
Evaluation of the Applicability of the OSGi Service Platform

to Future In-Vehicle Embedded Systems

Irina Astrova, Ahto Kalja

Institute of Cybernetics

Tallinn University of Technology

Tallinn, Estonia

irina@cs.ioc.ee, ahto@cs.ioc.ee

Arne Koschel, Roman Roelofsen

Faculty IV, Dept. for Computer Science

Applied University of Sciences and Arts

Hannover, Germany

akoschel@acm.org, roman.roelofsen@googlemail.com

Abstract—One promising market for embedded systems is the

automotive industry. For example, engines, dashboards,

wipers, lights, doors, windows, seats, mirrors, radios, CDs,

DVDs, and hand-free phones are being controlled by in-vehicle

embedded systems. This paper evaluates the applicability of

the OSGi Service Platform to future in-vehicle embedded

systems. One specific application area, which can greatly

benefit from this evaluation, is Web services, where a number

of future scenarios have not been supported by the OSGi

Service Platform yet. This is exemplified by two example

scenarios, viz., a car tracking service and an advertising

service. Based on these example scenarios, a number of

requirements that should be met by the OSGi Service Platform

are identified, viz., dynamic availability, versioning,

persistence, composition, remote management, platform

independence, security, and distribution. In addition to the

identification of the requirements, another contribution of this

paper is the evaluation of the OSGi Service Platform against

these requirements. This evaluation will help to extend the

OSGi Service Platform to be applicable to future in-vehicle

embedded systems.

Keywords—OSGi Service Platform, OSGi Framework, in-

vehicle embedded systems, Web services, car tracking service,

advertising service

I. INTRODUCTION

 ―Nowadays, for any activity in our everyday life, we are
likely to use products and services, whose behavior is
governed by computer-based systems also called embedded
systems‖ [4]. Embedded systems constitute the biggest sector
in the market today. ―Of the 9 billion processors
manufactured in 2005, less than 2% became the brains off
new PCs, Macs, and Unix workstations. The other 8.8 billion
went into embedded systems‖ [2].

This market trend also affects the automotive industry,
one of the largest economies in the world. Over the last two
decades, there has been an exponential increase in the
number of computer-based systems embedded in vehicles
also called in-vehicle embedded systems (or automotive
embedded systems) [4].

In-vehicle embedded systems are currently used for
navigation, climate control, adaptive control, traction control,
stabilization control and active safety. In the future, they will
also be used for remote diagnostics of a vehicle, access to the
Internet and audio/video entertainment. The cost of in-

vehicle embedded systems constitutes more than 25% of the
total cost of a vehicle today [11]. In 2010, in-vehicle
embedded systems will account for 40% of a vehicle‘s
content [3].

The remainder of this paper is organized as follows. At
first, the paper describes example scenarios of using Web
services in future in-vehicle embedded systems, viz., a car
tracking service and an advertising service. Next, the paper
lists requirements driven by the example scenarios, viz.,
dynamic availability, versioning, persistence, composition,
remote management, platform independence, security,
isolation, communication, and distribution. Finally, the paper
evaluates the OSGi Service Platform to see if this platform
can meet the requirements of the example scenarios.

II. MOTIVATION

The motivation that leads us to evaluate the applicability
of the OSGi (Open Services Gateway initiative) Service
Platform [8] to future in-vehicle embedded systems stems
from the following facts:

1. The OSGi Service Platform originally targeted
gateways (as can be deduced from the platform
name). However, the platform has been adapted to
many other domains, including vehicles.

2. Vehicle manufactures (producing around 70 million
cars per year [20]) have showed interest in the OSGi
Service Platform. Simple evidence of this fact is that
Automotive Multimedia Interface Collaboration
(representing major vehicle manufactures) has joined
the OSGi Alliance [18].

3. Vehicles are a promising market for embedded
systems. For example, engines, dashboards, wipers,
lights, doors, windows, seats, mirrors, radios, CDs,
DVDs, and hand-free phones are controlled by
embedded systems.

4. More than 80% of all new innovations in vehicles
are based on embedded systems [19]. For example,
when an accident causes an airbag to inflate in a
Cadillac, an embedded system in the car emits a
signal for the global positioning system (GPS)
service to get the car‘s position and then
communicates with the driver‘s cell phone to send
the car‘s position to the rescue service [4].

202

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

III. EMBEDDED SYSTEMS

An embedded system is ―a micro-processed device, thus
programmable, which uses its processing power for a
specific purpose‖ [1]. It typically consists of memory (such
as RAM, EPROM, ROM or flash memory), a processor
(such as Intel x86, PowerPC or ARM), a clock and an
input/output device (see Figure 1).

Figure 1. Embedded system [1]

Because of small memory footprints, embedded systems
are also called small-memory devices. However, the size of
software embedded in vehicles has been growing. For
example, in 1980 and 2000, a Peugeot contained 1.1 KB and
2 MB, respectively [4]. In 2010, some vehicles may contain
100 million lines of code [3].

The growing size of embedded software also raises a
question of its quality. For example, in 2003, 49.2% of all
car breakdowns in Germany were due to bugs in embedded
software [4].

IV. WEB SERVICES

A Web service is ―a software system designed to support
interoperable computer-to-computer interaction over a
network‖ [10].

The market trend towards embedded systems gives rise
to the idea of using Web services in embedded systems.
However, this is a challenging task because ―embedded
systems rarely have enough memory and processing power
to run Web services‖ [6].

V. OSGI SERVICE PLATFORM

The OSGi Service Platform [8] is a Java platform that
has arisen in the context of embedded systems. The platform
is freely available and constantly developed by the OSGi
Alliance [8].

There are several commercial and non-commercial
implementations of the OSGi Service Platform, including
Eclipse Equinox [30], Apache Felix [31], Knopflerfish [32],
and ProSyst‘s mBedded server [33]. Well-known
applications that are based on the platform include the
Eclipse IDE and Apache Service Mix [34].

The core of the OSGi Service Platform is the OSGi
Framework. This framework simplifies the development and
deployment of extensible applications also called bundles, by
decoupling the bundle‘s specification from its
implementation. This means that a bundle is accessed by the
framework through an interface, which is by definition

separate from the bundle‘s implementation. This separation
enables changing the bundle‘s implementation without
changing the environment and other bundles.

The OSGi Framework makes it possible to run multiple
applications simultaneously within a single Java Virtual
Machine (JVM), by dividing applications into bundles that
can be loaded at runtime and also removed. For
communication within the JVM, the framework provides a
service registry to register services, so that services can be
found and used by other bundles.

Figure 2. Life cycle of bundles in the OSGi Framework [9]

A bundle has a well-defined life cycle (see Figure 2) and
its own context also called a class loader. It can be in one of
the following states:

1. Installed. The bundle has been installed. After this,
the bundle will be moved into the resolved state.

2. Resolved. All classes that the bundle needs have
been loaded. This state indicates that the bundle is
either ready to be started or has stopped.

3. Starting. The bundle is being started. After this, the
bundle will be moved into the active state.

4. Active. The bundle has been activated and is
running. The bundle‘s functionality is provided and
its services are exposed to other bundles registered in
the service registry.

5. Stopping. The bundle is being stopped. After this,
the bundle will be moved into the resolved state.

6. Uninstalled. The bundle has been uninstalled.

VI. EXAMPLE SCENARIOS

To identify the requirements for the OSGi Service
Platform in the vehicle domain, we considered the following
examples of using Web services in embedded systems:

1. Car tracking service (see Figure 3a).
2. Advertising service (see Figure 3b).

203

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Figure 3. Example scenarios: (a) car tracking service; and (b)

advertising service [5]

These examples were derived from vehicle manufacture
opinions about the future direction of using Web services in
embedded systems.

A. Car Tracking Service

The car tracking service will be used by the car rental
company to get the car‘s position. Installation of this service
will be initiated either by the driver or by the car rental
company.

B. Advertising Service

The advertising service will be used by the driver (e.g.,
waiting in a traffic jam) to get advertising information. This
service will be installed by the local advertising server just in
time as the car enters a local hot-spot network.

VII. REQUIREMENTS OF EXAMPLE SCENARIOS

We identified the following requirements for the OSGi
Service Platform in the vehicle domain:

1. Dynamic availability.
2. Versioning.
3. Persistence.
4. Composition.
5. Remote management.
6. Platform independence.
7. Security.
8. Isolation.
9. Communication.
10. Distribution.
These requirements were driven by the example

scenarios.

A. Dynamic Availability

Since embedded systems have small memory footprints,
it is important to keep the memory footprint at runtime as
low as possible. Therefore, it should be possible to install
services on a running system only when they are really
needed and uninstall them afterwards (e.g., when they are no
longer needed) without requiring the system to be restarted,
as this would also affect other services and temporarily stop
them from running. In addition, since services may change
over time, it should be possible to update them at runtime.
However, only the smallest possible set of services should be
affected by that update.

B. Versioning

Since services can be updated at runtime, it should be
possible to reflect that update as new versions of services
(e.g., by assigning version numbers to services).

C. Persistence

It should be possible to make services persistent. For
example, once installed, the car tracking service can be saved
for later reuse. This is by contrast to the advertising service
that will usually be removed just in time as the car leaves the
local hot-spot network.

D. Composition

An application can be composed of multiple services in
order for the running system to install services only when
they are really needed. Again, this helps to keep the memory
footprint at runtime as low as possible. Therefore, it should
be possible to deploy a composite application. However, the
order in which services will be installed (e.g., to add new
functionality to the running system) should not be fixed.

E. Remote Management

Since services can be installed, uninstalled and updated
by external systems, it should be possible to manage the life
cycle of services from the outside world.

F. Platform Independence

Since services can be installed by external systems, they
cannot know in advance all platforms on which they will run.
Therefore, it should be possible to run services unchanged on
multiple platforms (including different hardware platforms
and operating systems).

G. Security

Security is important because networks represent a
potential avenue of attacks to any embedded system
connected to them. Since networks allow embedded systems
to communicate with external systems, networks can
potentially serve as a way to break into embedded systems,
enabling malicious (or buggy) services to steal resources or
data. As a consequence, communication over a network
raises many security issues. These issues become especially
important in distributed environments, where code is
downloaded across networks but executed locally as is done,
e.g., with the advertising service. Because the advertising
service is automatically downloaded when the car enters a
local hot-spot network, it is likely that the driver will
encounter code from untrusted sources.

Without security, communication of embedded systems
with external systems would be a convenient way to
distribute malicious services. Therefore, this communication
will require the use of security techniques and technologies,
from firewalls to cryptography and identity certification that
are necessary to prevent services to be downloaded from
untrusted sources and to prevent unauthorized remote life
cycle management as well as unauthorized access to
resources and data. For example, an embedded system can
store the phone book from the driver‘s cell phone. This
information should be protected from access by the

204

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

advertising service (e.g., to ensure that the information will
not be accidentally or maliciously modified).

H. Isolation

Different services such as the car tracking service and the
advertising service can be deployed on the same embedded
system. Therefore, it should be possible to prevent services
from interfering each other (e.g., by isolating them).

I. Communication

While some services can live in isolation, others may
need to work together to combine their functionality.
Therefore, it should be possible to enable communication
between services. For example, the car tracking service can
communicate with the GPS service to get the car‘s position.

The main challenge here is to preserve security of
information from, to, and within embedded systems. For
example, the car‘s position can be transmitted over an
insecure network such as the Internet. Therefore, it should be
possible to encrypt this information.

J. Distribution

Services can be distributed across a network for the
purpose of high availability, performance, or just due to their
popularity. Therefore, it should be possible to deploy
services in distributed environments, which usually involve
versioning and communication.

VIII. EVALUATING THE OSGI SERVICE PLATFORM

We evaluated the OSGi Service Platform against the
requirements of the example scenarios. Table I summarizes
the results of our evaluation.

TABLE I. SUMMARY OF EVALUATION RESULTS. ‗YES‘ –

REQUIREMENT IS FULLY MET. ‗YES/NO‘ – REQUIREMENT IS PARTIALLY

MET. ‗NO‘ – REQUIREMENT IS NOT MET AT ALL

Requirement Is Requirement Met?

Dynamic availability Yes

Versioning Yes

Persistence Yes

Composition Yes

Remote management Yes

Platform independence Yes

Security Yes/No

Isolation Yes

Communication Yes/No

Distribution Yes/No

A. Dynamic Availability

Applications represented as bundles for deployment can
be installed, uninstalled and updated dynamically (i.e., at
runtime) without requiring a restart of the OSGi Framework.

B. Versioning

Bundles export services by registering them in the
service registry. During this registration, additional
information (including version numbers) can be assigned to
the services.

The OSGi Framework goes even further in supporting
versioning semantics. Versions can be assigned to export
packages as well.

C. Persistence

Bundles are stored in the persistent storage of the OSGi
Framework and remain there until they are uninstalled.
Whenever the framework is restarted, bundles will be set to
the same state they had just before the framework shut down.

D. Composition

An application can be represented as a single bundle. But
it can also be composed of multiple bundles.

E. Remote Management

Bundles can be installed, uninstalled and updated
remotely (i.e., from the outside world) without requiring a
restart of the OSGi Framework.

F. Platform independence

The OSGi Framework is built on top of a JVM.
Therefore, bundles can run on any platform that hosts the
JVM.

G. Security

The OSGi Framework is focused on protecting
embedded systems from code downloaded across a network
from untrusted sources. When a bundle requests access to a
particular resource, the framework grants the bundle access
to that resource if and only if such access is a privilege
associated with that bundle. Access control is based on
digital signing, which authenticates the signer and ensures
that a bundle‘s content is not modified after it has been
digitally signed by the principal. Digital signing is based on a
public key cryptography.

Not only are privileges granted to code and signers, but
they are also granted to principals on whose behalf code is
being executed. For example, a bundle can be granted the
permission to manage the life cycle of other bundles that are
digitally signed by the principal.

Although the OSGi Framework imposes strict access
control on what code can and cannot do, the framework is
not completely protected against damages from interference
of malicious bundles. For example, malicious bundles can
modify shared objects such as static variables, interned

strings and java.lang.Class instances. This
modification can affect other bundles running in the same
JVM. Malicious bundles can even perform denial of service
attacks against resources such as memory and a processor
[12].

H. Isolation

Bundles are isolated from each other by class loaders.

205

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

I. Communication

Bundles can communicate with each other if they are
loaded by the same class loader. When they are loaded by
different class loaders, their communication is possible using
a shared parent class loader only. However, this class loader
is not part of the standard JVM and therefore requires an
additional custom solution.

J. Distribution

To reduce the memory footprint at runtime (which is
important for embedded systems) and to help avoid library
redundancies, all bundles run in the same JVM. Thus, they
can communicate with each other within a local framework
only.

The OSGi Framework supports ―rudimentary‖
distribution through Universal Plug and Play (UPnP) [17].
UPnP is a collection of networking protocols – e.g., TCP,
UDP, IP, and HTTP – that allows networked devices to
automatically communicate with each another. In particular,
once a device is plugged into a network, it can access other
devices connected to the network whereas other devices can
access it.

IX. RELATED WORK

In our previous work [21], we evaluated the Java
Platform against the requirements of the example scenarios.
The OSGi Service Platform is based on the Java Platform.
But it addresses some of the weaknesses of the Java
Platform; e.g., dynamic availability [7] (i.e., the ability of
services to come and go at any point in time), versioning,
persistence, and security. Thus, the OSGi Service Platform is
more advanced than the Java Platform.

The OSGi Alliance has the Vehicle Expert Group, which
aims to gather vehicle-specific requirements. These
requirements are then used to tailor and extend the OSGi
Service Platform. The OSGi Framework remains unchanged
to provide upward compatibility.

X. CONCLUSION AND FUTURE WORK

The OSGi Service Platform is a promising platform for
future in-vehicle embedded systems and its concepts (such as
bundles, class loaders and a JVM) help to meet many of the
requirements of the example scenarios, viz., the car tracking
service and the advertising service. However, limited support
of security and distribution can be a severe hindrance for the
use of the OSGi Service Platform in future in-vehicle
embedded systems.

A. Security

The OSGi Framework has 25 security holes [23]. While
17 of them are due to weaknesses of the framework itself,
other 8 are due to weaknesses of the JVM and the isolation
mechanism provided by class loaders. However, this
problem is being vanished over the years as a number of
efforts – e.g., KaffeOS [24], Luna [25], and I-JVM [26] –
have been made to patch the security holes that the JVM and
class loaders leave open.

Since more and more in-vehicle embedded systems will
communicate with external systems through an insecure
network such as the Internet, security becomes important.
However, proven solutions such as SSL/TLS for transport
security and even recently issued standard such as WS-
Security [22] for Web services require a lot of processing
power and can disrupt the operation of embedded systems.
Moreover, security increases the delay, jitter and deviation
time [13].

B. Distribution

Limited support of distribution also becomes a less
severe problem as a number of efforts – e.g., R-OSGi [14],
Distributed OSGi [17], IBM Lotus Expeditor [27], Eclipse
Communication Framework [15], Newton Framework [28],
and Apache CXF [16] – have been made to add the
distributed capability to the OSGi Framework, thus enabling
bundles running in one framework to communicate with
bundles running in another, potentially remote, framework.

C. Future Work

In the future, we will evaluate another Java platform such
as JAIN SLEE [29] against the requirements of the example
scenarios. This evaluation will help to extend JAIN SLEE to
be applicable to future in-vehicle embedded systems.

ACKNOWLEDGMENT

Irina Astrova‘s and Ahto Kalja‘s work was supported by
the Estonian Centre of Excellence in Computer Science
(EXCS) funded mainly by the European Regional
Development Fund (ERDF).

REFERENCES

[1] G. Machado, F. Siqueira, R. Mittmann, and C. Vieira e Vieira.
Embedded Systems Integration Using Web Services, Proceedings of
the International Conference on Networking, International
Conference on Systems and International Conference on Mobile
Communications and Learning Technologies, April 2006.

[2] M. Barr. Embedded Systems Glossary, last accessed: June 2010,
http://www.netrino.com/Publications/Glossary

[3] Automotive Industry, last accessed: June 2010,
www.windriver.com/solutions/automotive

[4] Automotive Embedded Systems Handbook, eds. N. Navet and F.
Simonot-Lion, CRC Press, 2009

[5] R. Roelofsen, D. Bosschaert, V. Ahlers, A. Koschel, and I. Astrova.
Think Large, Act Small: An Approach to Web Services for
Embedded Systems Based on the OSGi Framework, Lect. Notes in
Business Inform. Process. 53, eds. by J.-H. Morin, J. Ralyté, and M.
Snene, Springer, Berlin, 2010, pp. 239-253

[6] M. Barr and A. Massa. Programming Embedded Systems, 2nd
edition. O‘Reilly, CA, USA, 2007

[7] H. Cervantes and R. Hall. Automating Service Dependency
Management in a Service-Oriented Component Model, Proceedings
of the 6th Workshop on Component-Based Software Engineering,
May 2003

[8] OSGi Alliance: OSGi – The Dynamic Module System for Java, last
accessed: June 2010, http://www.osgi.org

[9] M. Persson. Resource and Service Registration and Lookup in
Cooperating Embedded Systems, acc. 6/2010,
http://www2.hh.se/staff/tola/cooperating_embedded_systems/papers/
magnus_persson_final.pdf

206

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

[10] World Wide Web Consortium: Web Services Activity, last accessed:
June 2010, http://www.w3.org/2002/ws

[11] H. Kopetz. The time-triggered architecture, Proceedings of the 1st
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), Kyoto, Japan, April 1998, pp. 22-31

[12] N. Geoffray, G. Thomas, B. Folliot, and C. Clement. Towards a New
Isolation Abstraction for OSGi, Proceedings of the 1st Workshop on
Isolation and Integration in Embedded Systems, 2008

[13] M. Shopov, H. Matev, and G. Spasov. Evaluation of Web Services
Implementation for ARM-based Embedded System, Proceedings of
ELECTRONICS'07, Sozopol, Bulgaria, September 2007, pp. 79-84,
ISBN: 1313-1842

[14] Swiss Federal Institute of Technology (ETH) Zurich: R-OSGi pages,
last accessed: June 2010, http://r-osgi.sourceforge.net

[15] Eclipse Foundation. Eclipse Communication Framework, last
accessed: June 2010, http://www.eclipse.org/ecf

[16] Apache Software Foundation: CXF pages, last accessed: June 2010,
http://cxf.apache.org

[17] R. Santoso. Initial Idea: Distributed OSGi Through Web Services, last
accessed: June 2010, http://www.dosgi.com ,
http://www.dosgi.com/index/39-distributed-osgi-webservices-articles-
category/55-initial-idea-distributed-osgi-through-web-services.pdf

[18] T. Honkanen. OSGi — Open Services Gateway initiative, last
accessed: June 2010,
http://www.automationit.hut.fi/julkaisut/documents/seminars/sem-
s01/honkanen.pdf

[19] K. Hackbarth. OSGi — Service-Delivery-Platform for Car Telematics
and Infotainment Systems, Advanced Microsystems for Automotive
Applications, Springer, pp. 497 – 507, 2003

[20] H. Kopetz. The time-triggered approach to real-time system design.
In Predictably Dependable Computing Systems, eds. B. Randell, J.-C.
Laprie,H.Kopetz, B. Littlewood. Springer-Verlag, New York, 1995

[21] R. Roelofsen, A. Koschel, and I. Astrova. Evaluation of Life Cycle
Functionality of Java Platform, Proceedings of the 14th WSEAS
International Conference on COMPUTERS, Corfu, Greece, July
2010, pp. 69-74

[22] Web Services Interoperability Organization. Basic Security Profile
Version 1.0. last accessed: June 2010, http://www.ws-
i.org/Profiles/BasicSecurityProfile-1.0.html

[23] P. Parrend and S. Frenot. Security benchmarks of OSGi platforms:
Toward hardened OSGi. Software: Practice and Experience,
39(5):471-499, April 2009

[24] G. Back, W. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
resource management and sharing in Java. Proceedings of the
Syposium on Operating Systems Design and Implementation, San
Diego, USA, October 2000

[25] C. Hawblitzel and T. Eicken. Luna: A flexible Java protection system,
SIGOPS Operating Systems Review, 36(SI):391-403, 2002

[26] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot and B.
Folliot. I-JVM: a Java Virtual Machine for Component Isolation in
OSGi, Proceedings of 39th IEEE/IFIP Conference on Dependable
Systems and Networks (DSN), Lisbon, Portugal, 2009

[27] IBM, Lotus Expeditor – Product and DeveloperWorks pages, last
accessed: June 2010, http://www-
01.ibm.com/software/lotus/products/expeditor/,
http://www.ibm.com/developerworks/lotus/products/expeditor/

[28] Paremus Limited. Newton 1.5 Developer Guide, last accessed: June
2010, http://newton.codecauldron.org,
http://newton.codecauldron.org/site/ newton-1.5-DEV-developer-
guide.pdf

[29] JCP-JSR204, JSR 240: JAIN SLEE (JSLEE) v1.1 Spec., last
accessed: June 2010, http://www.jcp.org/en/jsr/detail?id=240

[30] J. McAffer, P. VanderLei, and S. Archer: OSGi and Equinox:
Creating Highly Modular Java Systems, Addison-Wesley, 2010

[31] Apache Community, Felix – OSGi framework, last accessed: June
2010, http://felix.apache.org/site/index.html

[32] MakeWave, Knopflerfish OSGi, last accessed: June 2010,
http://www.knopflerfish.org/

[33] ProSyst, mBS Mobile SDK, last accessed: June 2010,
http://www.prosyst.com,
http://www.prosyst.com/index.php/de/html/content/64/mBS-Mobile-
SDK/

[34] Apache Community, ServiceMix 4.2, last accessed: June 2010,
http://servicemix.apache.org/2010/04/27/servicemix-420-
released.html, http://servicemix.apache.org/home.html

207

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

