
Designing Reusable Management Services

Ingo Pansa1, Christoph Leist2, Matthias Reichle2, Sebastian Abeck1
Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

1{pansa, abeck}@kit.edu
2{christoph.leist, matthias.reichle}@student.kit.edu

Abstract— Reusing functionality is one preferable requirement
in today's engineering of distributed systems. Focusing IT
Management systems as a key enabler to modern service-
oriented systems, reusing management functionality can be
achieved by applying the principles of service-orientation to
support the construction of reusable management services.
Thus, in order to construct these management services aligned
with certain design quality, estimating the possible degree of
reusability during analysis and design steps is required in
order to support certain design decisions. Existing approaches
targeting the design of management services do not take
reusability into account explicitly, wherefore the proposed
solutions seem to be hard to adopt if requirements to that
system change. In this paper, an overall approach based on
domain modeling is presented, supporting the design of
management services by explicitly defined reusability metrics.
The approach is exemplified by designing management
services for a typical Incident Management scenario in which
we outline the value of domain modeling for creating reusable
design blueprints.

Keywords - management service design; reusability; domain
model

I. INTRODUCTION
As nowadays software systems grow in complexity,

decoupling different parts of the systems is one of the most
desired characteristics that system engineers follow.
Different approaches have been proposed, starting with the
early Client/Server-Architectures followed by CORBA [9]
in the 90’s up to Web Service-based Architectures in the
beginning of the new century. While all these approaches
have major differences in how to structure the proposed
architectures, they have some basic principles in common,
of which the reusability of existing software artifacts seems
to be one of the most important.

Focusing Service-oriented Architecture (SOA) [15],
reusability of software artifacts is reflected in the existence
of clearly defined service interfaces that hide details of the
service implementation [27]. These service interfaces are
expected to align with business process requirements thus
supporting a basic reusability on a coarse granular level.
Furthermore, standardized technologies such as Web
Services or Universal Description, Discovery and
Integration (UDDI) [33] are utilized to realize technical
aspects of reusability.

While there seems to exist a common agreement of how
to describe the concept of and specify formal metrics for
reusability at least in Component-based Software
Engineering (CbSE) [23, 25], a clear understanding of
reusability in Service-oriented Software Engineering (SoSE)
has not yet been reached. Although initial work exists that
regards reusability as a key concept in SOSE [23, 26, 27],
the definition of formal metrics that can directly be used
within typical modeling languages supporting service-
oriented analysis or service-oriented design (e.g., SoaML
[17]) is still missing. To impair this situation, reusability
becomes important considering the different viewpoints
towards SOA.

To address this situation, this paper delivers initial
contributions: First, we introduce refined aspects of an
abstracted development process for SOSE in which we
identify activities that deal with reusability and discuss
characteristics of SoaML elements relating to reusability.
Second, we present selected metrics measuring reusability
of specific service analysis or service design models. The
presented metrics are based on common agreement of how
to describe and measure reusability of software artifacts on a
conceptual level [4, 18, 19, 20]. Third, we demonstrate the
application of these metrics in a real world scenario dealing
with the construction of reusable services for a distributed
management system that is based on reusable management
services [2, 3, 6, 7].

The remaining parts of this paper are structured as
followed: in Section 2, we outline the background of
reusability in service-oriented architecture and summarize
related work. Section 3 presents a typical service-oriented
development process that is focused to consider aspects of
designing reusable management services. In Section 4, the
main contribution of this paper is introduced: we discuss
three different aspects of reusability of management services
in detail and present formal metrics to evaluate the respective
aspect. Section 5 embeds the presented metrics in a real
world development process considering management
services supporting a typical Incident Management process.
We chose to demonstrate the applicability of our approach
within a very special scenario as future management systems
will greatly benefit from applying service-orientation [10,
11, 12, 13, 14, 22, 24] thus require proper designed
management services according to reusability aspects.

19

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Finally, Section 6 summarizes the results of this paper and
presents some ongoing work that can complement the
proposed approach.

II. BACKGROUND AND RELATED WORK
As a special instance of distributed information systems,

constructing software systems supporting IT Service
Management (ITSM) follows similar principles.
Considering the construction of such systems, the main
challenges that distributed management is faced with are
named in [10, 11, 12, 22, 24]. Although there exist a few
holistic approaches considering technical aspects of
distributed management based on web services [30, 31],
only a few papers have been published dealing with more
process-oriented aspects of integrated management systems
[6, 7, 13, 14, 32]. One can conclude that, although initial
work towards standardized and reusable management
services has been performed, a revision of these approaches
contributing to the process of Service-oriented Software
Engineering (SoSE) is necessary. As we currently observe a
shift towards web-based usage of dynamic IT Services
(“Cloud Computing”) with the broader adoption of flexible
service infrastructures by the business, this holds even more.
Standards such as ISO/IEC20000-1:2005 [5] only serve as a
starting point.

According to [4], reusing software is the process of
creating software systems from existing software rather than
building software systems from scratch. Thus, from the
perspective of a software designer tasked to create a
collaborative system, using for instance deployed artifacts is
a building block to create a system that fulfills requirements
that are subject-specific. Focusing this generally applicable
assumption to the challenge of creating a collaborative
system supporting management activities, applying the
principles of service-orientation perfectly seems to fit these
requirements.

Initial work has been published lately considering design
issues of reusable services [23, 26], however, investigating
reusability of software artifacts is a much more older
research topic and is based on concepts that were introduced
at the NATO Software Engineering Conference in 1968
[35]. Many research efforts have been undertaken to address
different aspects of reusability (e.g., in Component-based
Software Engineering [36]), including extensive survey
papers [4] that conclude the then leading insights.

Following Krueger, four different criteria have to be
regarded considering reusability: abstraction, selection,
specialization and integration [4]. While these concerns are
of very generic nature, Erl introduces four extra criteria
focused on designing service-oriented software artifacts
[27]: agnostic from business processes, generic business
logic, generic service contract and concurrency. However,
the presented criteria in [27] are discussed on a conceptual
level without any formal defined foundation. Besides many
more, Poulin addresses reusability focused on object-
oriented software design [19] by focusing the criteria

cohesion, autonomy, usefulness and complexity. While the
discussed criteria serve as a direct foundation to investigate
criteria for service-oriented design, Poulin mainly focuses
on business-related aspects thus considering economic
measures rather than engineering measures.

Apart from the beforehand named criteria, generic
aspects desired when constructing software components
such as complete operation sets or disjoint operation sets are
mainly motivated by practical concerns derived from
experience we observed in several development projects.
While the criterion complete operation sets aims at reducing
future development efforts by explicitly extending service
design based on predefined patterns, focusing disjoint
operation sets tries to prevent the definition of redundant
operations thus leading to side effects when changing
existing service logic.

III. A SERVICE-ORIENTED DEVELOPMENT PROCESS
Designing distributed software systems is a highly

complex issue that involves several different stakeholders.
Focusing Service-oriented Architecture (SOA), some
generic steps and models can be identified that are
independent of concrete development process models. In
order to utilize the metrics framework presented afterwards,
in this chapter we briefly discuss an abstracted view of such
typical development models. The abstracted view is
presented in means of a scenario within a typical IT Service
Provider (ITSP) that aims at automating its management
processes based on its existing management tools. The
integrative artifacts typically are implements using web
services. Figure 1 shows for an overview of the assumed
scenario.

As the proposed standard language for modeling service-
oriented software systems already is adopted by tool
vendors, the entire development process is supported by
SoaML [17] for modeling services and OWL [37] for the
definition of ontologies [8]. We propose to utilize OWL
ontologies for defining domain models as according to [1]
this approach brings several advantages focusing model-
driven software development.

Figure 1. Service-oriented integration of managemen tools

The service-oriented design process discussed here is
derived from and aligned with established software
development processes and thus consists of the four phases

Management Tool
(e.g. Trouble Ticket Tool)

Management Service

integrates

Aligned with
Management Process ?

Reusable ?

Management Process
(e.g. Incident Management Prozess)

Developer

Analyst

Service-oriented D
evelopm

ent Process
(A

nalysis, D
esign, Im

plem
entation, Tets/D

eplom
ent)

Architect

20

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

service-oriented analysis, service-oriented design, service
implementation and deployment.

The goal of service-oriented analysis is to capture the
characteristics and requirements of the problem domain and
transform them into a set of service candidates providing the
necessary functionality.

To accomplish this, the analyst will first specify a
domain ontology, serving not only as the basis for the
following analysis steps but also as a reference point for
activities throughout the entire development process, such
as the evaluation of reusability conducted mainly in the
design phase. The domain ontology is an extension of a
common and binding domain meta model [2, 3], ensuring
consistent syntax and semantics across multiple projects and
development teams.

The next step is the specification of the high-level
system behavior through the definition of formal business
process models that refer to the concepts found in the
domain model. Focused in our domain, we define
management processes as special instances from generic
business processes. From these management process
models, service candidates will be derived according to the
rules defined in [2], that, represented as SoaML
Capabilities, mark the transition to the service-oriented
design phase.

The rule-based transition from service candidates to
abstract (e.g. platform-independent) service interfaces
constitutes the first step in the development of the service
interface model. It is followed by the specification of
service contracts, participants and the overall architecture.

Our evaluation of the resulting services’ reusability
mainly takes place towards the end of the analysis phase and
early in the design phase and is based on the service
candidate and service interface models. This way, achieving
high levels of reusability should become more likely, since
the effort required to modify analysis or design models is
relatively small compared with the modification of fully
implemented software.

In the implementation phase, the abstract service
interfaces are concretized using platform-specific interface
definition languages such as the Web Services Description
Language (WSDL) [28]. Basic services are realized through
implementation in code or through integration of pre-
existing tools; for composite services mechanisms like the
Business Process Execution Language (BPEL) [29] may be
used.

These activities however, as well as the subsequent
deployment phase, are not covered by our research.

IV. REUSABILITY OF MANAGEMENT SERVICES
This section explores three of the aforementioned

criteria for the reusability of services in greater detail and
tries to establish a formal basis for their evaluation in
concrete scenarios. The presented criteria are based on
previously published work that, although targeting Object-
oriented or Component-based Software Engineering, refines

these approaches by explicitly addressing characteristics of
a service-oriented design process.

A. Classification
To be able to discover the services to be reused in a

specific context is essential for the process of selection and
thus for reusability itself. In other words: “To reuse a
software artifact effectively, you must be able to ‘find it’
faster than you could ’build it’.” [4].

Classification is the non-technical aspect of
discoverability; the technical aspect being the existence of
some kind of service repository (such as Universal
Description, Discovery and Integration (UDDI) [33])
supporting the actual retrieval of services.

While one can locate the services needed in a given
scenario based on their name (which is, in fact, greatly
facilitated by adhering to naming conventions), an extensive
classification allows for a more precise search. The
proposed classification categorizes the developed services
according to the structure of the underlying domain model
and thus allows us to locate and compare services based on
a variety of different characteristics. Classifications can be
defined in SoaML models using so-called Categories, that
are mainly an extension of the OMG-defined Reusable
Asset Specification (RAS) [16]. A SoaML Category
contains several different SoaML Categorization elements
that can be used to define a certain aspect.

Although we evaluate the reusability of services during
design time, in order to be able to locate the implemented
services the classification must pertain to them as well. We
therefore assume that the SoaML Categorization elements
used to classify design related artifacts are transformed into
an appropriate semantic annotation of the resulting concrete
service interfaces, such as Semantic Annotations for WSDL
(SAWSDL) [34].

The classification dimensions for service candidates
(represented by SoaML Capabilities) and service interfaces
(represented by SoaML ServiceInterfaces) are shown in
Table 1.

TABLE I. CLASSIFICATION DIMENSIONS

Symbol Description
MST Management Service Type

Type of the service (Basic or Composed)
MCT Management Capability Type

Type of the specified capability (Provided or
Required; only applies to service candidates)

MAT Management Area Type
Management Area the service belongs to

ME Management Entity
Entity the service operates on

To gain a measure for the extent of classification for a
given service candidate !"#! we divide the amount of
classification dimensions associated with the service
(AoCD(!"#!)) by the total number of applicable
classification dimensions (ToCDSC). Equation (1) defines the

21

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

ratio of classification dimensions, and (2), (3), (4) and (5)
define several helper functions.

 RoCDSC(!"#!) =
AoCD(!"#!)
ToCDSC

 (1)

where

 AoCD !"#! = Ex(!"! ,!"#!)∀! (2)

with

 Ex(!"! ,!"#!) =
1, if ∃! ∈ !"! associated with !"#!
0, otherwise (3)

and

 ToCDSC = !"! ∀! (4)

 ToCDSI = !"#,!"#,!"#,!" = 4 (5)

The extent of classification for the actual service
interface is calculated accordingly. Equation (6) gives the
definition of the ration of classification dimensions for an
actual service interface and (7) defines the needed
dimension set.

 RoCDSI(!"#!) =
AoCD(!"#!)
ToCDSI

 (6)

with

 ToCDSI = !"#,!"#,!" = 3 (7)

An RoCD value of 1 implies an optimal classification
coverage for the evaluated artifact (service candidate or
service interface) in that there exists an association with at
least one classification element from each available
classification dimension. Values closer to 0 on the other
hand indicate a relatively poor classification coverage,
which is not desirable.

B. Complete operation sets
Many commonly used interface operations appear in

groups, such as the well-established CRUD pattern or
operation pairs like open/close. Completeness regarding
such patterns benefits reusability, because it is very likely
that, once one of the operations contained in a group is
needed, all of them will be at some point.

Ignoring completeness patterns can lead to uncontrolled
extension of service interfaces resulting in a loss of cohesion
(if additional functionality is assigned to a separate
interface) or even non-disjoint functional contexts (if
functionality is unintentionally duplicated).

The sub-criteria for the completeness of data-centric
services — in our context called Entity Services [27] — are

the existence of a Create, Read and Update method,
captured by (8):

 Ex !",!"#! , Ex !",!"#! , Ex !",!"#! (8)

Since ISO/IEC20000-1:2005 [5] — on which the
motivating example is based — does not permit the deletion
of records, we do not consider the existence of a Delete
operation necessary for interface completeness.

Thus, the measure for the completeness of an Entity
Service is defined in the following equations (9) and (10)

RoCSC(!"#!) =
Ex !",!"#! !Ex !",!"#! !Ex(!",!"#!)

!
 (9)

RoCSI !"#! = Ex !",!"#! !Ex !",!"#! !Ex(!",!"#!)
!

 (10)

where a value of 1 indicates completeness of the service
regarding the CRU pattern and values below 1 indicate
lacking completeness.

It should be mentioned that the concept of completeness
can also be applied to data types (e.g., by demanding the
existence of an ID attribute), although this paper does not
further investigate this.

C. Disjoint operation sets
Like other, more “traditional” software systems, service-

oriented architectures depend on the separation of concerns
and on clearly defined functional borders. Those concepts
can have a positive effect on reusability insofar as they
structure the collection of available services and help to
alleviate the problems arising from duplicated functionality
such as productivity losses and potential incompatibilities
and access conflicts.

In this context, one policy that is both easy to define and
easy to enforce is the exclusive data access of Entity
Services, implying that the access to one class of entities is
to be provided by the corresponding Entity Service alone.

A statement about two services being disjoint can be
made by determining the overlap of their respective
operations. Assuming we have a means to decide whether
two operations are functionally equivalent, defined by (11)

Cov !!,!! = 1, if !! and !! are equivalent
0, otherwise (11)

we can derive a measure for disjoint operation sets of
services as followed in (12):

AoSSOSC(!"#!) = Cov !!,! ,!!,!
!! !!
!!!!!!

!! !!
!!! (12)

As this returns the total number of one service’s
operations also found in other services, a value of 0
(indicating completely disjoint services) should be targeted.

22

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

V. DESIGNING REUSABLE SERVICES FOR INCIDENT
MANAGEMENT

The following example is an excerpt from a project
involving the introduction of an IT-supported incident
management process. It shows the refinement of one basic
service through the analysis, design, and implementation
phases of the development process discussed in Section 3.

Figure 2 shows the relevant parts of a domain ontology
created in accordance with ISO/IEC20000-1:2005 [5]. As
depicted, two management activities (RecordIncident and
CreateIncidentRecord) are regarded. The two management
activities belong to different types of management activities
but can be ranged in the management area
IncidentManagement. The basic management activity
CreateIncidentRecord has access to the management entity
IncidentRecord. The presented domain ontology was
defined using OWL.

Figure 2. Excerpt from domain ontology

For the sake of simplicity, we exclusively consider the
management activity for recording an incident, requiring the
basic capability to create an IncidentRecord entity. The
service operation CreateIncidentRecord is assigned to a
SoaML Capability named IncidentRecordService and
categorized as RequiredManagementCapability (denoting a
needed as opposed to an already existing service) (see
Figure 3).

Figure 3. Preliminary service candidate

A preliminary evaluation of the service candidate’s
reusability shows that the criteria complete operation sets
and disjoint operation sets are not fulfilled yet, as indicated
by the following applications of the presented metrics:

RoCDSC !"# = !!!!!!!
!

= !
!

and

RoCSC !"# = !!!!!
!

= !
!

Consequently, the SoaML Capability is further
categorized as a ManagementBasicService (it is, in fact, a
ManagementEntityService, a special kind of
ManagementBasicService), operating on IncidentRecord
entities and belonging to the area of IncidentManagement.
Furthermore, it is completed with respect to the CRU
pattern by adding the operations ReadIncidentRecord and
UpdateIncidentRecord, resulting in

RoCDSC !"# = 1

and

RoCSC !"# = 1

The modified service candidate can be seen in in Figure 4.

Figure 4. Modified service candidate

Since this example focuses on one single service, its
operations cannot be compared to those of other services.
Following the data sovereignty policy on the other hand
ensures that operations managing the lifecycle of
IncidentRecords are only found on IncidentRecordService.
It follows that

AoSSOSC !"# = 0

The ServiceInterface named IncidentRecordService
(Figure 5) is derived from the refined Capability, whose
classification it shares (with the exception of
RequiredManagementCapability, which only applies to
service candidates). Its operations are provided with
appropriate parameters and return values.

Figure 5. Service Interface

IncidentManagementRecordIncident

Create
IncidentRecord IncidentRecord

Composed
ManagementActivity

Basic
ManagementActivity

<<Capability>>

IncidentRecordService

CreateIncidentRecord()

<<Category>>
RequiredManagementCapability

<<categorization>>

<<Capability>>

IncidentRecordService

CreateIncidentRecord()
ReadIncidentRecord()
UpdateIncidentRecord()

<<Category>>
RequiredManagementCapability

<<categorization>>

<<categorization>>

<<categorization>>

<<Category>>
ManagementBasicService

<<Category>>
IncidentManagement

<<Category>>
IncidentRecord

<<categorization>>

<<ServiceInterface>>

IncidentRecordService

CreateIncidentRecord() : IncidentRecord
ReadIncidentRecord(ID : String) : IncidentRecord
UpdateIncidentRecord(Record : IncidentRecord)

<<categorization>>

<<categorization>>

<<Category>>
ManagementBasicService

<<Category>>
IncidentManagement

<<Category>>
IncidentRecord

<<categorization>>

23

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Not surprisingly, the results of the reusability evaluation
are the same as for the service candidate:

RoCDSI !"# = 1

RoCSI !"# = 1

AoSSOSI !"# = 0

The actual implementation of the IncidentRecordService
will be achieved by the adapter-based integration of Mantis
BugTracker [21], a trouble ticket tool currently in use as a
standalone solution.

VI. CONCLUSION AND OUTLOOK
Reusing existing software assets seems to many

researchers a kind of Holy Grail when engineering complex
and distributed information systems. While a couple of
different approaches and paradigms have been proposed in
the past (ranging from simple Client/Server computing to up
to Component-based Software Engineering (CbSE)) to
address general problems when reusing software assets,
many issues still remain. Grounded on the simple statement,
that reusing does not come for free [19], special attention
has to be paid not only within the design process but also
when selecting appropriate models and modeling
techniques.

As nowadays information systems have to be aligned
with business processes, the requirements for reengineering
business logic can directly be derived from the business
process perspective. Considering Service-oriented
Architectures (SOA) to realize these process-oriented
information systems, the systems elements that implement
SOA have to be aligned with the business processes. Thus,
reusability of services has to be regarded from the
perspective of the technical-independent processes. Existing
approaches do not consider process requirements explicitly
when targeting the design of reusable services but mainly
focus on technical details.

To address this issue, in this paper we deliver several
contributions. First, we refine a generic development
process for service-oriented analysis and design and outline
development tasks that are supported by different models
and modeling techniques that focus the reusability of the to-
be-designed artifacts. The presented development approach
extends and refines work that was previously published by
our research group [2, 3]. Second, we discuss an assorted
selection of different aspects of reusability considering
service orientation and present three different aspects that
are formalized using a conceptual metrics framework. The
presented metrics can be applied to any kind of service
analysis or design models if they are defined using SoaML.
Furthermore, we outline the advantage of using an OWL-
based domain ontology for directly influencing the quality
of service design. Using domain ontology has several
advantages [2, 3]. As we expect that reusability of services

can only be discussed within clearly defined domains, we
present an application example of our approach within the
context of designing web service-based services for a
process-oriented management system supporting IT Service
Management Processes. A third contribution therefore
devotes to a typical Incident Management process and
demonstrates the application of both the presented
development process and the introduced metrics framework,
resulting in a set of management services that are designed
along special design characteristics.

Although service-oriented computing inherently is
predestinated for building software systems based on
existing assets, it seems remarkable that existing approaches
mainly focused on technical details. Considering the
contributions we deliver in this paper, we address a more
conceptual perspective, but further work has to be
performed. As we mainly focused on generic issues
targeting design related aspects of services reusability, a
more formal approach that is independent of certain
domains could greatly enhance software engineering.
Utilizing model-driven techniques could not only decrease
engineering round trip times, but also increase the quality of
resulting systems implementation.

REFERENCES

[1] D. Gasevic, D. Djuric, and V. Devedzic, Model Driven Engineering
and Ontology Development, Springer, Heidelberg, 2006.

[2] I. Pansa, F. Palmen, S. Abeck, K. Scheibenberber, “A Domain-driven
Approach for Designing Management Services”,
SERVICECOMPUTATION2010, Lisbon, 2010.

[3] I. Pansa, P. Walter, K. Scheibenberger, and S. Abeck, “Model-based
Integration of Tools Supporting Automatable ITSM Processes”,
IEEE/IFIP Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010, Page(s): 99 – 102.

[4] C.W. Krueger, “Software reuse”, ACM Computing Surveys (CSUR),
vol. 24, no. 2, pp. 131-183, 1992.

[5] ISO/IEC20000-1:2005, Information technology – Service
management – Part1: Specification, International Standards
Organization (ISO), 2005.

[6] G. Aschemann and P. Hasselmeyer, „A Loosely Coupled Federation
of Distributed Management Services“, Journal of Network and
Systems Management, Vol 9, No. 1, 2001.

[7] N. Anerousis, „An Architecture for Building Scalable, Web-Based
Management Services“, Journal of Network and System
Management, Vol. 7, No 1., 1999.

[8] T. Gruber, „A translation approach to portable ontology
specifications“, Knowledge Acquisition, Vol. 5, Issue 2, pp. 199-220,
1993.

[9] M. Henning, „The Rise and Fall of CORBA“, Communications of the
ACM Vol. 51 No. 8, pp. 52-57, 2008.

[10] P. Kumar, „Web Services and IT Management“, ACM Queue,
Volume 3 Issue 6, 2005.

[11] V. Machiraju, C. Bartolini and F. Casati, „Technologies for Business-
Driven IT Management“, in Extending Web Services Technologies:
the Use of Multi- Agent Approaches, Kluwer Academic, 2004.

[12] A. Moura, J. Sauve and C. Bartolini, „Research Challenges of
Business-Driven IT Management“, 2nd IEEE/IFIP International
Workshop on Business- Driven IT Management, pp.19-28, 2007.

[13] C. Mayerl, F. Tröscher, and S. Abeck, „Process-oriented Integration
of Applications for a Service-oriented IT Management“, The First

24

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

International Workshop on Business-Driven IT-Management,
BDIM’06, pp. 29-36, 2006.

[14] C. Mayerl, T. Vogel and S. Abeck, „SOA-based Integration of IT
Service Management Applications“, 2005 IEEE International
Conference on Web Services (ICWS 2005), 2005.

[15] Organization for the Advancement of Structured Information
Standards (OASIS), Reference Model for Service Oriented
Architecture, Version 1.0, OASIS, August 2006.

[16] Object Management Group (RAS), Reuasable Asset Specification,
Version 2.2, OMG, November 2005.

[17] Object Management Group (OMG), Service-oriented architecture
Modeling Language (SoaML) - Specification for the UML Profile
and Metamodel for Services (UPMS), FTF Beta 1, OMG, April 2009.

[18] R. Prieto-Diaz and P. Freemann, „Classifying Software for
Reusability“, IEEE Software, Vol. 4, Issue 1, pp. 6-16, 1987.

[19] J. Poulin, „Measuring Software Reuse“, Addison Wesley Publishing
Group, 1997.

[20] Ruben Prieto-Diaz, „Status Report Software Reusability“, IEEE
Software, Vol. 10, Issue 3, pp. 61-66, 1993.

[21] Mantis Bug Tracker, 2011; http://www.mantisbt.org/ (last vistited:
19- 02-2011).

[22] J. Sauvé, A. Moura, M. Sampaio, J. Jornada and E. Radziuk, „An
Introductory Overview and Survey of Business-Driven IT
Management“, 1st IEEE/IFIP International Workshop on Business-
driven IT Management (BDIM 2006), 2006.

[23] A. Sillitti, and G Succi, „Reuse: From Components to Services“, High
Confidence Software Reuse in Large Systems (2008), pp. 266-269,
2008.

[24] V. Tosic, „The 5 C Challenges of Business-Driven IT Management
and the 5 A Approaches to Addressing Them“, The First IEEE/IFIP
International Workshop on Business-Driven IT Management, 2006.

[25] H. Washizaki, H. Yamamoto, and Y. Fukazawa, „A Metrics Suite for
Measuring Reusability of Software Components“, Proceedings of the
9th International Symposium on Software Metrics, 2003.

[26] J. Wang, J. Yu, P. Falcarin, Y. Han, and M. Morisio, „An Approach
to Domain- Specific Reuse in Service-Oriented Environments“,
Proceedings of the 10th international conference on Software Reuse:
High Confidence Software Reuse in Large Systems, 2008.

[27] T. Erl: SOA, Principles of Service Design, Prentice Hall, 2008.
[28] World Wide Web Consortium (W3C), Web Service Description

Language (WSDL) Version 2.0 Part1 Core Language, W3C
Recommendation, 2007.

[29] Organization for the Advancement of Structured Information
Standards (OASIS), Web Services Business Process Execution
Language (WS- BPEL), Version 2.0, OASIS, April 2007.

[30] Organization for the Advancement of Structured Information
Standards (OASIS), Web Services Distributed Management: MUWS
Primer, OASIS, Februar 2006.

[31] Distributed Management Task Force (DMTF), Web Services for
Management (WS-Management) Specification, Version 1.1.0,
DMTF, 2010.

[32] G. Tamm and R. Zarnekow, „Umsetzung eines ITIL-konformen IT-
Service-Support auf der Grundlage von Web-Services“,
Wirtschaftsinformtik 2005, pp. 647-666, 2005.

[33] Organization for the Advancement of Structured Information
Standards (OASIS): Universal Description, Discovery and Integration
(UDDI), Version 3.0.2, Oktober 2004.

[34] World Wide Web Consortium (W3C): Semantic Annotations for
WSDL and XML Schema, W3C Recommendation, 2007.

[35] P. Naur and B. Randall, “Software Engineering; Report on a
conference sponsored by the NATO Science Committee”, Garmisch,
1968.

[36] B. Meyer, “Reusability: The case for Object-oriented design”, in
Frontier Series: Software Reusability, Vol. 11 – Applications and
Experience, 1989, pp. 1-33.

[37] World Wide Web Consortium (W3C), Web Ontology Language
(OWL), W3C Recommendation, 2004.

25

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

