SENSORDEVICES 2018 : The Ninth International Conference on Sensor Device Technologies and Applications

Sensors-Based Stereo Image System for Precision Control of Weed

in the Agricultural Industry

Bruno M. Moreno'2, Paulo E. Cruvinel!-?:3

1 Embrapa Instrumentation (CNPDIA), P.O. Box 741, 13560-970, Sao Carlos, SP, Brazil
2 Electrical and Computer Engineering Program, University of Sdo Paulo, Sdo Carlos, SP, Brazil
3 Computer Science Program, Federal University of Sdo Carlos, Sao Carlos, SP, Brazil
Emails: bruno.moraes.moreno@usp.br; paulo.cruvinel @embrapa.br

Abstract—This contribution proposes a solution for agricultural
weed control based on stereo digital image sensors domain-
oriented devices, technologies, and applications. In the world,
agriculture has been developed by combining the production,
value aggregation, environmental and social responsibility. The
sector is primarily responsible to supply food for people, as well
as fibers and energy. To keep such results, farmers have faced
the need to seek, increasing the rational use of inputs, as is the
use of pesticides, plant regulators, and liquid fertilizers. This
paper presents a discussion related to the design and development
of stereo image sensors for precision spraying to control weed
species in agricultural crops, i.e., based on advances in sensor’s
instrumentation and image processing. The yield of a crop can
vary depending on the species of invasive plants involved, its
percentage of occupation by area, competition period, stage of
development of the crop and soil, as well as weather conditions.
In this context, the selection of an adequate image sensor can
result in better recognition process, i.e., improvement in sprayer
quality at variable rates based on management zones.

Keywords—Camera sensors; Embedded platform; Stereo vision;
Image sensor; Decision making; Weed control; Agricultural indus-
try.

I. INTRODUCTION

The current agriculture must face the challenge of increas-
ing production in response to the demand of the growing
population. Based on this directive and under the precision-
based management, an increasing use of remote sensing tech-
nologies have been used to attend the rural areas. Additionally,
embedded instruments and analog and digital cameras are
found frequently, as well as series of computer modelling to
aid decision-making based on the site-specific management,
which has brought improvements related to the management
systems that can promote the rationalization in terms of the
application of inputs, decreased production costs, and impacts
on the environment [1] [2]. Among the steps aimed at ra-
tionalizing the use of agricultural inputs, one may find the
application of pesticides, which has required major efforts
since its processes are related not only to the treatment of
the pests into a cultivated area, but also related to the care
about its possible impacts in both the cultivated area, as well
as in adjacent areas [3]. The idea related to the technification
of the agricultural processes to improve production methods
has been gaining ground in recent decades. Real-time process
monitoring and control, along with advances in positioning
systems, can provide more details of the fields of production
and therefore can improve the decision-making based on
variability of the processes in agricultural production. The
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agricultural production chain starts from the adaptation to the
land to the sale of the product in the supermarket. Within this
chain, there are several involved processes that have important
relevance in order to obtain the minimization of environmental
impact, better efficiency in the amount of production and
quality of the final product.

The clearest example of these processes is the application
of agricultural pesticides in pulverized form, in which is
necessary to improve safety and efficiency of application, for
agricultural pest control. The spraying of agricultural pesticides
is used in most large-scale production crops and requires
precision and effectiveness to avoid the impact it may have
on the soil, the crop and the environment, if not applied in
a responsible way and with the highest quality standards. To
obtain an efficient agricultural spraying the factors, such as
efficiency of the applied chemical, factors which come from
the weather conditions, biological factors and the quality of
the application must be considered. Thus, several studies are
based on the search for quality and efficiency of the chemical
products [4]. Also, there is a large number of scientists working
on biological and climatic factors which can affect the quality
and efficiency of the production. On the other hand, several
works show the importance of the application, from the point
of view of the used methods, the machinery and the automation
of the application processes. In addition, technological ad-
vances and the evolution of embedded systems to aid decision-
making processes have provided to agriculture a new way of
seeing the rural property, where the consideration of spatial
and temporal variability of soil and plants have improved the
concepts related to the risk management in agriculture, i.e.,
the way to find efficiency and cost minimization in the use
of agricultural inputs. Furthermore, in this context, and taking
into account advanced trends, sensors-based technologies can
provide appropriate tools to achieve solutions and to implement
the strategies above mentioned. In precision agriculture area,
sensor-based technologies play an important role.

In this context, the precision agriculture area has been
seeking sensor-based technologies to improve agricultural pro-
cesses, and such field of knowledge is playing today an
important role. One technology with the use of camera sensors
that adds more information to decision making in the agricul-
tural field is the one based on stereo vision methods. These
methods can be used for various applications, and there are
studies that analyze the vision at night for the development of
an advanced driver assistance system, monitor the conditions
of long pipelines with autonomous robots, and assist in the
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reconstruction of virtual plant leaf model [5]-[7]. This paper
presents a method based on the use of a customized stereo
image sensor for the precision application of herbicides to
control weed in an agricultural field. The rest of the paper
is structured as follows. Section II presents the mathematical
theory behind the selection of the image sensors, based on
the transfer functions. Section III discusses the stereo vision
methods and the materials used. Section IV presents the results
and discussions. Finally, we conclude our work in Section V.

II. THEORY BEHIND THE SELECTION OF IMAGE SENSORS
FOR AGRICULTURAL WEED CONTROL

The camera function has been widespread applied for
various circumstances [8] [9]. Lens and cameras designers
encounter challenges for developing systems with high im-
age quality. The major concern is how to optimize the lens
parameters such as curvatures and thicknesses to get high
image quality, for example, a high image resolution. Several
optimizations have been proposed to improve the aberrations
of lens systems [10]-[12]. The Modulation Transfer Function
(MTF) is the amplitude term of Optical Transfer Function
(OTF) that is similar to the transfer function of linear system.
The transfer function is regarded as a major characteristic in
the linear system. There are some proposals that present their
methods to approach the transfer function [13]-[15]. A simple
one is to receive the impulse response at output as input being
an impulse signal. This impulse response is related to the
transfer function. Using the same procedure, a point source
is respected as the impulse signal to help estimate the image
response in a lens system. The image of point source shown
in the image plane is called the point spread function (PSF),
which is the inverse Fourier transform of the OTF. Therefore,
the MTF applied to determine the image resolution could be
derived from the amplitude term of the Fourier transform of
the PSF. MTF is in principle classified into three categories:
scanning method, autocorrelation, and crossrelation methods.
Of these, the scanning method seems to be most commonly
used in many fields, and the Line Spread Functions (LSF)
measurement is equally preferable because it can be obtained
with a simple slit, and it is measure of fundamental definition.

The MTF can be evaluated from either the geometrical
optics or diffraction calculation. Ray tracing methods are
widely applied to simulate the image response of object point
source in the image system. Using the irradiance model, Lin
and Liu [16] presented a MTF computation method without
counting the number of rays traveling to each grid. Tseng
et al. [17] proposed skew ray tracing method to simulate
the geometrical PSF, i.e., using a homogeneous coordinate
transformation matrix.

In this paper, the use of a camera in agricultural envi-
ronment can be defined taking into account the calculation
of the LSF of the camera lens and MTF, which represents
the magnitude response of the optical system to sinusoids of
different spatial frequencies, i.e., retrieved by Fourier transform
of the LSF. Several key aspects of optical instrumentation are
related with the implementation of a linear source for a given
optical system, the impact of the finite size of the source on the
measurement, and the choice of the optical elements to image
the response of specific patterns of plants and its relation with
the lens used in the camera. By taking a linear source the
solution to measure the MTF is in 1D, orthogonally to the
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direction of the line. This can be proven considering a given
source S(z,y) = 6(x).C, and a lens of diameter equal to (a),
that means:

a/2 )
R(km,ky):// / §(x)Cel kR dady (1)
—a/2

The response of the objective can be expressed as the
square of the Fourier transform of the product of the source
with the aperture of the lens R?(ky,k,), with (ks,k,) the
spatial frequencies associated with the spatial coordinator
(z,y). Besides, looking for a solution of (1) and solving the
integral by parts is possible to reach:
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Equation (2) corresponds to the LSF. The Fourier Trans-
form of the LSF then gives the 1D MTF in the yy-direction.

III. MATERIALS AND METHODS
A. Stereo Vision

The stereo vision system used in this work is based
on the use of two cameras with the aim of simulating the
human vision system and obtain depth of objects, with the
camera plane as a reference. The depth is resulted through
the comparison of the objects position between each captured
image.

The simplest way of comparing the images is guaranteed
when the cameras are coplanar and aligned, as shown in
Figure 1. The variables defined by the camera are the baseline
b and the focal distance f. The P(X,Y, Z) represents a point
that would be recorded by the two cameras and uy, = (X, Yr)
and up = (Xg,YR) are the projections of this point in
each image. From the concepts of geometry and similarity of
triangles, it is possible to obtain:

X, X Xf
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Considering that the difference between the x coordinates
in each image is equal to d = X; — Xy, where d is the
disparity, (3) and (4) can be rewritten as:
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Left Camera

Right Camera

P(X. Y2

Figure 1. Stereo vision model (taken from [18]).

It is then realized that the depth of the point in relation to
the plane of the cameras can be found from three parameters.
The focal distance f and the baseline b could be defined
previously and are held constant. Thus, to find the depth of
objects in the image, it is enough to find the disparity of all
the pixels, what we call disparity map.

It is also important to note the distortion that variations
in the disparity map can cause in the depth estimation, i.e.,
verify the measurement obtained accuracy. So, for a variation
in depth, it is possible to find [18]:

bf Z2Ad Z2Ad
AN =7 — = ~ 9
d+Ad bf + ZAd bf ©)

According to (9), to decrease the distortions, the variable
Z cannot be very large while b and f cannot be very small.
Since f is an intrinsic feature of the camera, the system is
then planned so that b is a distance that allow the desired Z,
in order to have less distortion.

So, the problem becomes to find the desired map of
disparity. Therefore, to find the map, one must take into
account the corresponding pixels of one of the images in
the other, of course, if it exists. As the system configuration
ensures that the Y coordinate between the images is the same
(guaranteed by the synchronization between the cameras to
ensure the validity of (5)), given a pixel (x;,y;) in image 1,
one must look for the pair (z;,y;) in image 2 to obtain the
local disparity, which is given by |z; — z;|.

The difficulties in solving the correspondence problem
could be presented in the form of ambiguities (more than one
matching pair) generated from regions with similar character-
istics as texture and color intensity. Furthermore, the method
considers that the luminous intensity received by both cameras
of a given object will be the same, despite the variation in angle
observed (i.e., the surfaces analyzed follow Lambert’s law for
emission), and the cameras have the same properties on the
receiver, such as the gain and the bias. Another problem is the
presence of hidden points between the cameras, which means
that one point in one image does not correspond to another
because it is visible only by one the camera. Such effect is
called as occlusion.
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Today, the stereo methods are well used and researched,
especially where the region of interest has enough information
to avoid ambiguities, with wider disparity maps. The basic
procedures to implement such methods are as follows [19]:

1)  Preprocess the images (optional).

2)  For each disparity under consideration, compute all
pixels for matching.

3) Consider to aggregate support spatially (only in non-
global methods).

4)  Across all disparities, compute and find the best
correspondent match.

5) Compute a sub-pixel disparity estimate (optional).

The first step consist of preparing both images for analysis
and can be done via hardware or software. The captured image
can have high noise or even low noise, the last one possibly
caused by the camera bias. One way to remove these image
noises is to decrease the resolution (hardware filtering) or
apply bandpass filters in the algorithm (filtering by software).
In this work, it was used an averaging filtering as procedure
to eliminate errors caused during the images acquisition and
recording, sometimes treated for the captured images having
differentiated illumination. This operation is useful to deal with
random noise [20].

For the second step, it is possible to use global methods,
where the image as a whole is analyzed (increases the accuracy
and also the processing time); local methods, where the area
used for calculation a pixel disparity is restricted; and hybrid
methods, derived from local methods. Regardless of which is
chosen, the first step of any dense stereo matching algorithm is
a similarity measure that compares pixel values to determinate
its correspondence. The most common pixel-based matching
costs include sums of squared intensity differences (SSD)
and absolute intensity differences (SAD), but there are also
methods which are invariant in relation to gain and camera
bias, to scale and to illumination, such as the Census Transform
[21] [22].

In global stereo matching methods, the goal is to find a
solution d that minimizes the global energy FE(d) in (11),
where E;(d) measure how the disparity function d agrees with
the input image pair, with L being the initial matching cost,
and E;(d) encodes the smoothness assumptions made by the
algorithm.

E(d) = Ea(d) + A = Es(d) (10)
Eq(d) =) L(z,y,d(z,y)) (11
(z,y)

Meanwhile, the local methods utilize a support region in
the disparity space image L(z,y,d), described in (12), to
aggregate the matching cost. It is important that the selected
support region is large enough to contain texture variability
and small enough to not contain many depth discontinuities.

L(z,y,d) = w(z,y,d) * Lo(z,y,d) (12)
To ensure that the best matching pair of pixels are selected

in the local methods, the easiest way is to choose the lowest
cost associated with each pair of pixels in a given disparity,
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a strategy known as “winner-take-all” (WTA). Although it
may happen that only one image has single correspondence
(reference image) while the other has points paired to multiple
pixels, this can be done correctly via dynamic programming, as
cooperative algorithms with symmetric constraints. The partial
occlusion can also be treated by explicit pairing a pixel in the
reference image to a group of pixels in the other one.

Finally, the estimation of sub-pixel disparity works to
estimate the disparity at the points where it cannot be found, as
occlusion points. With methods such as iterative gradient and
interpolation using discrete disparity values, these points also
earn a specific disparity and then increase the resolution of the
stereo vision system, especially when the disparity variation
is smooth. Another post-process tool applied to the disparity
map is the association of confidence levels at each pixel depth
estimation.

The stereo vision algorithm used to validate the captured
images is a Fast SAD local method, which performs pixelwise
matching based on a maximum disparity and a windows size
entered by the user [23].

B. Raspberry Pi Architecture

The embedded platform Raspberry Pi has been considered
fit for use due to its compact format, good processing and
low cost, even if the use in computer vision area is new.
The Raspberry Pi used was the Raspberry Pi 1 model B,
which features 26 GPIO pins, Ethernet connect, two USB
connectors, HDMI output and power supply via micro USB.
Others features are shown in Table 1. To ensure sufficient
storage space for digital images to be recorded, it is necessary
to use a SD card of at least 8 GB. The kernel used was
Raspbian, offered by the manufacturer. The power system
provides a voltage of 5 V and a maximum current of 2 A,
which is sufficient because in tests it has been analyzed that
the basic current for use of the Raspberry is between 300 mA
and 550 mA, while each camera Pi requires approximately 250
mA when activated.

The kernel Raspbian is a version of the Debian Hard Float,
which supports different program languages, such as Python.
The command for capturing the images inserted via terminal
enables the software code to record in each Raspberry the
image captured by the cameras, via serial communication.

C. Acquisition of the Digital Images

According to official information, the properties of the
camera Pi template 1.3 follow the information presented in
Table II.

The implemented stereo system consists in the two Camera
Pi in the same plane and with equal height, connect via CSI
on the Raspberry Pi and correctly powered. It is chosen to
use a fixed resolution to capture the images and convert them
to grayscale before the stereo vision algorithm, although it
will be select only the region of interest. Anyway, the RGB
images will also be held in memory because the color is being
used as an attribute for the weed’s segmentation. The first
necessary step to allow the use of the stereo vision system
is to calibrate the cameras, which consist of images taken
from a frame obtained from a chessboard to extract their
intrinsic characteristic. The stereo matching is part of a high-
level system, as shown in Figure 2.
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To acquire the digital images in the agricultural field, we
used the developed stereo digital camera, for validation, which
allowed images having 640 x 480 pixels. Also, there was used
a wooden frame measuring 0.5 x 0.5 m, which served as a
scale factor for characterizing the size of the plants. Figure 3
shows the details of the arrangement for the experimental plots
in the agricultural area.

TABLE I. RASPBERRY PI 1 MODEL B FEATURES

Processor BCM2835 ARMI1176JZFS
Clock 700 MHz GPIO 26 pins
Memory 512 MB RAM Ethernet 1 conector
USB Ports | 2 USB 2.0 ports HDMI 1 conector
Camera serial interface (CSI) Display serial interface (DSI)
3.5mm jack for audio out SD card slot

TABLE II. CAMERA HARDWARE SPECIFICATIONS

Size 25 x 24 x 9 mm
Still resolution 5 MP
Video modes 1080p30, 720p60, 640x480p60/90

OmniVision OV5647
2592 x 1944 pixels
3.76 x 2.74 mm

Sensor
Sensor resolution
Sensor image area (W x Hy)

Pixel size 14 pm x 1.4 pm

Optical size 1/4”

Full-frame SLR lens equivalent 35 mm

S/N ratio 36 dB

Dynamic range 67 dB @ (times of gain equal to 8)
Fixed focus I m- oo

Focal length 3.60 0.01 mm

Horizontal field of view (HFOV) 53,50 £+ 0,13

Vertical field of view (VFOV) 41.41 £ 0.11

Focal ratio (F-stop) 2.9

Geometric
Descriptors

Figure 2. High-level system architecture diagram (taken from [18]).
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Figure 3. Details of the arrangement for validation based on the use of plots
(from P1 to P48) in an agricultural area.

For weed recognition, the moment invariants method has
been used, i.e., based on its application for each stereo image
obtained from the plots. In fact, any geometrical pattern can
be represented by a density distribution function, with respect
to a pair of axes fixed in the visual field [24]. Based on such
concept, the patterns can also be represented by their two-
dimensional moments, with respect to the pair of fixed axes.
Such moments of any order can be obtained by a number
of methods [25]-[27]. Using the relations between central
moments and ordinary moments, the central moments can also
be obtained. In addition, by normalizing the central moments in
size by using the similitude moment invariants a set of moment
invariants can still be used to characterize patterns. Obviously,
these are independent of the pattern position in the visual field
and also independent of the pattern size. The algorithm for
weed recognition based on both the stereo digital images and
moment invariants is presented elsewhere [28].

Additionally, after the weed recognition process in each
plot, the percentages of occupancy in such areas were con-
sidered to estimate a map of weed distribution based on the
use of geostatistics. In such way it was possible to calculate
the semivariogram, as well as constructing the map related to
the management zones for the precision application at variable
rate of the herbicide. The semivariogram depicts the spatial
autocorrelation of the measured sample points. Once each pair
of location is plotted, a model is fit through them. There are
certain characteristics that are commonly used to describe these
models [29]-[31].

IV. RESULTS AND DISCUSSIONS

With the assembled stereo vision system, as shown in
Figure 4, the image quality analysis of the system modulation
was evaluated by the Modulation Transfer Function (MTF)
of one Camera Pi. To obtain the MTF, it was taken a image
containing a linear white-to-black edge, converted the RGB
image to grayscale and analyzed the normalized intensity
values in a perpendicular line to the edge. The resulting
profile is shown as the raw Edge Spread Function (ESF) in
Figure 5a, compared with a gaussian smoothed ESF. After this,
the LSF was calculated by the derivate of the ESF as shown in
Figure 5b and the Fast Fourier Transform (FFT) was used to
obtain the MTF, as shown in Figure 5c. Thus, the quantitative
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evaluation of the system is demonstrably good because of the
MTE

(a) (b)

Figure 4. Implementation of the stereo system, where (a) is the stereo rig
with the cameras and (b) the two Raspberry Pi on the top and a rectifier on
the bottom.
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Figure 5. (a) The density profile of an edge; (b) The line spread function
(LSF) of this edge; (c) The resultant modulation transfer function (MTF).
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It was also desirable to verify whether the values of the
field of view provided by the manufacturer are in agreement,
as shown in Table II. For this, it was considered the pixel size
of 1.4 ym x 1.4 pm, the focal length 3.6 mm, and the sensor
resolution of 2592 x 1944 pixels were correct to evaluate the
validity of the system, such as:

W, = (s.)(W) = (1.44)(2592) = 3.63 m
H, = (s,)(H) = (1.42)(1944) = 2.72 m
Dy = /W2 + H? =454 mm

HFOV = 2arctan(Ws2f) = 53.5°
VFOV = 2arctan(H,2f) = 41.4°
DFOV =2arctan(D,2f) = 64.4°

From Table II, it is also possible to obtain Dy = 4.65 mm,
DFOV = 65.7°, and so far such calculated values are in
agreement with those provided by the cameras manufacturer.

The next step was to set the stereo system parameters.
Considering that the distance between the camera plane and
the captured image is equal to 50 cm, a good baseline to avoid
distortions and to ensure a good stereo representation can be
considered as equal to 6 cm, as inferred in Figure 6, obtained
by the variation of b and Z in (8) and (9), respectively. Such
result also has shown that the maximum disparity was around
300 pixels.

Besides, the fast SAD stereo method was chosen because
offered a reasonable accurate stereo matching associated with
a low processing time. The sub-pixels accuracy could be
used to refine the results, although they significantly increased
the processing time. Additionally, the pseudo-code of the
algorithm can be observed in Figure 7.

With the parameters configured, the left and right images
were obtained by each Raspberry Pi and its camera, as shown
in Figure 8, with Figure 9 as the composite of the images
with a red-cyan effect, which allows one to be able to view
the image as a 3D shape with the aid of special glasses that
has different filters in each lens.

Next, the images were entered as inputs of the chosen
stereo vision method. The settings used were the maximum
disparity equal to 300 and a window size equal to 5, adequate
to catch the small details of the image.

500

700k ....... ....... ........ R ........ ........ .

500

Disparity (pixel)
£ [hy]
[ [
= =

[aa}
[}
o

T I i I i i
] 1N 02 03 04 05 0B 0OF 08 09 1
Distance Z (m)

Figure 6. Graph of disparity in pixel and depth resolution against distance.
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In addition, we obtained the map of disparity as a result
(Figure 10), with association of the values of the baseline
and the focal length. Therefore, the depth could be calculated
through Equation (8). The entire process can be summarized
according to the flowchart in Figure 11. Such flowchart
presents aspects related to: the preparation of the hardware
for images acquisition; the data transfer to the memory, which
can be not only in the Raspberry architectures but also in other
external computer; as well as the image processing algorithm
for stereo vision and weed recognition.

Begin
Set parameters (window size w and number of disparities n):
Read image sizes: they must have the same height and width;
Initiate the disparity map, matching cost, pixel cost and
window cost with zero values;
Calculate pixel cost for the n disparities using the
absolute difference of two images;
Calculate integral cost of the pixel cost with cumulative
sums;
Calculate window cost using the integral cost convoluted
with a matrix h (h is a square matrix of size w with
h(1,1) = h(w,w) =1, h(l,w) = h(w,1) = —1 and
otherwise equal to zero);
Search disparity value by finding the minimum window cost;
If specified, do the subpixel interpolation using polynomial fit;
end.

Figure 7. Stereo matching pseudo-code algorithm.

Figure 9. Red-cyan composite view of the stereo image, in which the 3D
shape can be observed with the aid of special glasses.
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Figure 12 and 13 show, respectively, the resulting semivar-
iogram based on a Gaussian fitting, and the resulting map for
the occupancy of the weed species Bidens pilosa in the whole
agricultural area used as a pilot for validation.

In general, the herbicide isopropylamine salt of glyphosate
is used to control invasive plants and the dose used is of
the order of 3 L/hectare. This in practice occurs when the
occupation rate of these invasive plants is in the order of 100%
in relation to the crop area. Therefore, for the validation pilot
that contains 48 plots with a total area of 12 m?, only 3.6
mL of this agrochemical would be necessary. However, from
the acquisition of the images and the digital recognition of the
invasive plant patterns, as well as based on the prescription
map obtained by the interpolation procedure, it is possible to
observe the real occupancy rate in each plot, and the necessary
volumes of this agrochemical for an effective localized control,
as presented in Table III.

Figure 10. Disparity map.

BEGIN
Tum en the_ Pasition the system
Respliedy Pt » on the site of
architectures and o Cicisi
the cameras
Capture both the | Adjust the camera’s
left and right Images [ baseling
Initialize the sterec
Transfer the imagas o | vision algorithm
to a RAM memaory P wath the images as
inpits
Formulate the red-
Apply the leaves cyan compaosite
pattern recagnition |4 view and the
algarithm disparity map as
autputs
h
Establish accupation
map including
Interpolation to END
abtain description
maps

Figure 11. Image capture and processing flow.
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In the traditional agricultural management systems, it is
still necessary for someone to actually walk through the crops
for analyzing the presence or absence of the weeds to support
decision making in the crop area.

102.
[

51.

Semivariance

0.0 0.7 1.4 22
Distance (m)

Figure 12. Semivariogram for the occupancy rate of the weed species Bidens
pilosa (Model: Gaussian, Cp = 16.5; C1 = 92.3; A = 1.3). The model
parameters are respectively represented by Cp = nugget effect, C1 =
structural variance, and A = the range in meters.

% of weed coverage

0.0
00
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0o
00

Y coordinate, length in meters

0.0- | —
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Figure 13. Map for the occupancy of the species Bidens pilosa in the whole
plot area, i.e., based on the weed pattern recognition and the interpolation
process.

TABLE III. THE CALCULATED VOLUME OF THE PRODUCT (HERBICIDE)
TO BE APPLIED TO VARIABLE RATE DEPENDING ON THE TOTAL COVERAGE
PROVIDED BY THE OCCURRENCE OF THE WEED IN THE PLOTS.

Experimental Volume (ml) Experimental Volume (ml)
Plot at precision Plot at precision
From P1 to P24 application From P25 to P48 application
P1 0.040 P25 0.033
P2 0.045 P26 0.035
P3 0.045 P27 0.037
P4 0100 P28 0.027
P5 0.040 P29 0.035
P6 0.043 P30 0.025
P7 0.041 P31 0.031
P8 0.040 P32 0.017
P9 0.037 P33 0.047
P10 0.032 P34 0.057
P11 0.036 P35 0.046
P12 0.033 P36 0.026
P13 0.021 P37 0.039
P14 0.021 P38 0.100
P15 0.023 P39 0.029
P16 0.024 P40 0.100
P17 0.025 P41 0.047
P18 0.035 P42 0.049
P19 0.044 P43 0.048
P20 0.032 P44 0.034
P21 0.029 P45 0.100
P22 0.027 P46 0.035
P23 0.020 P47 0.029
P24 0.019 P48 0.030
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However, based on the stereo vision system, one is able to
collect images to be analyzed autonomously, in order to obtain
information for the prescription of maps for weed control based
on herbicides application at variable rate.

V. CONCLUSIONS

The results have shown the usefulness of the developed
stereo vision system customized for agricultural application,
which is able to provide quality images, as a well to allow
a depth model of plants, allied with a low cost portable
embedded platform. Therefore, the identification of the weed
species, integrated with the occupancy rate, its spatial distribu-
tion and depth defined a new approach to weed control, based
on the precision application of herbicides into management
zones. Besides, the case studied presented the opportunities
to minimize costs and environmental impacts, as well as the
promotion of the gains in competitiveness.

Future works can be found based on the developed stereo
vision system customized for agricultural application taken
into account its integration with a machine learning platform
in order to aggregate intelligence in the decision making for
automatic weed control in agriculture.
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