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Abstract—Interposing a backward chaining reasoner between 

a knowledge base and a query manager yields an architecture 

that can support reasoning in the face of frequent 

changes.  However, such an interposition of the reasoning 

introduces uncertainty regarding the size and effort 

measurements typically exploited during query optimization. 

This paper presents an algorithm for dynamic query 

optimization in such an architecture. Experimental results 

confirming its effectiveness are presented. 
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I.  INTRODUCTION 

Consider a potential chemistry Ph.D. student who is 
trying to find out what the emerging areas are that have good 
academic job prospects. What are the schools and who are 
the professors doing groundbreaking research in this area? 
What are the good funded research projects in this area? 
Consider a faculty member who might ask, “Is my record 
good enough to be tenured at my school? At another school?” 
It is possible for these people each to mine this information 
from the Web. However, it may take a considerable effort 
and time, and even then the information may not be complete, 
may be partially incorrect, and would reflect an individual 
perspective for qualitative judgments. Thus, the efforts of the 
individuals neither take advantage of nor contribute to others‟ 
efforts to reuse the data, the queries, and the methods used to 
find the data. We believe that qualitative descriptors such as 
“groundbreaking research in data mining” are likely to be 
accepted as meaningful if they represent a consensus of an 
appropriate subset of the community at large. Once accepted 
as meaningful, these descriptors can be realized in a system 
and made available for use by all members of that 
community. 

The system implied by these queries is an example of a 
semantic web service where the underlying knowledgebase 
covers linked data about science research that are being 
harvested from the Web and are supplemented and edited by 
community members. The query examples given above also 
imply that the system not only supports querying of facts but 
also rules and reasoning as a mechanism for answering 
queries.  

A key issue in such a semantic web service is the 
efficiency of reasoning in the face of large scale and frequent 
change. Here, scaling refers to the need to accommodate the 

substantial corpus of information about researchers, their 
projects and their publications, and change refers to the 
dynamic nature of the knowledgebase, which would be 
updated continuously.  

In semantic webs, knowledge is formally represented by 
an ontology as a set of concepts within a domain, and the 
relationships between pairs of concepts. The ontology is used 
to model a domain, to instantiate entities, and to support 
reasoning about entities. Common methods for implementing 
reasoning over ontologies are based on First Order Logic, 
which allows one to define rules over the ontology. There are 
two basic inference methods commonly used in first order 
logic: forward chaining and backward chaining [1].  

A question/answer system over a semantic web may 
experience changes frequently. These changes may be to the 
ontology, to the rule set or to the instances harvested from 
the web or other data sources. For the examples discussed in 
our opening paragraph, such changes could occur hundreds 
of times a day. Forward chaining is an example of data-
driven reasoning, which starts with the known data in the 
knowledgebase and applies modus ponens in the forward 
direction, deriving and adding new consequences until no 
more inferences can be made. Backward chaining is an 
example of goal-driven reasoning, which starts with goals 
from the consequents, matching the goals to the antecedents 
to find the data that satisfies the consequents. As a general 
rule forward chaining is a good method for a static 
knowledgebase and backward chaining is good for the more 
dynamic cases. 

 The authors have been exploring the use of backward 
chaining as a reasoning mechanism supportive of frequent 
changes in large knowledge bases. Queries may be 
composed of mixtures of clauses answerable directly by 
access to the knowledge base or indirectly via reasoning 
applied to that base. The interposition of the reasoning 
introduces uncertainty regarding the size and effort 
associated with resolving individual clauses in a query. Such 
uncertainty poses a challenge in query optimization, which 
typically relies upon the accuracy of these estimates. In this 
paper, we describe an approach to dynamic optimization that 
is effective in the presence of such uncertainty. 

In section II, we provide background material on the 
semantic web, reasoning, and database querying. Section 3 
formally gives the overall algorithm for answering a query. 
The details of the optimization methods we have developed 
within the backward chaining algorithm will be described in 
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a later paper. We have implemented this algorithm and 
performed experiments with data sets ranging from 1 million 
to 6 million facts. In section 4 we report on some of these 
experiments, comparing our new algorithm with a commonly 
used backward chaining algorithm JENA [2]. 

II. RELATED WORK  

A number of projects (e.g., Libra [3, 4], Cimple [5], and 
Arnetminer [6]) have built systems to capture limited aspects 
of community knowledge and to respond to semantic 
queries.  However, all of them lack the level of community 
collaboration support that is required to build a knowledge 
base system that can evolve over time, both in terms of the 
knowledge it represents as well as the semantics involved in 
responding to qualitative questions involving reasoning.  

Many knowledge bases [7-10] organize information 
using ontologies. Ontologies can model real world situations, 
can incorporate semantics which can be used to detect 
conflicts and resolve inconsistencies, and can be used 
together with a reasoning engine to infer new relations or 
proof statements.  

Two common methods of reasoning over the knowledge 
base using first order logic are forward chaining and 
backward chaining [1]. Forward chaining is an example of 
data-driven reasoning, which starts with the known data and 
applies modus ponens in the forward direction, deriving and 
adding new consequences until no more inferences can be 
made. Backward chaining is an example of goal-driven 
reasoning, which starts with goals from the consequents 
matching the goals to the antecedents to find the data that 
satisfies the consequents. Materialization and query-
rewriting are inference strategies adopted by almost all of the 
state of the art ontology reasoning systems. Materialization 
means pre-computation and storage of inferred truths in a 
knowledge base, which is always executed during loading 
the data and combined with forward-chaining techniques. 
Query-rewriting means expanding the queries, which is 
always executed during answering the queries and combine 
with backward-chaining techniques. 

Materialization and forward chaining are suitable for 
frequent computation of answers with data that are relatively 
static. Owlim [11] and Oracle 11g [12], for example 
implement materialization. Query-rewriting and backward 
chaining are suitable for efficient computation of answers 
with data that are dynamic and infrequent queries. Virtuoso 
[13], for example, implements a mixture of forward-chaining 
and backward-chaining. Jena [2] supports three ways of 
inferencing: forward-chaining, limited backward-chaining 
and a hybrid of these two methods.  

In conventional database management systems, query 
optimization [14] is a function to examine multiple query 
plans and selecting one that optimizes the time to answer a 
query. Query optimization can be static or dynamic. In the 
Semantic Web, query optimization techniques for the 
common query language, SPARQL [15, 16], rely on a 
variety of techniques for estimating the cost of query 
components, including selectivity estimations [17], graph 
optimization [18], and cost models [19]. These techniques 
assume a fully materialized knowledge base.  

Benchmarks evaluate and compare the performances of 
different reasoning systems. The Lehigh University 
Benchmark (LUBM) [20] is a widely used benchmark for 
evaluation of Semantic Web repositories with different 
reasoning capabilities and storage mechanisms. LUBM 
includes an ontology for university domain, scalable 
synthetic OWL data, and fourteen queries. The University 
Ontology Benchmark (UOBM) [21] extends the LUBM 
benchmark in terms of inference and scalability testing. Both 
LUBM and UOBM have been widely applied to the state of 
the art reasoning systems to show the performance regarding 
different aspects [20, 21]. 

III. DYNAMIC QUERY OPTIMIZATION WITH AN 

INTERPOSED REASONER 

A query is typically posed as the conjunction of a number 
of clauses. The order of application of these clauses is 
irrelevant to the logic of the query but can be critical to 
performance.  

In a traditional data base, each clause may denote a 
distinct probe of the data base contents. Easily accessible 
information about the anticipated size and other 
characteristics of such probes can be used to facilitate query 
optimization.  

The interposition of a reasoner between the query handler 
and the underlying knowledge base means that not all 
clauses will be resolved by direct access to the knowledge 
base. Some will be handed off to the reasoner, and the size 
and other characteristics of the responses to such clauses 
cannot be easily predicted in advance, partly because of the 
expense of applying the reasoner and partly because that 
expense depends upon the bindings derived from clauses 
already applied. If the reasoner is associated with an 
ontology, however, it may be possible to relieve this problem 
by exploiting knowledge about the data types introduced in 
the ontology.. 

 In this section, we describe an algorithm for resolving 
such queries using dynamic optimization based, in part, upon 
summary information associated with the ontology. In this 
algorithm, we exploit two key ideas: 1) a greedy ordering of 
the proofs of the individual clauses according to estimated 
sizes anticipated for the proof results, and 2) deferring joins 
of results from individual clauses where such joins are likely 
to result in excessive combinatorial growth of the 
intermediate solution. 

We begin with the definitions of the fundamental data 
types that we will be manipulating. Then we discuss the 
algorithm for answering a query. A running example is 
provided to make the process more understandable. 

We model the knowledge base as a collection of triples. 
A triple is a 3-tuple (x,p,y) where x, p, and y are URIs or 
constants and where p is generally interpreted as the 
identifier of a property or predicate relating x and y. For 
example, a knowledge base might contains triples  

 
(Jones, majorsIn, CS), (Smith, majorsIn, CS),   
(Doe, majorsIn, Math),  (Jones, registeredIn, Calculus1), 
(Doe, registeredIn, Calculus1). 
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QueryResponse answerAQuery(query: Query) 

{ 

   // Set up initial SolutionSpace 

   SolutionSpace solutionSpace = empty;  

    

   // Repeatedly reduce SolutionSpace by 

applying  

   //   the most restrictive pattern 

   while (unexplored patterns remain  

          in the query) { 

       computeEstimatesOfReponseSize 

         (unexplored patterns);  

       QueryPattern p = unexplored pattern 

           with smallest estimate;  

        

       // Restrict SolutionSpace via 

       //   exploration of p 

       

      QueryResponse answerToP = 

         BackwardChain(p);  

      solutionSpace.restrictTo 

        (answerToP);  

    } 

    return solutionSpace.finalJoin(); 

} 

Figure 1. Answering a Query. 

 

A QueryPattern is a triple in which any of the three 
components can be occupied by references to one of a pool 
of entities considered to be variables. In our examples, we 
will denote variables with a leading „?‟. For example, a query 
pattern denoting the idea “Which students are registered in 
Calculus1?”  could be shown as  

 
(?Student,registeredIn,Calculus1). 

 
A query is a request for information about the contents of 

the knowledge base. The input to a query is modeled as a 
sequence of QueryPatterns.  For example, a query “What are 
the majors of students registered in Calculus1?” could be 
represented as the sequence of two query patterns 

 
 [(?Student,registeredIn,Calculus1), 
  (?Student, majorsIn, ?Major)]. 

 
The output from a query will be a QueryResponse. A 

QueryResponse is a set of functions mapping variables to 
values in which all elements (functions) in the set share a 
common domain (i.e., map the same variables onto values). 
Mappings from the same variables to values can be also 
referred to as variable bindings. For example, the 
QueryResponse of query pattern (?Student, majorsIn, 

?Major) could be the set 
 
{{?Student => Jones, ?Major=>CS},  
 {?Student => Smith, ?Major=>CS }, 
 {?Student => Doe, ?Major=> Math }}.   

 
The SolutionSpace is an intermediate state of the solution 

during query processing, consisting of a sequence of 
(preliminary) QueryResponses, each describing a unique 
domain. For example, the SolutionSpace of the query “What 
are the majors of students registered in Calculus1?” that 
could be represented as the sequence of two query patterns as 
described above  could first contain two QueryResponses:  

 
[{{?Student => Jones, ?Major=>CS},  
  {?Student => Smith, ?Major=>CS },  
  {?Student => Doe, ?Major=> Math }}, 
 {{?Student => Jones},{?Student => Doe }}] 

Each Query Response is considered to express a constraint 
upon the universe of possible solutions, with the actual 
solution being intersection of the constrained spaces.  An 
equivalent Solution Space is therefore:  

 
[{{?Student => Jones, ?Major=>CS},  
   {?Major => Math, ?Student =>Doe}}], 

 
Part of the goal of our algorithm is to eventually reduce 

the Solution Space to a single Query Response like this last 
one. 

Fig. 1 describes the top-level algorithm for answering a 
query. A query is answered by a process of progressively 
restricting the SolutionSpace by adding variable bindings (in 
the form of Query Responses). The initial space with no 
bindings  represents a completely unconstrained 

SolutionSpace.  The input query consists of a sequence of 
query patterns. 

We repeatedly estimate the response size for the 
remaining query patterns , and choose the most restrictive 
pattern  to be considered next. We solve the chosen pattern 
by backward chaining , and then merge the variable 
bindings obtained from backward chaining into the 
SolutionSpace  via the restrictTo function, which performs 
a (possibly deferred) join as described later in this section. 

When all query patterns have been processed, if the 
Solution Space has not been reduced to a single Query 
Response, we perform a final join of these variable bindings 
into single one variable binding that contains all the variables 
involved in all the query patterns . The finalJoin function 
is described in more detail later in this section. 

The estimation of response sizes in  can be carried out 
by a combination of 1) exploiting the fact that each pattern 
represents that application of a predicate with known domain 
and range types. If these positions in the triple are occupied 
by variables, we can check to see if the variable is already 
bound in our SolutionSpace and to how many values it is 
bound. If it is unbound, we can estimate the size of the 
domain (or range) type, 2) accumulating statistics on typical 
response sizes for previously encountered patterns involving 
that predicate. The effective mixture of these sources of 
information is a subject for future work. 

For example, suppose there are 10,000 students, 500 
courses, 50 faculty members and 10 departments in the 
knowledgebase. For the query pattern (?S takesCourse ?C), 
the domain of takesCourse is Student, while the range of 
takesCourse is Course. An estimate of the numbers of triples 
matching the pattern (?S takesCourse ?C) might be 100,000 
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void SolutionSpace::restrictTo 

(QueryResponse newbinding) 

{ 

   for each element oldBinding  

      in solutionSpace  

   { 

      if (newbinding shares variables 

          with oldbinding){  

         bool merged = join(newBinding, 

                     oldBinding, false); 

         if (merged) { 

            remove oldBinding from 

              solutionSpace; 

         } 

      } 

   } 

   add newBinding to solutionSpace; 

} 

Figure 2. Restricting a SolutionSpace. 

 

TABLE I. EXAMPLE QUERY 1 

Clause 

# 

QueryPattern Query Response 

1 ?S1 takesCourse ?C1 {(?S1=>si,?C1=>ci)}i=1..100,000 

2 ?S1 takesCourse ?C2 {(?S1=>sj, ?C2=>cj)}j=1..100,000 

3 ?C1 taughtBy fac1 {(?C1=>cj)}j=1..3 
4 ?C2 taughtBy fac1 {(?C2=>cj)}j=1..3 

 

if the average number of courses a student has taken is ten, 
although the number of possibilities is 500,000.  

By using a greedy ordering  of the patterns within a 
query, we hope to reduce the average size of the 
SolutionSpaces. For example, suppose that we were 
interested in listing all cases where any student took multiple 
courses from a specific faculty member. We can represent 
this query as the sequence of the patterns in Table I. These 
clauses are shown with their estimated result sizes indicated 
in the subscripts.  The sizes used in this example are based 
on one of our LUBM benchmark [20] prototypes . 

To illustrate the effect of the greedy ordering, let us 
assume first that the patterns are processed in the order given. 
A trace of the answerAQuery algorithm, showing one row 
for each iteration of the main loop is shown in Table II. The 
worst case in terms of storage size and in terms of the size of 
the sets being joined is at the join of clause 2, when the join 
of two sets of size 100,000 yields 1,000,000 tuples. 

Now, consider the effect of applying the same patterns in 
ascending order of estimated size, shown in Table III. The 
worst case in terms of storage size and in terms of the size of 
the sets being joined is at the final addition of clause 2, when 
a set of size 100,000 is joined with a set of 270. Compared to 
Table II, the reduction in space requirements and in time 
required to perform the join would be about an order of 
magnitude. 

The output from the backward chaining reasoner will be  
a query response. These must be merged into the current
SolutionSpace as a set of additional restrictions. Fig. 2 shows 
how this is done. 

Each binding already in the SolutionSpace  that shares 
at least one variable with the new binding  is applied to the 
new binding, updating the new binding so that its domain is 
the union of the sets of variables in the old and new bindings 
and the specific functions represent the constrained cross-
product (join) of the two. Any such old bindings so joined to 
the new one can then be discarded. 

The join function at  returns the joined QueryResponse 
as an update of its first parameter. The join operation is 
carried out as a hash join [22] with an average complexity 
O(n1+n2+m) where the ni are the number of tuples in the two 
input sets and m is the number of tuples in the joined output.  

The third (boolean) parameter of the join call indicates 
whether the join is forced (true) or optional (false), and the 
boolean return value indicates whether an optional join was 
actually carried out. Our intent is to experiment in future 
versions with a dynamic decision to defer optional joins if a 
partial calculation of the join reveals that the output will far 
exceed the size of the inputs, in hopes that a later query 
clause may significantly restrict the tuples that need to 
participate in this join. 

As noted earlier, our interpretation of the SolutionSpace 
is that it denotes a set of potential bindings to variables, 
represented as the join of an arbitrary number of 
QueryResponses. The actual computation of the join can be 
deferred, either because of a dynamic size-based criterion as 
just described, or because of the requirement at  that joins 
be carried out immediately only if the input QueryResponses 
share at least one variable. In the absence of any such sharing, 
a join would always result in an output size as long as the 
products of its input sizes. Deferring such joins can help 
reduce the size of the SolutionSpace and, as a consequence, 
the cost of subsequent joins. 
For example, suppose that we were processing a different 
example query to determine which mathematics courses are 

TABLE II. TRACE OF JOIN OF CLAUSES IN THE ORDER GIVEN 

Clause Being 

Joined 

Resulting SolutionSpace 

(initial) [ ] 

1 [{(?S1=>si, ?C1=>ci)}i=1..100,000] 

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..1,000,000] 

(based on an average of 10 courses / student) 
3 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..900] 

(Joining this clause discards courses taught by 

other faculty.) 
4 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]  

 

TABLE III. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF 

ESTIMATED SIZE  

Clause Being Joined Resulting SolutionSpace 

(initial) [ ] 

3 [[{(?C1=>ci)}i=1..3] 

4 [{(?C1=>ci, ?C2=>ci)}i=1..3, j=1..3] 

1 [{(?S1=>si, ?C1=>ci, ?C2=>c’i)}i=1..270] 

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]  
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QueryResponseSolutionSpace::finalJoin () 

{ 

  sort the bindings in this solution 

   space into ascending order by  

   number of tuples;   

 

   QueryResponse result = first of the 

     sorted bindings; 

   for each remaining binding b  

     in solutionSpace {       

      join (result, b, true);   

   } 

   return result; 

} 

 

Figure 3. Final Join. 

taken by computer science majors, represented as the 
sequence of the following QueryPatterns, shown with their 
estimated sizes in Table IV. 
To illustrate the effect of deferring joins on responses that do 
not share variables, even with the greedy ordering discussed 
earlier, suppose, first, that we perform all joins immediately. 
Assuming the greedy ordering that we have already 
advocated, the trace of the answerAQuery algorithm is 
shown in Table V. 

In the prototype from which this example is taken, the 
Math department teaches 150 different courses and there are 
1,000 students in the CS Dept. Consequently, the merge of 
clause 3 (1,500 tuples) with the SolutionSpace then 
containing 50,000 tuples yields considerably fewer tuples 
than the product of  the two input sizes. The worst step in 
this trace is the final join, between sets of size 100,000 and 
150,000. 

But consider that the join of clause 2 in that trace was 
between sets that shared no variables. If we defer such joins, 
then the first SolutionSpace would be retained “as is”. The 
resulting trace is shown in Table VI. 

The subsequent addition of clause 3 results in an 
immediate join with only one of the responses in the solution 
space. The response involving ?S1 remains deferred, as it 
shares no variables with the remaining clauses in the 
SolutionSpace. The worst join performed would have been 
between sets of size 100,000 and 150, a considerable 
improvement over the non-deferred case. 

When all clauses of the original query have been processed 
(Fig. 1 ), we may have deferred several joins because they 
involved unrelated variables or because they
appeared to lead to a combinatorial explosion on their first 
attempt. The finalJoin function shown in Fig. 3 is tasked with 
reducing the internal SolutionSpace to a single 
QueryResponse, carrying out any join operations that were 
deferred by the earlier restrictTo calls. In many ways, 
finalJoin is a recap of the answerAQuery and restrictTo 
functions, with two important differences: 

 Although we still employ a greedy ordering  to reduce 
the join sizes, there is no need for estimated sizes 
because the actual sizes of the input QueryResponses are 
known. 

 There is no longer an option to defer joins between 
QueryResponses that share no variables. All joins must 
be performed in this final stage and so the “forced” 
parameter to the optional join function is set to true. 

IV. EVALUATION 

In this section we compare our answerAQuery algorithm 
of Fig. 1 against an existing system, Jena, that also answers 
queries via a combination of an in-memory backward 
chaining reasoner with basic knowledge base retrievals. 

The comparison was carried out using LUBM 
benchmarks representing a knowledge base describing a 
single university and a collection of 10 universities. Prior to 
the application of any reasoning, these benchmarks 
contained 100,839 and 1,272,871 triples, respectively. 

We evaluated these using a set of 14 queries taken from 
LUBM [20]. These queries involve properties associated 
with the LUBM university-world ontology, with none of the 
custom properties/rules whose support is actually our end 
goal (as discussed in [23]). Answering these queries requires, 
in general, reasoning over rules associated with both RDFS 
and OWL semantics, though some queries can be answered 
purely on the basis of the RDFS rules. 

Table VII compares our algorithm to the Jena system 
using a pure backward chaining reasoner. Our comparison 
will focus on response time, as our optimization algorithm 
should be neutral with respect to result accuracy, offering no 
more and no less accuracy than is provided by the interposed 
reasoner. 

TABLE IV. EXAMPLE QUERY 2 

Clause QueryPattern Query Response 

1 (?S1 takesCourse ?C1) {(?S1=>sj,?C1=>cj)}j=1..100,000 

2 (?S1 memberOf CSDept) {(?S1=>sj)}j=1..1,000 

3 (?C1 taughtby ?F1) {(?C1=>cj, ?F1=>fj)}j=1..1,500 

4 (?F1 worksFor MathDept) {(?F1=>fi)}i=1..50 

 

TABLE VI. TRACE OF JOIN OF CLAUSES WITH DEFERRED JOINS 

Clause 

Being 

Joined 

 

Resulting SolutionSpace 

(initial) [] 

4 [{(?F1=>fi)}i=1..50] 

2 [{(?F1=>fi)}i=1..50,{(?S1=>sj)}j=1..1,000]  

3 [{(?F1=>fi, ?C1=>ci)}i=1..150 , {(?S1=>sj)}j=1..1,000] 

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000] 

 

TABLE V. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF 

ESTIMATED SIZE 

Clause  

Being 

Joined 

 

Resulting SolutionSpace 

(initial) [] 

4 [{(?F1=>fi)}i=1..50] 

2 [{(?F1=>fi, ?S1=>si)}i=1..50,000] 

3 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..150,000] 

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000] 
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TABLE VII       COMPARISON AGAINST JENA WITH BACKWARD CHAINING 

LUBM: 1 University,  100,839 triples 10 Universities, 1,272,871 triples 

 answerAQuery Jena Backwd answerAQuery Jena Backwd 

 response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

Query1 0.20 4 0.32 4 0.43 4 0.86 4 

Query2 0.50 0 130 0 2.1 28 n/a n/a 

Query3 0.026 6 0.038 6 0.031 6 1.5 6 

Query4 0.52 34 0.021 34 1.1 34 0.41 34 

Query5 0.098 719 0.19 678 0.042 719 1.0 678 

Query6 0.43 7,790 0.49 6,463 1.9 99,566 3.2 82,507 

Query7 0.29 67 45 61 2.2 67 8,100 61 

Query8 0.77 7,790 0.91 6,463 3.7 7,790 52 6,463 

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a 

Query10 0.18 4 0.54 0 1.8 4 1.4 0 

Query11 0.24 224 0.011 0 0.18 224 0.032 0 

Query12 0.23 15 0.0020 0 0.33 15 0.016 0 

Query13 0.025 1 0.37 0 0.21 33 0.89 0 

Query14 0.024 5,916 0.58 5,916 0.18 75,547 2.6 75,547 

 

TABLE VIII.      COMPARISON AGAINST JENA WITH WITH HYBRID REASONER 

LUBM 1 University, 100,839 triples 10 Universities, 1,272,871 triples 

 answerAQuery Jena Hybrid answerAQuery Jena Hybrid 

 response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

Query1 0.20 4 0.37 4 0.43 4 0.93 4 

Query2 0.50 0 1,400 0 2.1 28 n/a n/a 

Query3 0.026 6 0.050 6 0.031 6 1.5 6 

Query4 0.52 34 0.025 34 1.1 34 0.55 34 

Query5 0.098 719 0.029 719 0.042 719 2.7 719 

Query6 0.43 7,790 0.43 6,463 1.9 99,566 3.7 82,507 

Query7 0.29 67 38 61 2.2 67 n/a n/a 

Query8 0.77 7,790 2.3 6,463 3.7 7,790 n/a n/a 

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a 

Query10 0.18 4 0.62 0 1.8 4 1.6 0 

Query11 0.24 224 0.0010 0 0.18 224 0.08 0 

Query12 0.23 15 0.0010 0 0.33 15 0.016 0 

Query13 0.025 1 0.62 0 0.21 33 1.2 0 

Query14 0.024 5,916 0.72 5,916 0.18 75,547 2.5 75,547 

 

As a practical matter, however, Jena‟s system cannot 
process all of the rules in the OWL semantics rule set, and 
was therefore run with a simpler rule set describing only the 
RDFS semantics. This discrepancy accounts for the 
differences in result size (# of tuples) for several queries. 
Result sizes in the table are expressed as the number of 
tuples returned by the query and response times are given in 
seconds. An entry of n/a means that the query processing had 
not completed (after 1 hour).  

Despite employing the larger and more complicated rule 
set, our algorithm generally ran faster than Jena, sometimes 
by multiple orders of magnitude. The exceptions to this 
behavior are limited to queries with very small result set 
sizes or queries 10-13, which rely upon OWL semantics and 
so could not be answered correctly by Jena. In two queries (2 
and 9), Jena timed out. 

Jena also has a hybrid mode that combines backward 
chaining with some forward-style materialization. Table VIII 
shows a comparison of our algorithm with a pure backward 
chaining reasoner against the Jena hybrid mode. Again, an 
n/a entry indicates that the query processing had not 
completed within an hour, except in one case (query 8 in the 
10 Universities benchmark) in which Jena failed due to 
exhausted memory space. 

The times here tend to be someone closer, but the Jena 
system has even more difficulties returning any answer at all 
when working with the larger benchmark.  Given that the 
difference between this and the prior table is that, in this case, 
some rules have already been materialized by Jena to yield, 
presumably, longer lists of tuples, steps taken to avoid 
possible combinatorial explosion in the resulting joins would 
be increasingly critical. 
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V. CONCLUSION /FUTURE WORK  

As knowledge bases proliferate on the Web, it becomes 
more plausible to add reasoning services to support more 
general queries than simple retrievals. In this paper, we have 
addressed a key issue of the large amount of information in a 
semantic web of data about science research. Scale in itself is 
not really the issue. Problems arise when we wish to reason 
about the large amount of data and when the information 
changes rapidly. In this paper, we report on our efforts to use 
backward-chaining reasoners to accommodate the changing 
knowledge base. We developed a query-optimization 
algorithm that will work with a reasoner interposed between 
the knowledge base and the query interpreter. We performed 
experiments, comparing our implementation with traditional 
backward-chaining reasoners and found, on the one hand, 
that our implementation could handle much larger 
knowledge bases and, on the other hand, could work with 
more complete rule sets (including all of the OWL rules). 
When both reasoners produced the same results our 
implementation was never worse and in most cases 
significantly faster (in some cases by orders of magnitude). 

In a future paper we will address the issue of being able 
to scale the knowledgebase to the level forward-chaining 
reasoners can handle. Preliminary results indicate that we 
can scale up to real world situations such as 6 Million triples. 
Optimizing the backward-chaining reasoner, together with 
the query-optimization reported on in this paper, will allow 
us to actually outperform forward-chaining reasoners in 
scenarios where the knowledge base is subject to frequent 
change 

Finally, we will be working on creating a hybrid reasoner 
that will combine the two reasoners. We will need to be able 
to identify the impact on the knowledgebase specific changes 
have. How does the reasoner know if a fact is in the „trusted‟ 
region or needs to be re-inferenced? How do we find facts 
which are revoked by a change? If we succeed we can then 
apply Backward reasoning only to  incremental  changes and 
periodically will do a full materialization (which does scale 
to billions of triples)on which we can do simple look-ups. 
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