
Query Optimization in Cooperation with an Ontological Reasoning Service

Hui Shi

School of Computer and Information

Hefei University of Technology

Hefei, China

hshi@cs.odu.edu

Kurt Maly,Steven Zeil

Department of Computer Science

Old Dominion University

Norfolk, USA

{maly,zeil}@cs.odu.edu

Abstract—Interposing a backward chaining reasoner between

a knowledge base and a query manager yields an architecture

that can support reasoning in the face of frequent

changes. However, such an interposition of the reasoning

introduces uncertainty regarding the size and effort

measurements typically exploited during query optimization.

This paper presents an algorithm for dynamic query

optimization in such an architecture. Experimental results

confirming its effectiveness are presented.

Keywords-semantic web; ontology; reasoning; query

optimization; backward chaining

I. INTRODUCTION

Consider a potential chemistry Ph.D. student who is
trying to find out what the emerging areas are that have good
academic job prospects. What are the schools and who are
the professors doing groundbreaking research in this area?
What are the good funded research projects in this area?
Consider a faculty member who might ask, “Is my record
good enough to be tenured at my school? At another school?”
It is possible for these people each to mine this information
from the Web. However, it may take a considerable effort
and time, and even then the information may not be complete,
may be partially incorrect, and would reflect an individual
perspective for qualitative judgments. Thus, the efforts of the
individuals neither take advantage of nor contribute to others‟
efforts to reuse the data, the queries, and the methods used to
find the data. We believe that qualitative descriptors such as
“groundbreaking research in data mining” are likely to be
accepted as meaningful if they represent a consensus of an
appropriate subset of the community at large. Once accepted
as meaningful, these descriptors can be realized in a system
and made available for use by all members of that
community.

The system implied by these queries is an example of a
semantic web service where the underlying knowledgebase
covers linked data about science research that are being
harvested from the Web and are supplemented and edited by
community members. The query examples given above also
imply that the system not only supports querying of facts but
also rules and reasoning as a mechanism for answering
queries.

A key issue in such a semantic web service is the
efficiency of reasoning in the face of large scale and frequent
change. Here, scaling refers to the need to accommodate the

substantial corpus of information about researchers, their
projects and their publications, and change refers to the
dynamic nature of the knowledgebase, which would be
updated continuously.

In semantic webs, knowledge is formally represented by
an ontology as a set of concepts within a domain, and the
relationships between pairs of concepts. The ontology is used
to model a domain, to instantiate entities, and to support
reasoning about entities. Common methods for implementing
reasoning over ontologies are based on First Order Logic,
which allows one to define rules over the ontology. There are
two basic inference methods commonly used in first order
logic: forward chaining and backward chaining [1].

A question/answer system over a semantic web may
experience changes frequently. These changes may be to the
ontology, to the rule set or to the instances harvested from
the web or other data sources. For the examples discussed in
our opening paragraph, such changes could occur hundreds
of times a day. Forward chaining is an example of data-
driven reasoning, which starts with the known data in the
knowledgebase and applies modus ponens in the forward
direction, deriving and adding new consequences until no
more inferences can be made. Backward chaining is an
example of goal-driven reasoning, which starts with goals
from the consequents, matching the goals to the antecedents
to find the data that satisfies the consequents. As a general
rule forward chaining is a good method for a static
knowledgebase and backward chaining is good for the more
dynamic cases.

 The authors have been exploring the use of backward
chaining as a reasoning mechanism supportive of frequent
changes in large knowledge bases. Queries may be
composed of mixtures of clauses answerable directly by
access to the knowledge base or indirectly via reasoning
applied to that base. The interposition of the reasoning
introduces uncertainty regarding the size and effort
associated with resolving individual clauses in a query. Such
uncertainty poses a challenge in query optimization, which
typically relies upon the accuracy of these estimates. In this
paper, we describe an approach to dynamic optimization that
is effective in the presence of such uncertainty.

In section II, we provide background material on the
semantic web, reasoning, and database querying. Section 3
formally gives the overall algorithm for answering a query.
The details of the optimization methods we have developed
within the backward chaining algorithm will be described in

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

a later paper. We have implemented this algorithm and
performed experiments with data sets ranging from 1 million
to 6 million facts. In section 4 we report on some of these
experiments, comparing our new algorithm with a commonly
used backward chaining algorithm JENA [2].

II. RELATED WORK

A number of projects (e.g., Libra [3, 4], Cimple [5], and
Arnetminer [6]) have built systems to capture limited aspects
of community knowledge and to respond to semantic
queries. However, all of them lack the level of community
collaboration support that is required to build a knowledge
base system that can evolve over time, both in terms of the
knowledge it represents as well as the semantics involved in
responding to qualitative questions involving reasoning.

Many knowledge bases [7-10] organize information
using ontologies. Ontologies can model real world situations,
can incorporate semantics which can be used to detect
conflicts and resolve inconsistencies, and can be used
together with a reasoning engine to infer new relations or
proof statements.

Two common methods of reasoning over the knowledge
base using first order logic are forward chaining and
backward chaining [1]. Forward chaining is an example of
data-driven reasoning, which starts with the known data and
applies modus ponens in the forward direction, deriving and
adding new consequences until no more inferences can be
made. Backward chaining is an example of goal-driven
reasoning, which starts with goals from the consequents
matching the goals to the antecedents to find the data that
satisfies the consequents. Materialization and query-
rewriting are inference strategies adopted by almost all of the
state of the art ontology reasoning systems. Materialization
means pre-computation and storage of inferred truths in a
knowledge base, which is always executed during loading
the data and combined with forward-chaining techniques.
Query-rewriting means expanding the queries, which is
always executed during answering the queries and combine
with backward-chaining techniques.

Materialization and forward chaining are suitable for
frequent computation of answers with data that are relatively
static. Owlim [11] and Oracle 11g [12], for example
implement materialization. Query-rewriting and backward
chaining are suitable for efficient computation of answers
with data that are dynamic and infrequent queries. Virtuoso
[13], for example, implements a mixture of forward-chaining
and backward-chaining. Jena [2] supports three ways of
inferencing: forward-chaining, limited backward-chaining
and a hybrid of these two methods.

In conventional database management systems, query
optimization [14] is a function to examine multiple query
plans and selecting one that optimizes the time to answer a
query. Query optimization can be static or dynamic. In the
Semantic Web, query optimization techniques for the
common query language, SPARQL [15, 16], rely on a
variety of techniques for estimating the cost of query
components, including selectivity estimations [17], graph
optimization [18], and cost models [19]. These techniques
assume a fully materialized knowledge base.

Benchmarks evaluate and compare the performances of
different reasoning systems. The Lehigh University
Benchmark (LUBM) [20] is a widely used benchmark for
evaluation of Semantic Web repositories with different
reasoning capabilities and storage mechanisms. LUBM
includes an ontology for university domain, scalable
synthetic OWL data, and fourteen queries. The University
Ontology Benchmark (UOBM) [21] extends the LUBM
benchmark in terms of inference and scalability testing. Both
LUBM and UOBM have been widely applied to the state of
the art reasoning systems to show the performance regarding
different aspects [20, 21].

III. DYNAMIC QUERY OPTIMIZATION WITH AN

INTERPOSED REASONER

A query is typically posed as the conjunction of a number
of clauses. The order of application of these clauses is
irrelevant to the logic of the query but can be critical to
performance.

In a traditional data base, each clause may denote a
distinct probe of the data base contents. Easily accessible
information about the anticipated size and other
characteristics of such probes can be used to facilitate query
optimization.

The interposition of a reasoner between the query handler
and the underlying knowledge base means that not all
clauses will be resolved by direct access to the knowledge
base. Some will be handed off to the reasoner, and the size
and other characteristics of the responses to such clauses
cannot be easily predicted in advance, partly because of the
expense of applying the reasoner and partly because that
expense depends upon the bindings derived from clauses
already applied. If the reasoner is associated with an
ontology, however, it may be possible to relieve this problem
by exploiting knowledge about the data types introduced in
the ontology..

 In this section, we describe an algorithm for resolving
such queries using dynamic optimization based, in part, upon
summary information associated with the ontology. In this
algorithm, we exploit two key ideas: 1) a greedy ordering of
the proofs of the individual clauses according to estimated
sizes anticipated for the proof results, and 2) deferring joins
of results from individual clauses where such joins are likely
to result in excessive combinatorial growth of the
intermediate solution.

We begin with the definitions of the fundamental data
types that we will be manipulating. Then we discuss the
algorithm for answering a query. A running example is
provided to make the process more understandable.

We model the knowledge base as a collection of triples.
A triple is a 3-tuple (x,p,y) where x, p, and y are URIs or
constants and where p is generally interpreted as the
identifier of a property or predicate relating x and y. For
example, a knowledge base might contains triples

(Jones, majorsIn, CS), (Smith, majorsIn, CS),
(Doe, majorsIn, Math), (Jones, registeredIn, Calculus1),
(Doe, registeredIn, Calculus1).

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

QueryResponse answerAQuery(query: Query)

{

 // Set up initial SolutionSpace

 SolutionSpace solutionSpace = empty; 

 // Repeatedly reduce SolutionSpace by

applying

 // the most restrictive pattern

 while (unexplored patterns remain

 in the query) {

 computeEstimatesOfReponseSize

 (unexplored patterns); 

 QueryPattern p = unexplored pattern

 with smallest estimate; 

 // Restrict SolutionSpace via

 // exploration of p

 QueryResponse answerToP =

 BackwardChain(p); 

 solutionSpace.restrictTo

 (answerToP); 

 }

 return solutionSpace.finalJoin();

}

Figure 1. Answering a Query.

A QueryPattern is a triple in which any of the three
components can be occupied by references to one of a pool
of entities considered to be variables. In our examples, we
will denote variables with a leading „?‟. For example, a query
pattern denoting the idea “Which students are registered in
Calculus1?” could be shown as

(?Student,registeredIn,Calculus1).

A query is a request for information about the contents of

the knowledge base. The input to a query is modeled as a
sequence of QueryPatterns. For example, a query “What are
the majors of students registered in Calculus1?” could be
represented as the sequence of two query patterns

 [(?Student,registeredIn,Calculus1),
 (?Student, majorsIn, ?Major)].

The output from a query will be a QueryResponse. A

QueryResponse is a set of functions mapping variables to
values in which all elements (functions) in the set share a
common domain (i.e., map the same variables onto values).
Mappings from the same variables to values can be also
referred to as variable bindings. For example, the
QueryResponse of query pattern (?Student, majorsIn,

?Major) could be the set

{{?Student => Jones, ?Major=>CS},
 {?Student => Smith, ?Major=>CS },
 {?Student => Doe, ?Major=> Math }}.

The SolutionSpace is an intermediate state of the solution

during query processing, consisting of a sequence of
(preliminary) QueryResponses, each describing a unique
domain. For example, the SolutionSpace of the query “What
are the majors of students registered in Calculus1?” that
could be represented as the sequence of two query patterns as
described above could first contain two QueryResponses:

[{{?Student => Jones, ?Major=>CS},
 {?Student => Smith, ?Major=>CS },
 {?Student => Doe, ?Major=> Math }},
 {{?Student => Jones},{?Student => Doe }}]

Each Query Response is considered to express a constraint
upon the universe of possible solutions, with the actual
solution being intersection of the constrained spaces. An
equivalent Solution Space is therefore:

[{{?Student => Jones, ?Major=>CS},
 {?Major => Math, ?Student =>Doe}}],

Part of the goal of our algorithm is to eventually reduce

the Solution Space to a single Query Response like this last
one.

Fig. 1 describes the top-level algorithm for answering a
query. A query is answered by a process of progressively
restricting the SolutionSpace by adding variable bindings (in
the form of Query Responses). The initial space with no
bindings  represents a completely unconstrained

SolutionSpace. The input query consists of a sequence of
query patterns.

We repeatedly estimate the response size for the
remaining query patterns , and choose the most restrictive
pattern  to be considered next. We solve the chosen pattern
by backward chaining , and then merge the variable
bindings obtained from backward chaining into the
SolutionSpace  via the restrictTo function, which performs
a (possibly deferred) join as described later in this section.

When all query patterns have been processed, if the
Solution Space has not been reduced to a single Query
Response, we perform a final join of these variable bindings
into single one variable binding that contains all the variables
involved in all the query patterns . The finalJoin function
is described in more detail later in this section.

The estimation of response sizes in  can be carried out
by a combination of 1) exploiting the fact that each pattern
represents that application of a predicate with known domain
and range types. If these positions in the triple are occupied
by variables, we can check to see if the variable is already
bound in our SolutionSpace and to how many values it is
bound. If it is unbound, we can estimate the size of the
domain (or range) type, 2) accumulating statistics on typical
response sizes for previously encountered patterns involving
that predicate. The effective mixture of these sources of
information is a subject for future work.

For example, suppose there are 10,000 students, 500
courses, 50 faculty members and 10 departments in the
knowledgebase. For the query pattern (?S takesCourse ?C),
the domain of takesCourse is Student, while the range of
takesCourse is Course. An estimate of the numbers of triples
matching the pattern (?S takesCourse ?C) might be 100,000

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

void SolutionSpace::restrictTo

(QueryResponse newbinding)

{

 for each element oldBinding

 in solutionSpace

 {

 if (newbinding shares variables

 with oldbinding){ 

 bool merged = join(newBinding,

 oldBinding, false);

 if (merged) {

 remove oldBinding from

 solutionSpace;

 }

 }

 }

 add newBinding to solutionSpace;

}

Figure 2. Restricting a SolutionSpace.

TABLE I. EXAMPLE QUERY 1

Clause

QueryPattern Query Response

1 ?S1 takesCourse ?C1 {(?S1=>si,?C1=>ci)}i=1..100,000

2 ?S1 takesCourse ?C2 {(?S1=>sj, ?C2=>cj)}j=1..100,000

3 ?C1 taughtBy fac1 {(?C1=>cj)}j=1..3
4 ?C2 taughtBy fac1 {(?C2=>cj)}j=1..3

if the average number of courses a student has taken is ten,
although the number of possibilities is 500,000.

By using a greedy ordering  of the patterns within a
query, we hope to reduce the average size of the
SolutionSpaces. For example, suppose that we were
interested in listing all cases where any student took multiple
courses from a specific faculty member. We can represent
this query as the sequence of the patterns in Table I. These
clauses are shown with their estimated result sizes indicated
in the subscripts. The sizes used in this example are based
on one of our LUBM benchmark [20] prototypes .

To illustrate the effect of the greedy ordering, let us
assume first that the patterns are processed in the order given.
A trace of the answerAQuery algorithm, showing one row
for each iteration of the main loop is shown in Table II. The
worst case in terms of storage size and in terms of the size of
the sets being joined is at the join of clause 2, when the join
of two sets of size 100,000 yields 1,000,000 tuples.

Now, consider the effect of applying the same patterns in
ascending order of estimated size, shown in Table III. The
worst case in terms of storage size and in terms of the size of
the sets being joined is at the final addition of clause 2, when
a set of size 100,000 is joined with a set of 270. Compared to
Table II, the reduction in space requirements and in time
required to perform the join would be about an order of
magnitude.

The output from the backward chaining reasoner will be
a query response. These must be merged into the current
SolutionSpace as a set of additional restrictions. Fig. 2 shows
how this is done.

Each binding already in the SolutionSpace  that shares
at least one variable with the new binding  is applied to the
new binding, updating the new binding so that its domain is
the union of the sets of variables in the old and new bindings
and the specific functions represent the constrained cross-
product (join) of the two. Any such old bindings so joined to
the new one can then be discarded.

The join function at  returns the joined QueryResponse
as an update of its first parameter. The join operation is
carried out as a hash join [22] with an average complexity
O(n1+n2+m) where the ni are the number of tuples in the two
input sets and m is the number of tuples in the joined output.

The third (boolean) parameter of the join call indicates
whether the join is forced (true) or optional (false), and the
boolean return value indicates whether an optional join was
actually carried out. Our intent is to experiment in future
versions with a dynamic decision to defer optional joins if a
partial calculation of the join reveals that the output will far
exceed the size of the inputs, in hopes that a later query
clause may significantly restrict the tuples that need to
participate in this join.

As noted earlier, our interpretation of the SolutionSpace
is that it denotes a set of potential bindings to variables,
represented as the join of an arbitrary number of
QueryResponses. The actual computation of the join can be
deferred, either because of a dynamic size-based criterion as
just described, or because of the requirement at  that joins
be carried out immediately only if the input QueryResponses
share at least one variable. In the absence of any such sharing,
a join would always result in an output size as long as the
products of its input sizes. Deferring such joins can help
reduce the size of the SolutionSpace and, as a consequence,
the cost of subsequent joins.
For example, suppose that we were processing a different
example query to determine which mathematics courses are

TABLE II. TRACE OF JOIN OF CLAUSES IN THE ORDER GIVEN

Clause Being

Joined

Resulting SolutionSpace

(initial) []

1 [{(?S1=>si, ?C1=>ci)}i=1..100,000]

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..1,000,000]

(based on an average of 10 courses / student)
3 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..900]

(Joining this clause discards courses taught by

other faculty.)
4 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]

TABLE III. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF

ESTIMATED SIZE

Clause Being Joined Resulting SolutionSpace

(initial) []

3 [[{(?C1=>ci)}i=1..3]

4 [{(?C1=>ci, ?C2=>ci)}i=1..3, j=1..3]

1 [{(?S1=>si, ?C1=>ci, ?C2=>c’i)}i=1..270]

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

QueryResponseSolutionSpace::finalJoin ()

{

 sort the bindings in this solution

 space into ascending order by

 number of tuples; 

 QueryResponse result = first of the

 sorted bindings;

 for each remaining binding b

 in solutionSpace {

 join (result, b, true); 

 }

 return result;

}

Figure 3. Final Join.

taken by computer science majors, represented as the
sequence of the following QueryPatterns, shown with their
estimated sizes in Table IV.
To illustrate the effect of deferring joins on responses that do
not share variables, even with the greedy ordering discussed
earlier, suppose, first, that we perform all joins immediately.
Assuming the greedy ordering that we have already
advocated, the trace of the answerAQuery algorithm is
shown in Table V.

In the prototype from which this example is taken, the
Math department teaches 150 different courses and there are
1,000 students in the CS Dept. Consequently, the merge of
clause 3 (1,500 tuples) with the SolutionSpace then
containing 50,000 tuples yields considerably fewer tuples
than the product of the two input sizes. The worst step in
this trace is the final join, between sets of size 100,000 and
150,000.

But consider that the join of clause 2 in that trace was
between sets that shared no variables. If we defer such joins,
then the first SolutionSpace would be retained “as is”. The
resulting trace is shown in Table VI.

The subsequent addition of clause 3 results in an
immediate join with only one of the responses in the solution
space. The response involving ?S1 remains deferred, as it
shares no variables with the remaining clauses in the
SolutionSpace. The worst join performed would have been
between sets of size 100,000 and 150, a considerable
improvement over the non-deferred case.

When all clauses of the original query have been processed
(Fig. 1 ), we may have deferred several joins because they
involved unrelated variables or because they
appeared to lead to a combinatorial explosion on their first
attempt. The finalJoin function shown in Fig. 3 is tasked with
reducing the internal SolutionSpace to a single
QueryResponse, carrying out any join operations that were
deferred by the earlier restrictTo calls. In many ways,
finalJoin is a recap of the answerAQuery and restrictTo
functions, with two important differences:

 Although we still employ a greedy ordering  to reduce
the join sizes, there is no need for estimated sizes
because the actual sizes of the input QueryResponses are
known.

 There is no longer an option to defer joins between
QueryResponses that share no variables. All joins must
be performed in this final stage and so the “forced”
parameter to the optional join function is set to true.

IV. EVALUATION

In this section we compare our answerAQuery algorithm
of Fig. 1 against an existing system, Jena, that also answers
queries via a combination of an in-memory backward
chaining reasoner with basic knowledge base retrievals.

The comparison was carried out using LUBM
benchmarks representing a knowledge base describing a
single university and a collection of 10 universities. Prior to
the application of any reasoning, these benchmarks
contained 100,839 and 1,272,871 triples, respectively.

We evaluated these using a set of 14 queries taken from
LUBM [20]. These queries involve properties associated
with the LUBM university-world ontology, with none of the
custom properties/rules whose support is actually our end
goal (as discussed in [23]). Answering these queries requires,
in general, reasoning over rules associated with both RDFS
and OWL semantics, though some queries can be answered
purely on the basis of the RDFS rules.

Table VII compares our algorithm to the Jena system
using a pure backward chaining reasoner. Our comparison
will focus on response time, as our optimization algorithm
should be neutral with respect to result accuracy, offering no
more and no less accuracy than is provided by the interposed
reasoner.

TABLE IV. EXAMPLE QUERY 2

Clause QueryPattern Query Response

1 (?S1 takesCourse ?C1) {(?S1=>sj,?C1=>cj)}j=1..100,000

2 (?S1 memberOf CSDept) {(?S1=>sj)}j=1..1,000

3 (?C1 taughtby ?F1) {(?C1=>cj, ?F1=>fj)}j=1..1,500

4 (?F1 worksFor MathDept) {(?F1=>fi)}i=1..50

TABLE VI. TRACE OF JOIN OF CLAUSES WITH DEFERRED JOINS

Clause

Being

Joined

Resulting SolutionSpace

(initial) []

4 [{(?F1=>fi)}i=1..50]

2 [{(?F1=>fi)}i=1..50,{(?S1=>sj)}j=1..1,000]

3 [{(?F1=>fi, ?C1=>ci)}i=1..150 , {(?S1=>sj)}j=1..1,000]

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000]

TABLE V. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF

ESTIMATED SIZE

Clause

Being

Joined

Resulting SolutionSpace

(initial) []

4 [{(?F1=>fi)}i=1..50]

2 [{(?F1=>fi, ?S1=>si)}i=1..50,000]

3 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..150,000]

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000]

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

TABLE VII COMPARISON AGAINST JENA WITH BACKWARD CHAINING

LUBM: 1 University, 100,839 triples 10 Universities, 1,272,871 triples

 answerAQuery Jena Backwd answerAQuery Jena Backwd

 response

time

result

size

response

time

result

size

response

time

result

size

response

time

result

size

Query1 0.20 4 0.32 4 0.43 4 0.86 4

Query2 0.50 0 130 0 2.1 28 n/a n/a

Query3 0.026 6 0.038 6 0.031 6 1.5 6

Query4 0.52 34 0.021 34 1.1 34 0.41 34

Query5 0.098 719 0.19 678 0.042 719 1.0 678

Query6 0.43 7,790 0.49 6,463 1.9 99,566 3.2 82,507

Query7 0.29 67 45 61 2.2 67 8,100 61

Query8 0.77 7,790 0.91 6,463 3.7 7,790 52 6,463

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a

Query10 0.18 4 0.54 0 1.8 4 1.4 0

Query11 0.24 224 0.011 0 0.18 224 0.032 0

Query12 0.23 15 0.0020 0 0.33 15 0.016 0

Query13 0.025 1 0.37 0 0.21 33 0.89 0

Query14 0.024 5,916 0.58 5,916 0.18 75,547 2.6 75,547

TABLE VIII. COMPARISON AGAINST JENA WITH WITH HYBRID REASONER

LUBM 1 University, 100,839 triples 10 Universities, 1,272,871 triples

 answerAQuery Jena Hybrid answerAQuery Jena Hybrid

 response

time

result

size

response

time

result

size

response

time

result

size

response

time

result

size

Query1 0.20 4 0.37 4 0.43 4 0.93 4

Query2 0.50 0 1,400 0 2.1 28 n/a n/a

Query3 0.026 6 0.050 6 0.031 6 1.5 6

Query4 0.52 34 0.025 34 1.1 34 0.55 34

Query5 0.098 719 0.029 719 0.042 719 2.7 719

Query6 0.43 7,790 0.43 6,463 1.9 99,566 3.7 82,507

Query7 0.29 67 38 61 2.2 67 n/a n/a

Query8 0.77 7,790 2.3 6,463 3.7 7,790 n/a n/a

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a

Query10 0.18 4 0.62 0 1.8 4 1.6 0

Query11 0.24 224 0.0010 0 0.18 224 0.08 0

Query12 0.23 15 0.0010 0 0.33 15 0.016 0

Query13 0.025 1 0.62 0 0.21 33 1.2 0

Query14 0.024 5,916 0.72 5,916 0.18 75,547 2.5 75,547

As a practical matter, however, Jena‟s system cannot
process all of the rules in the OWL semantics rule set, and
was therefore run with a simpler rule set describing only the
RDFS semantics. This discrepancy accounts for the
differences in result size (# of tuples) for several queries.
Result sizes in the table are expressed as the number of
tuples returned by the query and response times are given in
seconds. An entry of n/a means that the query processing had
not completed (after 1 hour).

Despite employing the larger and more complicated rule
set, our algorithm generally ran faster than Jena, sometimes
by multiple orders of magnitude. The exceptions to this
behavior are limited to queries with very small result set
sizes or queries 10-13, which rely upon OWL semantics and
so could not be answered correctly by Jena. In two queries (2
and 9), Jena timed out.

Jena also has a hybrid mode that combines backward
chaining with some forward-style materialization. Table VIII
shows a comparison of our algorithm with a pure backward
chaining reasoner against the Jena hybrid mode. Again, an
n/a entry indicates that the query processing had not
completed within an hour, except in one case (query 8 in the
10 Universities benchmark) in which Jena failed due to
exhausted memory space.

The times here tend to be someone closer, but the Jena
system has even more difficulties returning any answer at all
when working with the larger benchmark. Given that the
difference between this and the prior table is that, in this case,
some rules have already been materialized by Jena to yield,
presumably, longer lists of tuples, steps taken to avoid
possible combinatorial explosion in the resulting joins would
be increasingly critical.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

V. CONCLUSION /FUTURE WORK

As knowledge bases proliferate on the Web, it becomes
more plausible to add reasoning services to support more
general queries than simple retrievals. In this paper, we have
addressed a key issue of the large amount of information in a
semantic web of data about science research. Scale in itself is
not really the issue. Problems arise when we wish to reason
about the large amount of data and when the information
changes rapidly. In this paper, we report on our efforts to use
backward-chaining reasoners to accommodate the changing
knowledge base. We developed a query-optimization
algorithm that will work with a reasoner interposed between
the knowledge base and the query interpreter. We performed
experiments, comparing our implementation with traditional
backward-chaining reasoners and found, on the one hand,
that our implementation could handle much larger
knowledge bases and, on the other hand, could work with
more complete rule sets (including all of the OWL rules).
When both reasoners produced the same results our
implementation was never worse and in most cases
significantly faster (in some cases by orders of magnitude).

In a future paper we will address the issue of being able
to scale the knowledgebase to the level forward-chaining
reasoners can handle. Preliminary results indicate that we
can scale up to real world situations such as 6 Million triples.
Optimizing the backward-chaining reasoner, together with
the query-optimization reported on in this paper, will allow
us to actually outperform forward-chaining reasoners in
scenarios where the knowledge base is subject to frequent
change

Finally, we will be working on creating a hybrid reasoner
that will combine the two reasoners. We will need to be able
to identify the impact on the knowledgebase specific changes
have. How does the reasoner know if a fact is in the „trusted‟
region or needs to be re-inferenced? How do we find facts
which are revoked by a change? If we succeed we can then
apply Backward reasoning only to incremental changes and
periodically will do a full materialization (which does scale
to billions of triples)on which we can do simple look-ups.

VI. REFERENCES

[1] S. J. Russell and P. Norvig, Artificial intelligence: a modern
approach., 1st ed. , Prentice hall, 1995, pp. 265–275.

[2] The Apache Software Foundation, Apache Jena, 2013 [retrieved:
March, 2013], available from: http://jena.apache.org/.

[3] Microsoft, Microsoft Academic Search, 2013 [retrieved: March,
2013], available from: http://academic.research.microsoft.com/.

[4] Z. Nie, Y. Zhang, J. Wen and W. Ma, “Object-level ranking: bringing
order to web objects”, Proceedings of the 14th international World
Wide Web conference, ACM Press, Chiba, Japan, May 2005, pp.
567–574, doi:10.1145/1060745.1060828.

[5] A. Doan, et al., “Community information management”, IEEE Data
Engineering Bulletin, Special Issue on Probabilistic Databases, vol.
29, iss. 1, March 2006, pp. 64–72.

[6] J. Tang, et al., “Arnetminer: Extraction and mining of academic social
networks”, Proceedings of the Fourteenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(SIGKDD'2008), ACM Press, Las Vegas, USA, August 2008, pp.
990–998, doi: 10.1145/1401890.1401891.

[7] C. Bizer, et al., “DBpedia-A crystallization point for the Web of
Data”, Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 7, iss. 3, Sep. 2009, pp. 154–165, doi:
10.1016/j.websem.2009.07.002.

[8] F. Suchanek, G. Kasneci, G. Weikum, “Yago: A large ontology from
wikipedia and wordnet”, Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 6, iss.3, Sep. 2008, pp.203–217,
doi: 10.1016/j.websem.2008.06.001

[9] B. Aleman-Meza, F. Hakimpour, I. Arpinar and A. Sheth,
“SwetoDblp ontology of Computer Science publications”, Web
Semantics: Science, Services and Agents on the World Wide Web,
vol. 5, iss. 3, Sep. 2007, pp. 151–155, doi:

10.1016/j.websem.2007.03.001.

[10] H. Glaser, I. Millard, and A. Jaffri, “Rkbexplorer. com: a knowledge
driven infrastructure for linked data providers”, European Semantic
Web Conference, Springer-Verlag, Tenerife, Spain, Jun. 2008, pp.
797–801.

[11] A. Kiryakov, D. Ognyanov and D. Manov, “OWLIM–a pragmatic
semantic repository for OWL”, Proceedings of the 2005 international
conference on Web Information Systems Engineering(WISE'05),
Springer-Verlag , New York, USA, Nov. 2005, pp. 182-192, doi:
10.1007/11581116_19.

[12] Oracle Corporation, Oracle Database 11g R2, 2013 [retrieved: March,
2013], Available from: http://www.oracle.com/technetwork
/database/enterprise-edition/overview/index.html

[13] O. Erling, I. Mikhailov, “RDF Support in the Virtuoso DBMS”,
Networked Knowledge-Networked Media, vol. 221, 2009, pp. 7-24,
doi: 10.1007/978-3-642-02184-8_2.

[14] Y.E. Ioannidis, “Query optimization”, ACM Computing Surveys
(CSUR), vol. 28, iss. 1, March 1996, pp. 121-123, doi:

10.1145/234313.234367.

[15] Semanticweb.org, SPARQL endpoint, 2011 [retrieved: March,
2013], available from: http://semanticweb.org/wiki
/SPARQL_endpoint.

[16] W3C, SparqlEndpoints. 2013 [retrieved: March 2013], Available
from: http://www.w3.org/wiki/SparqlEndpoints.

[17] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer and D. Reynolds,
“SPARQL basic graph pattern optimization using selectivity
estimation”, Proceedings of the 17th international conference on
World Wide Web, ACM Press, Beijing, China, April 2008, pp. 595–
604, doi: 10.1145/1367497.1367578.

[18] O. Hartig and R. Heese “The SPARQL query graph model for query
optimization”, Proceedings of the 4th European conference on the
Semantic Web: Research and Applications (ESWC '07), Springer-
Verlag, Innsbruck, Austria, Jun. 2007, pp. 564–578, doi:
10.1007/978-3-540-72667-8_40.

[19] W. Le, “Scalable multi-query optimization for SPARQL”, 2012
IEEE 28th International Conference on Data Engineering (ICDE),
IEEE Press, Washington, DC, April 2012, pp. 666–677, doi:
10.1109/ICDE.2012.37.

[20] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems”, Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, iss. 2-3, Oct. 2005, pp.158–
182, doi: 10.1016/j.websem.2005.06.005.

[21] L. Ma, et al., “Towards a complete OWL ontology benchmark”.
Proceedings of the 3rd European conference on The Semantic Web:
research and applications(ESWC'06), Springer-Verlag, June 2006, p.
125–139, doi: 10.1007/11762256_12.

[22] M. Kitsuregawa, H. Tanaka and T. Moto-Oka, “Application of hash
to data base machine and its architecture”. New Generation
Computing, vol. 1, iss.1, March 1983, pp. 63–74.

[23] H. Shi, K. Maly, S. Zeil and M. Zubair, “Comparison of Ontology
Reasoning Systems Using Custom Rules”, International Conference
on Web Intelligence, Mining and Semantics, ACM Press, Sogndal,

 Norway, May 2011, doi: 10.1145/1988688.1988708.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

