
User-to-User Delegation in a Federated Identity Environment

HongQian Karen Lu
Gemalto

Austin, Texas, USA
Karen.lu@gemalto.com

Abstract - Delegation protocols over the Web are mostly used
for user-to-machine and machine-to-machine delegations. As
more organizations operate in a federated identity
environment, user-to-user delegation also becomes a required
functionality. User-to-machine or machine-to-machine
delegation methods cannot directly apply to user-to-user
delegation because human cannot effectively process protocol
messages. This paper proposes a new method that allows user-
to-user delegations in a federated identity environment. The
identity provider (IdP) acts as the delegation authority that
manages delegations. Service providers (SPs) in the same
environment can use this delegation service, instead of
managing delegations individually. The service includes
delegation assignment, invocation, and revocation. The
method allows service providers to exercise access controls
and to decide if the delegator has the right to delegate and if
the delegatee should be authorized to perform the requested
services. This method is applicable to any access control
models.

Keywords - access control, delegation, federated identity,
security.

I. INTRODUCTION
A privilege is the right to perform a certain action to a

specific resource or resources; for example, to read (action)
a file (resource). Delegation is a process of an identified
entity, called a delegator, giving some of the delegator’s
privileges to another identified entity, called a delegatee.
The delegatee receives the privileges to act on behalf of the
delegator at a service provider [1][2].

The delegation can be user-to-user (or called person-to-
person), user-to-machine, or machine-to-machine. The
person-to-person delegation happens often in the physical
world. In the digitalized world, a person (a user who uses a
computer, an application, or a system) has certain
privileges or access rights at a service provider (SP). She
may want to give some of her privileges to another user
under certain conditions. For example, Alice delegates
some of her responsibilities at an SP to Bob while she is
out of her office. When a user access services at a SP and
the SP needs to access the user’s resources at another SP on
the user’s behalf, the user can authorize a delegation to the
first SP, which is a user-to-machine delegation. The
machine-to-machine delegation happens similarly among
service providers.

The continued increase of online collaborations among
organizations and service providers has brought the need of

federated identity [3]. A federated identity environment
consists of an identity provider (IdP) and one or more
service providers (SP). The IdP manages user identities and
authenticate users. The SPs provide web services and trust
the IdP‘s assertions about the users. Typically, IdP and SPs
are different entities and in different domains. This
construct, among other things, enables Single Sign-On,
which allows a user to use a single set of credentials to
login to different SPs through the IdP and login once under
certain conditions. This is convenient for both users and
SPs, and potentially can provide stronger authentication
and, hence, better security as well. Reference [3] provides a
good overview about the need and use cases of federated
identity, and roles of IdP and SP.

Most research on delegation in a federated identity
environment focuses on user-to-machine or machine-to-
machine delegations [4]. As the Web becomes the
ubiquitous computer, and more organizations, government,
and businesses operate in and depend on federated identity
environments, user-to-user delegation over the web in such
an environment becomes a required functionality. User-to-
machine or machine-to-machine delegation methods cannot
directly apply to user-to-user delegation because human
cannot effectively process delegation protocol messages
that may require complex computational and cryptographic
operations.

User-to-user delegation has been studied extensively in
role-based access control (RBAC) systems [5], and is
typically used with a specific SP. In this case, the SP
manages its delegation service, which is not an easy task.
Furthermore, the delegation should work with different
access control models in addition to RBAC.

We propose a new delegation method to address the
above issues. The method supports user-to-user delegation
service in a federated identity environment. The delegation
allows a user to delegate some of her privileges at an SP to
another user. The IdP acts as the delegation authority that
manages delegations. The SPs use this delegation service,
instead of managing delegations individually. The
delegation service includes delegation assignment,
invocation, and revocation. The SPs need to ensure that
delegations are compliant with their access control policies.
To facilitate this, the delegation method provides
opportunities for SPs to consult their access control engines
in order to decide if the delegator has the right to delegate

76

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

and if the delegatee should be authorized to perform the
requested services. Therefore the method is not tied to any
particular access control models.

The interactions between SPs and an IdP follow the
SAML 2.0 [6] and XACML [7] standards. We use standard
syntax, assertions, protocols, and bindings as much as
possible and extend them only as needed.

The rest of the paper is organized as follows. Section II
provides some background information and outlines the
related work. Section III presents the new user-to-user
delegation method in a federated identity environment.
Section IV describes the protocols used to support the
delegation schemes. Section V discusses issues related to
security and implementation. Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK
We follow the delegation terminology defined in the

reference [4]. A privilege is the right to access specific
resources or to perform certain tasks. A user may have a
number of such privileges. Delegation is an act of
(temporarily or permanently) transferring privileges from
one entity to another. A delegator is an entity that transfers
(delegates) all or a subset of its privileges to a delegatee. A
delegatee is the entity that receives the delegator’s
privileges in order to use them on the delegator’s behalf. A
delegation assertion is an assertion of the correctness and
authority for a delegation, issued by a delegation authority
to a delegatee. A delegation authority is an entity that
controls delegation and issues delegation assertions.

A. Access Control and XACML
Access controls are security mechanisms that control

how subjects (users, applications, and systems) access and
interact with objects (resources, other applications, and
systems). Access control includes identification,
authentication, authorization, and accountability. There are
three main types of access control models: discretionary,
mandatory, and role-based. All organizations must have
access control policies and implementations to protect their
resources and systems from unauthorized access.

Delegation is a mechanism of transferring access
privileges from one subject to another. Such a privilege
transfer must be authorized and not violate
organization/system’s access control policy. Therefore, the
access control policy should include delegations, and the
delegation mechanism should be associated with the access
control engine. Research on delegation in access control
models have built on and supported this concept. However,
recent research on delegation related to the federated
identity and machine-to-machine delegations have focused
on mechanisms and semantics but failed to address the link
between the delegation and access control [2][4][8].

The XACML (eXtensible Access Control Markup
Language) is a standard for specifying and communicating
access control policies across computer systems (internal or
external to an organization) [7]. The current version is
XACML 2.0. The XACML 3.0 is working in progress,
which includes the concept and process of delegation. The
XACML delegation deals with creation of new policies and
tracing back trusted policies. We can use the syntax of the
XACML 3.0 delegation to support our work.

B. User-to-User Delegation
Delegation in Role-Based Access Control (RBAC) has

been studies extensively [5]. The RBAC system manages
the delegation based on the access control policies. In
doing so, it must answer the following two questions: 1. Is
a user (delegator) authorized to delegate a role, privilege,
or permission that is available to him? 2. Can a role,
privilege, or permission be delegated to a user (delegatee)?

In the context of delegation service in a federated
identity environment, service providers manage their own
access controls and, hence, the permission to delegate. SP
must find answers to the above questions when a user
delegates, when a user invokes a delegation, and when a
user's privileges have changed. This applies to any access
control model, not just RBAC.

Peeters et al. [2] described procedures of the delegation,
including mandate issuance, acceptance, revocation, and
invocation. Furthermore, the paper outlined advanced
delegations: transferable delegation and corporate
delegation. The paper stays at a pure conceptual level and
not at the web application level. The title including
“identity federation” is somewhat misleading as the
approach has no link to any federated identity method.

C. User-to-Machine Delegation
The Shibboleth System is a SAML 2.0 based, open

source software package for web Single Sign-On across or
within organization boundaries [9]. The Shibboleth has a
solution to the proxy authentication problem: how to
authenticate a service to which a user may have
authenticated to, and who wishes to invoke another service
on the user's behalf [8]? The method uses two Single Sign-
On’s through the same IdP. The delegation assertion is
enabled by the first authentication statement and is built
into the second authentication statement. The IdP issues
and signs the delegation assertion.

Alrodhan and Mitchell [4] proposed a delegation
framework for Liberty Alliance Project. The method
extends the attribute statement in the SAML assertion to
form a delegation assertion. The IdP issues and signs the
delegation assertion with the user (delegator, privilege
owner) consent. The Single Sign-On Profiles described in
the Liberty ID-FF 1.2 specification provides the base for

77

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

this delegation framework. This work is similar to
Shibboleth’s delegation in the sense that the delegatee (first
SP), through the user agent, gets a delegation assertion
from the IdP and then presents it to the target (second SP).
The differences are in profiles, assertions, and so forth.

OAuth is an open protocol that enables a website to
access protected resources from another website on the
resource owner’s behalf, without requiring the resource
owner to disclose his login credentials [10]. As such,
OAuth provides a protocol for user-to-machine delegation.
A growing number of companies support OAuth, including
Twitter, Google, Netflix, Yahoo!, and Facebook.

The “SAML V2.0 Condition for Delegation
Restriction” specifies the expression of delegation
information through a SAML Condition extension to
address the use cases that a single logical transaction
involves one or more intermediate entities (clients or
servers) [11]. The SP must evaluate delegates in the
condition and should only accept the assertion if it wishes
to accept the condition.

D. Resource Sharing
The Liberty Alliance Identity Web Service Framework

(ID-WSF) People Service (PS) [12] is a web service that
allows users to track and manage people they know online,
and allows other web services to query and manage the
people list of their users.

The People Service enables “cross-user” interactions
that involve more than one user for an online activity. For
example, Alice wants to share her photos with Bob at her
photo website at which Bob does not have an account. The
photo website uses Alice’s People Service and Bob’s
identity provider to identity Bob and lets him to access
photos specified by Alice. Such resource sharing may be
used for user-to-user delegation in limited situations, but is
not designed for such a purpose. It implicitly assumes the
discretionary access control (DAC). If Bob also has an
account with the SP, the People Service is unnecessary.

III. USER-TO-USER DELEGATION
We propose a new method that supports user-to-user

delegation service in a federated identity environment. The
delegation allows a user to delegate some of his privileges
at a service provider (SP) to another user. The delegation
service includes delegation assignment, invocation, and
revocation.

In a federated identity environment, service providers
trust the identity provider (IdP) to manage user identities
and authenticate users [3]. In such an environment, IdP
can, in addition, act as the delegation authority that
manages user-to-user delegations. The delegator assigns
delegations at IdP. The delegatee is to perform the
delegated tasks at the specified service provider (SP). The

SP obtains delegation assertions from the IdP. Delegations
can be revoked either by the delegator or by the SP.

Why do we need a delegation authority? Each
individual SP can certainly provide the delegation service
by itself without needing a delegation authority. However,
tracking and managing delegations is not a trivial task. A
valid alternative for service providers is to use a trusted
delegation authority [2][4]. From a user perspective, a
delegator may want to delegate at more than one service
provider. Going to each service provider one by one is not
convenient, at least. A delegation authority can solve this
problem by providing a common portal for the delegation
service.

The service providers’ access control models play an
important role in the design of this delegation method.
Service providers need to ensure that delegations are
compliant with their access control policies. For this
purpose, the delegation method allows SPs to exercise
access controls throughout delegations’ life cycles. These
mechanisms are independent of SPs’ access control
models.
A. Delegation Life Cycle

When a delegator delegates to a delegatee, the IdP
creates a delegation record, or simply called a delegation.
A delegation life cycle starts with the creation and ends
with the deletion. The following figure illustrates the life
cycle.

A delegation record includes the delegator, the service
provider, the delegatee, the resources that the delegatee is
to access, the actions that the delegatee can do after
obtaining the resource, and other things, such as
assignment date and time, valid period, delegator’s
signature, and so on. When the delegator assigns a
delegation, the IdP creates a delegation record; the
delegation is in the created state. The invocation of the
delegation by the delegatee transfers the delegation into the
accepted state. Other states illustrated in the figure are self-
explainable.

Assign
Created Accepted Rejected

Revoked Deleted

Invoke

Invoke

Reject

Reject

Delete Revoke

Delete Revoke

Figure 1. Delegation life cycle.

78

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

B. Delegation Schemes
The main delegation schemes include assignment,

invocation, and revocation.
Assignment
 A delegator wants to delegate to a delegatee some tasks
to be performed at an SP. The IdP does not know what
privileges that the delegator can delegate. The IdP’s role is
to manage the delegation and to tell the SP that the
delegator indeed has delegated certain privileges to the
delegatee. The SP needs to make sure that the delegator has
these privileges and can delegate them, and the delegatee is
authorized to perform the tasks.

If the delegator knows exactly what he can delegate, the
assignment becomes simple. The delegator specifies the
SP, delegatee, and privileges that he wants to delegate. The
IdP creates a delegation record. In many cases, however,
the delegator may know what he wants to delegate to a
delegatee but is not sure if he can. Then the assignment is
more complex. The IdP needs to ask the SP if it can
authorize a specified delegation request. The IdP does this
by, for example, making an XACMLAuthzDecisionQuery,
which is specified in the XACML SAML profile. If SP
responds with a success, IdP creates a delegation.
Otherwise, IdP asks the delegator to make a modification
and repeat the process.

In general, a delegator may not know if or what he can
delegate to a particular delegatee. In this case, he specifies
the SP and the delegatee. The IdP asks the SP about
privileges that the delegator can delegate to the delegatee.
The SP responds with a list, which may be empty. The IdP
asks the delegator to make a selection. When needed, the
IdP asks the SP if such delegation can be authorized. If SP
responds with a success, IdP creates a delegation record.

Figure 2 illustrates the delegation assignment workflow
of the above general case, which includes the following
steps. We can easily adopt this workflow to simpler cases.
1. The delegator A authenticates to the IdP.
2. A selects the SP that he wants the delegatee B to

access.
3. The IdP finds from the SP the privileges that A can

delegate to B.
4. The IdP presents a list containing those privileges

(resources, actions) to A.
5. A selects privileges to delegate to B from the list and

other constraints, such as valid time period.
6. The IdP creates a delegation record. (Optionally, IdP

asks the SP if such delegation can be authorized before
creating a delegation.)

7. The IdP may ask A to digitally sign the delegation for
non-repudiation.

8. A signs the delegation if required.
9. A or the IdP informs B about the delegation.

The SP checks with its access control engine to decide
what privileges that A can delegate to B and presents the
privilege list, if exist, to IdP. The access control engine
makes decisions according to its access control policies.

In practice, a delegator may need an approval from her
manager or some other entities in order to delegate. The
access control system may not have an automated
mechanism for doing so. Then the approval is a physical
process. Addressing such issues is outside the scope of this
paper.

Invocation
When the delegatee requests to perform a delegated

task at the SP, he invokes a delegation. Figure 3 illustrates
this process, which consists of the following steps:

Delegatee B Delegator A IdP SP

Authenticate

Service page

Select SP and B.

Request privilege list

Privileges that A
can delegate to B.

Present privilege list.

Specify the delegation

Store the delegation
Inform delegatee.

5.
Generate
authN
assertion
with
delegation
statement

Web browser SP IdP

1. Login

2. Authenticate

6. Auth response

8. Services

Auth request

3. Delegation information

4. Select delegation.

7. Verify authN
assertion,
delegation
statement.
Check with
access control
engine.

Delegatee

Figure 2. Delegation assignment.

Figure 3. Invocation.

79

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

1. The delegatee logs in to the SP, which redirects the
authentication to the IdP.

2. The IdP authenticates the delegatee.
3. The IdP finds and presents delegation(s) at the SP to

the delegatee.
4. The delegatee selects one or more delegations.
5. The IdP generates an authentication assertion for the

delegatee with a delegation attribute statement
specifying the delegation(s).

6. The IdP sends the authentication assertion to the SP.
7. The SP verifies the authentication assertion and the

delegation statement. The SP consults with its access
control engine for both the delegator and delegatee.

8. If all is well, The SP present services to let the
delegatee to perform the delegated tasks.

The IdP generates an authentication assertion in
response to the authentication request from the SP. The
subject in the assertion is the delegatee. The assertion in
addition includes an attribute statement about the
delegation. The following code snippet illustrates an
example in the form of an SAML 2.0 assertion.
<Assertion>
 <Issuer> … URI of the IdP … </Issuer>
 <ds:Signature> IdP’s signature </ds:Signature>
 <Subject> Information on delegatee </Subject>
 <Conditions>
 <AuthnStatement> // authentication statement
 <AttributeStatement>
 <Attribute Name=”Delegation”>
 <AttributeValue>
 <Delegator>
 <Delegatee>
 <Privilege> // one or more
 // description, services, resources,
actions, and so forth.
 </Privilege>
 </AttributeValue>
 </Attribute>
 </AttributeStatement>
</Assertion>

The service provider processes the delegation
information. For example, SP verifies the following:

1. The delegation is in the valid period.
2. The service request is specified in the statement.
3. The requester is the delegatee specified in the

statement.
4. The signature of the assertion is valid and the

certificate is not revoked.
5. The delegator is authorized to perform the delegated

privileged task.
6. The delegator is authorized to delegate the privileged

task.
7. The delegatee is authorized to perform the delegated

task.
8. Other optional constraints are met.

If any of the verification steps fails, the SP denies the
requested service from the delegatee. The checking on
authorizations is necessary because conditions may have

changed since the last time that the SP queried the access
control engine regarding the delegator and the delegatee
when the IdP requested the privilege list in setting up the
delegation. If any of the authorization checking fails, the
SP revokes the delegation.

Revocation
Previous research suggested using certificate revocation

mechanisms, Certificate Revocation List (CRL) or Online
Certificate Status Protocol (OCSP), to handle delegation
revocation [2]. Both CRL and OCSP are known for their
complexities of maintaining the list of revoked certificates.
We propose a simpler delegation revocation approach that
does not require maintaining a revocation list nor require a
separate query on the delegation status.

As described earlier, IdP is the delegation authority that
manages delegation records. SP gets the delegation
statement from IdP as a part of an authentication assertion.
The SPs should not accept delegations from anyone else.
SP can store the delegations for audit purposes, but should
not reuse them. The delegation assertion is always
dynamically acquired. Therefore, SP does not need to
check for the delegation status.

A delegation revocation can be initiated by the
delegator or by the SP. After receiving a revocation
request, IdP authenticates and verifies the request. If the
request is authentic and verifiable, IdP removes the
delegations involved from its delegation database. (IdP
may keep the revoked delegations for auditing purpose.)

The delegation situation is very different from that of
SSL certificate. Typically SP receives a SSL certificate
from a third party. Before using it, SP would check to see if
the certificate is still valid by consulting with CRL or using
an OCSP service. With our delegation approach, SP
obtains the delegation assertion from the delegation
authority, IdP. Therefore, SP can verify the assertion and
does not need to ask IdP for the validity of the assertion,
and IdP does not need to provides a service for such
purpose.

(a) Revocation by Delegator
The delegator can revoke a delegation at IdP. This

involves the following steps:

1. The delegator A logs in to the IdP.
2. A revokes his delegation to the delegatee B.
3. IdP removes A’s delegation to B from its record.
4. A or IdP informs B about the revocation of the

delegation.

(b) Revocation by Service Provider
When a user’s privileges are reduced or removed, the

service provider should find out if there are outstanding
delegations relevant to this user. If so, SP needs to examine

80

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

each of the delegations to see if they are still valid. For
example, if the user was a delegator and he no longer has
privilege to delegate the task, or if the user was a delegatee
and he no longer has the privilege to perform the delegated
task, then SP sends a revocation request to IdP to revoke
the delegation. IdP then informs the delegator and the
delegatee. Figure 4 illustrates the process. Section 4 will
provide more details on the delegation query request and
response, and delegation revocation request and response.

(c) Cleanup by Identity Provider
IdP cleans up its delegation repository periodically. For

delegations that have not been activated for a while or just
for any delegations, IdP can make XACML authorization
decision query to SP. If the response is negative, IdP can
remove the delegation. This avoids using any SAML
extension for delegation revocation.
C. Acceptance and Rejection
The delegatee can either accept or reject a delegation. The
present scheme does not allow partial acceptance. The
delegatee examines the delegation from the received
information or the IdP provides a service for the delegatee
to do so. The act of the delegatee requesting to perform the
delegated task at the SP is a form of delegation acceptance.
IdP may also provide a service for the delegatee to
explicitly accept the delegation.

If the delegatee rejects the delegation, he can inform the
delegator, who may either modify the delegation or revoke
the delegation at IdP. The IdP may also provide a service
for the delegatee to reject a delegation. Revocation of
acceptance can be done the same way as rejection.

IV. PROTOCOLS
Delegation assignment, query, invocation, and

revocation all require communications between SP and IdP.

We use SAML 2.0 assertions [6] as the message exchange
format and extend as needed. SAML protocols and
bindings are used to transport the delegation messages.
A. Request and Response

SAML protocol is a request and response protocol. The
requester sends a request, and the responder processes the
request and sends a response.
B. Attribute Query

The SAML 2.0 attribute query <AttributeQuery> is
used for querying attributes of a subject. We use it to query
privileges that a delegator (subject) can delegate to a
delegatee, and existing delegations for a delegator or
delegatee. The response is an attribute assertion or query
status.

Query Privileges
During the delegation assignment, IdP asks SP what

privileges that the delegator can delegate to the delegatee.
The XACML policy query <XACMLPolicyQuery>
specified in the XACML SAML profile can serve this
purpose. In response, the SP sends an XACML policy
assertion that contains the requested information. The
following code snippet illustrates the query.
<xacml-samlp:XACMLPolicyQuery>
 <saml:Issuer>
 <ds:Signature>
 <Attribute ID>
 <Attribute IssurInstant>
 … …
 <xacml-context:Request>
 <xacml:Attributes>
 <Attribute name=”user”>
 <AttributeValue>

 id or other attributes of delegator
 </AttributeValue>
 </Attribute>
 <Category
 name=”urn.oasis:names.tc:xacml:3.0:attribu
te-category:delegate”>
 </Attributes>
 <xacml:Attributes>
 <Attribute name=”user”>
 <AttributeValue>
 id or other attributes of delegatee
 </AttributeValue>
 </Attribute>
 <Category
name=”urn.oasis:names.tc:xacml:3.0:attribute-
category:delegated:urn:oasis:names:tc:xacml:3.0:su
bject-category:access-subject”>
 </Attributes>
 <xacml:Attributes>
 <Category
name=”urn.oasis:names.tc:xacml:3.0:attribute-
category:delegate”>
 <Category
name=”urn.oasis:names.tc:xacml:3.0:attribute-
category:delegated:urn:oasis:names:tc:xacml:3.0:su
bject-category:resource”>
 <Category
name=”urn.oasis:names.tc:xacml:3.0:attribute-
category:delegated:urn:oasis:names:tc:xacml:3.0:su
bject-category:action”>
 </Attributes>

IdP Delegator SP

Delegation query request

Delegation query response

Inform

Delegation revoke request

 Verify delegations

Delegation revoke response

Delegatee

Inform

Figure 4. Revocation by the service provider.

81

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

 </Request>
 <Attribute name=”ReturnPolicyIdList”>
 <AttributeValue>true</AttributeValue>
 </Attribute>

… …
</XACMLPolicyQuery>

In response, SP sends a <samlp:Response>, which
contains an XACMLPolicy assertion that has a statement of
the type xacml-saml:XACMLPolicyStatementType. This
statement contains policies that the query requested.

Query Delegations
When a user’s privileges have been removed or

reduced, the SP should examine all outstanding delegations
associated with this user, either as a delegator or as a
delegatee. For this purpose, the SP sends a SAML query
request <AttributeQuery> to the IdP and the IdP
responds with an attribute assertion containing relevant
delegation statements, if they exist. The following code
snippet illustrates the query.
<samlp:AttributeQuery>
 <saml:Issuer>
 <ds:Signature>
 <Attribute ID>
 <Attribute IssuerInstant>
 … …
 <Subject>
 <NamdID id=… delegator or delegatee’s id…>
 … …
 </Subject>
 <Attribute name=”Delegation”>
 … …
</AttributeQuery>

The IdP responds with an assertion containing one or
more attribute statements about the delegations.

C. Authentication Request
The authentication request is the standard SAML 2.0

<AuthnRequest>. When sending an authentication
request, the SP does not know anything about the
delegation. The delegatee selects the delegation at the IdP
during authentication.

D. Delegation Revocation Request
When access privileges of a user have changed and

existing delegations are no longer valid, the SP sends a
delegation revocation request to the IdP to revoke relevant
delegations. While neither SAML 2.0 nor XACML 2.0/3.0
specified revocation, we can follow the SAML syntax to
define it. The delegation revocation request and response
are similar to authentication request and response, in which
the SP sends a request to the IdP; the IdP fulfills the
request and sends an assertion in response. The request can
take the following form.
<DelegationRevokeRequest>
 <Issuer>
 <ds:Signature>
 … …

 <Subject>
 <Attribute name=”Delegation”>
 <Delegator>
 <Delegatee>
 <Resource>
 … …
 </Attribute>
 … …
</DelegationRevokeRequest>

The elements in <Delegation> are optional. The request
can have the following rules:
1. If no <Resource> is specified, SP requests to revoke

all delegations associated with <Delegator>,
<Delegatee>, or both.

2. If none of <Delegator> and <Delegatee> exists, SP
requests to revoke all delegations associated with the
subject and <Resource>.

3. If there is <Delegator> but no <Delegatee>, SP
requests to revoke all delegations that the subject is a
delegator and delegated <Resource> to any delegatee.

4. If there is <Delegatee> but no <Delegator>, SP
requests to revoke all delegations that the subject is a
delegatee and was delegated for <Resource> by any
delegators.

5. If there are both <Delegator> and <Delegatee>, SP
requests to revoke all delegations that associated to
<Delegator>, <Delegatee>, and <Resource>. The
subject can be a delegator or delegatee.

The response from the IdP contains the status of the
revocation.

E. Bindings
A transport binding is a mapping from SAML messages

to a communication protocol. The delegation statement
comes as a part of an authentication assertion. Therefore,
the delegation takes on whatever binding that the
authentication process uses. For example, the
authentication can use SAML 2.0 Web browser SSO
profile [13]. The corresponding bindings include HTTP
redirect, HTTP POST, and artifact bindings.

V. DISCUSSIONS
This section discusses some issues related to security

and implementations. Other technical details for providing
delegation services are dependent on the specifics of the
environment, access control policies, security level, and so
forth, which is outside the scope of this paper.

The proposed user-to-user delegation scheme can use
existing federated identity frameworks and protocols, such
as SAML 2.0 and XACML, as its foundation. The
established trust relationships in a federated identity
environment enable the SPs to trust and use the IdP as the
delegation authority.

82

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

When deploying the delegation service, securing the
communications between IdP and SPs is important,
especially for services involving high value or high
security transactions. At the web application level, this can
be achieved by using HTTPS and TLS/SSL with mutual
authentication and strong cipher suites. It allows each party
to know for sure whom it is talking to, and ensures the
integrity and confidentiality of the communications.

Digitally signing all delegation statements, queries,
requests, and responses is also important. These signatures
provide authenticity and non-repudiation. The SPs should
not reuse delegation statements because the situation may
have changed since a delegation was issued.

The delegation statement in the authentication assertion
provided by the IdP is not an authorization of delegation.
Instead the IdP vouches that the delegator indeed has
delegated some tasks to the delegatee. It is the service
provider’s responsibility to consult its access control
engine to decide if the delegatee should be authorized to
receive the requested services, and to record the
transactions.

This delegation scheme requires that the delegatee has
an account at the IdP, because the IdP needs to be able to
identify and authenticate the delegatee. The service
providers’ access control policies dictate whether the
delegatee needs an account at their websites. For example,
if the SP has a mandatory access control policy, the
delegatee needs an account at the SP because the access
control is managed by the SP’s system. For another
example, if the SP has a discretionary access control
policy, that is, it lets the user to decide permissions
regarding to his resources, such as data, at the SP. Then the
SP may not need to know the identity of the delegatee.

VI. CONCLUSIONS
This paper proposes a new delegation method that

enables user-to-user delegations in a federated identity
environment. This method allows service providers (SPs)
to use the delegation service, instead of managing
delegations individually. The service providers can
exercise access controls and decide if the delegator has the
right to delegate and if the delegatee should be authorized
to perform the requested services. This method is
applicable to any access control models because service
providers control the access to their resources.

ACKNOWLEDGEMENT
The author would like to thank Dr. Ksheerabdhi

Krishna and Mr. Kapil Sachdeva for their help to this work.

REFERENCES
[1] X. Huysmans and B. Van Alsenoy, editors, “Identity

management for eGovernment, Annex I. Glossary of terms
(v1.07), IDEM project, 2007,

https://projects.ibbt.be/idem/uploads/media/2007-12-
27.idem.glossary.v1.07.pdf [accessed: July 18, 2011].

[2] R. Peeters, et al. “Cross-context delegation through identity
federation,” Proc. of SIG on Biometrics and Electronic
Signature, 2008.
http://www.cosic.esat.kuleuven.be/publications/article-
1156.pdf [accessed: July 18, 2011].

[3] OASIS, “Security assertion markup language (SAML) v2.0
technical overview,” editors: N. Ragouzis et al., committee
draft 02, March 25, 2008, http://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-
overview-2.0-cd-02.pdf [accessed: July 18, 2011].

[4] W. Alrodhan and C. Mitchell, “A delegation framework for
liberty,” Proc. of the 3rd Conference on Advances in
Computer Security and Forensics, 10-11 July 2008,
Liverpool, UK, http://www.isg.rhul.ac.uk/cjm/adffl.pdf
[accessed: July 18, 2011].

[5] J. Crampton and H. Khambhammettu, “Delegation in role-
based access control,” Lecture Notes in Computer Science,
volume 4189, 2006, pp. 174-191.

[6] OASIS, “Assertions and protocols for the OASIS security
assertion markup language (SAML),” v2.0,
http://saml.xml.org/saml-specifications [accessed: July 18,
2011].

[7] OASIS, “eXtensible access control markup language
(XACML),” http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml
[accessed: July 18, 2011].

[8] Internet 2 – Shib-uPortal,
https://spaces.internet2.edu/display/ShibuPortal/Home
[accessed: July 18, 2011].

[9] Shibboleth, http://shibboleth.internet2.edu/ [accessed: July
18, 2011].

[10] OAuth, http://oauth.net/ [accessed: July 18, 2011].
[11] OASIS, “SAML V2.0 Condition for delegation restriction,”

Committee draft 01, 10 March 2009, http://wiki.oasis-
open.org/security/SAML2DelegationCondition [accessed:
July 18, 2011].

[12] Project Liberty, “Liberty ID-WSF people service
specification,” v 1.0,
http://projectliberty.org/liberty/content/download/890/6246/f
ile/liberty-idwsf-people-service-v1.0.pdf [accessed: July 18,
2011].

[13] OASIS, “Profiles for the OASIS security assertion markup
language (SAML),” v2.0, http://docs.oasis-
open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
[accessed: July 18, 2011].

83

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

