing that the
probability of finding a solution by GA drops rapidly with
the increase of the lengths of plans. On the other hand,
analysing the experiments where there are ten plans in the
search space, one can notice that the “pure” SMT algorithm is
faster than the other algorithms only for APP instances having
the shortest solutions. In all the other cases the hybrid planner
is clearly superior. Concerning the experiments 10, 11, and
12, the computation time of the hybrid planner is much lower
than the time consumed by the “pure” SMT-based algorithm.
Comparing the results obtained using the hybrid and the “pure”
GA algorithm it is easy to see that admittedly GA is about 30%
faster, but the hybrid one outperforms GA if all other measures
are considered.

The analysis of the remaining experiments, where the
search spaces contain ten solutions is even simpler. These are
the most important results related to the instances which turned
out be hard for the pure GA and SMT planner, as GA does not
yield any result while the SMT-based planner is running out
of time. The hybrid algorithm outperforms the other planners
for the instances, for which the plans consist of more than 6
service types. In case of 12 services, the maximal number of
the abstract plans found equals to 10, while for 15 services
it is 5. Summarizing, the experiments 16, 17, 18, 22, 23, and
24 prove that applying the hybrid algorithm to APP one can
obtain substantially better results.

C. Comparison with Other Approaches

We have done our best to compare efficiency of our tool
with another system. Nam et al. [17] report 7 experiments

performed on a set of 413 concrete Web services, where SAT-
time consumed for every composition varies from 40 to 60
sec. However, the composition consists only in simple type
matching, the plans consist of a few services only, and the
main goal is to find the shortest sequence of services satisfying
the user query. We have repeated these experiments translating
first the input data to the PlanICS ontology. We treated each
concrete service as a service type, and we modelled the service
parameters type hierarchy as the object types. Our results
have appeared to be better. PlanICS is able to find the shortest
solution in just fractions of a second of SAT-time and in several
seconds of the total computation time. Overall, our approach
is more complex and the composition by just types matching
is a special, simplified case of our planning. Moreover, instead
of searching just for the shortest solution, we focus on finding
a number of alternative plans.

For the second comparison we have used the Fast Down-
ward tool [23] that is aimed at solving problems specified
in PDDL (Planning Domain Definition Language) [24]. We
developed a tool which translates PlanICS ontologies and user
queries into PDDL domains and problems, respectively. Then,
we translated the benchmarks described in Sec. IV and we
used them as input for FD. The FD tool was able to find a
solution only for smallest instances with 64 service types. For
these cases an interesting observation can be made. Namely,
the amount of time and memory consumed by FD is not so
strongly related to the length of the plan, like in the case of
PlanICS, but they clearly depend from number of services in the
ontology. For larger benchmarks the whole available memory
has been quickly consumed and the computation had to be
aborted. It shows the advantage of PlanICS while reasoning in
large ontologies.

V. CONCLUSION AND FUTURE WORK

A new hybrid algorithm based on GA and SMT has been
proposed to solve APP. The algorithm has been implemented
and some preliminary experiments have been performed for

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

benchmarks having different sizes of ontologies and solutions
in the search space. The very first results show that using a
combination of the SMT- and GA-based approach, one can
obtain quite good results, especially for problems that are hard
to solve using the “pure” planning methods, i.e., with large
search spaces and many alternative solutions.

We plan to further improve the efficiency of our hybrid
approach in terms of lower computation times and higher
probabilities of finding solutions. The successful application
of the hybrid algorithm to abstract planning problem shows
that the proposed method has a high potential. Thus, another
important task to be addressed in a future work is an applica-
tion of similar algorithms to other hard problems involving an
exploration of huge search spaces.

ACKNOWLEDGMENT

This work has been supported by the National Science
Centre under the grant No. 2011/01/B/ST6/01477.

REFERENCES

[1] M. Bell, Introduction to Service-Oriented Modeling (SOA): Service
Analysis, Design, and Architecture. John Wiley & Sons, 2008, ISBN:
978-0-470-14111-3.

[2] S. Ambroszkiewicz, “Entish: A Language for Describing Data Process-
ing in Open Distributed Systems,” Fundam. Inform., vol. 60, no. 1-4,
2003, pp. 41–66.

[3] J. Rao and X. Su, “A Survey of Automated Web Service Composition
Methods,” in Proc. of SWSWPC’04, ser. LNCS, vol. 3387. Springer,
2005, pp. 43–54.

[4] D. Doliwa et al., “PlanICS - a Web Service Compositon Toolset,”
Fundam. Inform., vol. 112(1), 2011, pp. 47–71. [Online]. Available:
http://dx.doi.org/10.3233/FI-2011-578

[5] A. Niewiadomski and W. Penczek, “Towards SMT-based Abstract
Planning in PlanICS Ontology,” in Proc. of KEOD 2013 International
Conference on Knowledge Engineering and Ontology Development,
September 2013, pp. 123–131.

[6] J. Skaruz, A. Niewiadomski, and W. Penczek, “Evolutionary Algorithms
for Abstract Planning,” in PPAM (1), ser. Lecture Notes in Computer
Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Was-
niewski, Eds., vol. 8384. Springer, 2013, pp. 392–401.

[7] ——, “Solving the abstract planning problem using genetic algorithms,”
Studia Informatica, vol. 1-2(17), 2013, pp. 29–48, ISSN: 1731-2264.

[8] A. Niewiadomski and K. Wolf, “LoLA as Abstract Planning Engine
of PlanICS,” in Proceedings of the International Workshop on Petri
Nets and Software Engineering, co-located with 35th International
Conference on Application and Theory of Petri Nets and Concurrency
(PetriNets 2014) and 14th International Conference on Application of
Concurrency to System Design (ACSD 2014), Tunis, Tunisia, June
23-24, 2014, pp. 349–350. [Online]. Available: http://ceur-ws.org/Vol-
1160/paper26.pdf

[9] A. Niewiadomski, W. Penczek, and J. Skaruz, “Genetic Algorithm to
the Power of SMT: a Hybrid Approach to Web Service Composition
Problem,” in Service Computation 2014 : The Sixth International
Conferences on Advanced Service Computing, 2014, pp. 44–48.

[10] ——, “A Hybrid Approach to Web Service Composition Problem in
the PlanICS Framework,” in Mobile Web Information Systems, ser.
Lecture Notes in Computer Science, I. Awan, M. Younas, X. Franch,
and C. Quer, Eds. Springer International Publishing, 2014, vol. 8640,
pp. 17–28. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-
10359-4 2

[11] Z. Li, L. O’Brien, J. Keung, and X. Xu, “Effort-Oriented Classification
Matrix of Web Service Composition,” in Proc. of the Fifth International
Conference on Internet and Web Applications and Services, 2010, pp.
357–362.

[12] S. Mitra, R. Kumar, and S. Basu, “Automated Choreographer Synthesis
for Web Services Composition Using I/O Automata,” in ICWS, 2007,
pp. 364–371.

[13] V. Chifu, I. Salomie, and E. St. Chifu, “Fluent calculus-based Web
service composition - From OWL-S to fluent calculus,” in Proc. of the
4th Int. Conf. on Intelligent Computer Communication and Processing,
2008, pp. 161 –168.

[14] V. Gehlot and K. Edupuganti, “Use of Colored Petri Nets to Model,
Analyze, and Evaluate Service Composition and Orchestration,” in
System Sciences, 2009. HICSS ’09., jan. 2009, pp. 1 –8.

[15] J. Rao, P. Küngas, and M. Matskin, “Composition of semantic web
services using linear logic theorem proving,” Inf. Syst., vol. 31, no. 4,
Jun. 2006, pp. 340–360.

[16] P. Traverso and M. Pistore, “Automated composition of semantic web
services into executable processes,” in The Semantic Web ISWC 2004,
ser. LNCS, 2004, vol. 3298, pp. 380–394.

[17] W. Nam, H. Kil, and D. Lee, “Type-Aware Web Service Composition
Using Boolean Satisfiability Solver,” in Proc. of the CEC’08 and
EEE’08, 2008, pp. 331–334.

[18] F. Lecue, M. D. Penta, R. Esposito, and M. Villani, “Optimizing QoS-
Aware Semantic Web Service Composition.” in Proceedings of the 8th
International Semantic Web Conference, 2009, pp. 375–391.

[19] I. Garibay, A. S. Wu, and O. Garibay, “Emergence of genomic self-
similarity in location independent representations,” Genetic Program-
ming and Evolvable Machines, vol. 7(1), 2006, pp. 55–80.

[20] Z. Jang, C. Shang, Q. Liu, and C. Zhao, “A Dynamic Web Services
Composition Algorithm Based on the Combination of Ant Colony Al-
gorithm and Genetic Algorithm,” Journal of Computational Information
Systems, vol. 6(8), 2010, pp. 2617–2622.

[21] J. A. Parejo, P. Fernandez, and A. R. Cortes, “QoS-Aware Services
composition using Tabu Search and Hybrid Genetic Algorithms,” Actas
de los Talleres de las Jornadas de Ingenieria del Software y Bases de
Datos, vol. 2(1), 2008, pp. 55–66.

[22] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. of TACAS’08, ser. LNCS, vol. 4963. Springer-Verlag, 2008, pp.
337–340.

[23] M. Helmert, “The Fast Downward Planning System,” Journal of Arti-
ficial Intelligence Research, vol. 26, 2006, pp. 191–246.

[24] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners,” Artificial Intelli-
gence, vol. 173, no. 5, 2009, pp. 619–668.

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

