Optical Characterisation of La$_{0.7}$Sr$_{0.3}$MnO$_3$ Thin Film Based Uncooled Bolometers

Ammar Aryan1,2,3,*, Jean-Marc Routoure1,2,3,*, Bruno Guillet1,2,3,*, Pierre Langlois1,2,3,*, Cédric Fur1,2,3,*, Julien Gasnier1,2,3,*, Carolina Adamo$^{4,#}$, Darrell G. Schlom$^{4,5,##}$ and Laurence Méchin1,2,3,*

1 Université de Caen Basse-Normandie, UMR 6072 GREYC, F-14032 Caen, France
2 ENSICAEN, UMR 6072 GREYC, F-14050 Caen, France
3 CNRS, UMR 6072 GREYC, F-14032 Caen, France
4 Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501, USA
5 Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

Email addresses: first-name.name@unicaen.fr
Email address: ca259@cornell.edu
Email address: schlom@cornell.edu
* Corresponding author: ammar.aryan@unicaen.fr

Abstract— This paper reports the potentials of the manganese oxide La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) for the realization of uncooled thermal detectors. Close to room temperature, LSMO exhibits a metal-to-insulator transition, where a large change of electrical resistance versus temperature occurs. The tested sample is a 100 nm thick epitaxial LSMO thin film deposited on a SrTiO$_3$ buffered Si substrate. The optical responsivity and electrical noise were measured in a frequency range of 1 Hz-100 kHz, thus enabling the estimation of specific detectivity. It is shown that due to the very low 1/f noise level, in this epitaxial film deposited on silicon wafer, LSMO thermal detectors can exhibit competitive performances at room temperature.

Keywords- Bolometer; manganite; thermal detector.

I. INTRODUCTION

Uncooled infrared (IR) detectors have been studied in recent years due to a variety of applications such as thermal cameras, night vision cameras, thermal sensors, surveillance, etc. The IR detectors are generally sorted in two types: photon detectors and thermal detectors. The photon detectors have high signal to noise ratio and very fast response, but require generally a cooling system, which is heavy and expensive. In comparison with photon detectors, most of thermal detectors operate at room temperature, thus reducing the cost of operation. Even its response time is still larger than that of photon detectors, it has no limitation on the wavelength response band. Thus makes it possible to be used for hand-held infrared applications.

Thermal detectors are based on three different approaches, namely, bolometers, pyroelectric and thermolectric effects. Uncooled microbolometers take a large part of infrared imaging application business [1]. A bolometer is a thermal detector whose electrical resistance R changes as a function of radiant energy. So, the larger the resistance changes, the higher the

Temperature Coefficient of Resistance ($\beta=1/R \times dR/dT$) expressed in K$^{-1}$, and the higher the responsivity. Many materials such as metals (Au, Pt, Ti, etc.) [2][3], and semiconductors (VO$_x$, amorphous silicon, etc.) [4][5] have been used as thermometer in uncooled bolometers.

The rare earth manganese oxides may find important applications such as magnetic random access memories and magnetic sensors [6][7]. It has been realized that these materials have a promising potential for bolometric infrared detection [8][9]. The large change of their electrical resistance R at the metal-to-insulator transition, which takes place in the 300-350 K range, makes them potential materials for the fabrication of uncooled thermal detectors. Ideal materials would present, at the desired operating temperature T close to 300 K, a high β and a low noise level.

Even if it does not exhibit the highest β values at room temperature, compared to other possible manganite compositions, we study La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) because it shows low 1/f noise and no excess noise at the metal-to-insulator transition [9]-[15]. In addition, we use a good quality LSMO films deposited on silicon substrates, which enables the compatibility with silicon microelectronic fabrication process and possible development of more complex systems.

In section II we will describe the sample fabrication details together with the measurement setup. The third section is dedicated to the theoretical principle of operation of bolometer, and to the definitions of figures of merits. Then, in the fourth section, we will show detailed electrical and optical characterizations of the tested sample, with comparison to other uncooled bolometers. Finally, a conclusion section is devoted to show the potentialities of LSMO/STO/Si thin films as promising uncooled thermal detector.
II. EXPERIMENTAL DETAILS

A. Sample preparation

The sample consists in a 100 nm thick epitaxial LSMO thin film deposited on SrTiO$_3$ (20 nm thick) buffered Si (001) substrates by reactive molecular beam epitaxy [16]. After gold deposition, the film was patterned using standard UV photolithography and argon ion milling. Ultrasonic bonding was used to connect the gold contacts to the sample holder.

Our sample, shown in Fig. 1, has a meander line shape with the overall pixel dimension of 150×230 µm2. The meander line width is 50 µm. The meander filling factor (defined as the ratio of the area occupied by the LSMO meander to the device nominal area) is equal to 91%.

B. Measurement setup

A semiconductor laser diode (635 nm, 5 mW) electronically modulated at different frequencies was used to optically heat the device. The laser beam was collimated and passed through a 1:1 beam splitter with one beam incident on a photodiode and the other incident on the studied sample. Thus, by knowing the transmission coefficient of all optical elements, the power of the incident light on the sample can be directly obtained by measuring the photodiode output signal. The laser diode spot has an elliptical shape, with dimensions of 128 µm × 186 µm estimated at Full Width Half Maximum.

The sample was glued to a copper plate, having a heating element, then fixed into a vacuum chamber equipped with an optical window. The chamber is evacuated by a mechanical pump, and no cooling system was used. A temperature controller was used to maintain temperature stability of 15 mK during measurements at fixed temperature. The controller, also, provides the possibility of heating the sample in the range 300-350 K.

The LSMO sample was current biased using a quasi-ideal DC current source, which exhibits very high output impedance and a negligible noise contribution [17]. A standard four-probe technique was used to provide bias current and measure the voltage signal of the LSMO sample. The output voltage of the sample was read out by a homemade voltage amplifier. The dynamic optical response and electrical noise measurements were carried out using a spectrum analyser (HP3562A). The measurement setup is equipped with personal computer with GPIB interface to read and store the measured values.

III. BOLOMETER BACKGROUND

A. Principle of operation

When the bolometer material absorbs an amount Q of radiated power from a light source, a temperature change ΔT occurs: $\Delta T = \eta Q/G_{\text{eff}}$, where G_{eff} is the effective thermal conductance of bolometer material (expressed in W·K$^{-1}$), and η is the absorption coefficient (dimensionless). G_{eff} is related to the self-heating effect and given by the relation: $G_{\text{eff}}=G-I_R^2/(dR/dT)$, where G is the geometrical thermal conductance of the bolometer. The variation of the temperature causes a change in the electrical resistance R of the bolometer material:

$$\Delta R = \eta R \times \Delta T = \beta R \times \eta Q / G_{\text{eff}}$$ (1)

So, when using a bias current I_b through such a bolometer, a voltage change can be measured:

$$\Delta V = (I_b R \eta Q / G_{\text{eff}}$$ (2)

B. Figures of merit

The performance of bolometers is expressed in terms of device figures of merit such as optical responsivity (\mathcal{R}_ν), Noise Equivalent Power (NEP), specific detectivity (D^*), and β [18].

The optical responsivity (\mathcal{R}_ν) of a bolometer is defined as the output voltage per radiated power when bias current I_b is applied to the bolometer device, and is written as:

$$\mathcal{R}_\nu(\omega) = \frac{\Delta V}{\Delta Q} = \frac{\eta I_b}{\varepsilon_{\text{eff}}(1 + \omega^2 \tau_{\text{eff}}^2)^{1/2}} \frac{dR}{dT} [V \cdot W^{-1}]$$ (3)

where $\tau_{\text{eff}} = C / G_{\text{eff}}$ is the effective thermal time constant, and C is the thermal capacitance of the bolometer.

The NEP (expressed in W·Hz$^{1/2}$) is defined as the incident power on a pixel that generates a signal-to-noise ratio equal to unity in a 1 Hz output bandwidth. The NEP of the bolometer is calculated as the ratio of the square root of the voltage noise spectral density ($S_{\nu}^{1/2}$) over the bolometer responsivity (\mathcal{R}_ν).

The D^* (expressed in cm·Hz$^{1/2}$·W$^{-1}$) provides information that is equivalent to NEP, but with the possibility to compare bolometer pixels of different areas. It is calculated as the ratio of the square root of effective surface of bolometer (expressed in cm2) over the NEP.
Another important figure of merit is the impulse
detectivity \([19] \), which is defined as \(D^*/\tau_{\text{eff}}^{1/2} \) (expressed
in \(\text{cm} \cdot \text{J}^{-1} \)). This parameter illustrates the necessary
compromise between optical responsivity and
effective time thermal constant.

IV. RESULTS AND DISCUSSION

A. Electrical characteristics

The electrical resistance versus temperature (R-T)
data of the LSMO sample was measured using a standard
four-point technique. Then the R-T data were fitted
with a smooth equation and then the \(dR/dT \) and \(\beta \) data were
calculated and plotted as seen in Fig. 2 and Fig. 3. The
maximum \(\beta \) value obtained is \(2.7 \times 10^{-2} \) \(\text{K}^{-1} \), which is a
typical value for the LSMO material \([10][11]\). We can
estimate the electrical resistivity of about \(2.4 \times 10^{-5} \) \(\Omega \cdot \text{m} \)
at 300 K, which is close to literature value for this
material \([20]\).

The R-T plot presents a non linear shape. So, in
order to get maximum responsivity, the sample should be
characterised at a temperature where we have the
maximum of \(dR/dT \) (Fig. 3). The maximum \(dR/dT \) value
equals \(85 \) \(\Omega \cdot \text{K}^{-1} \) at 318 K, so the sample will be optically
characterised at this temperature (and not at the
temperature where \(\beta \) is maximal).

B. Optical responsivity

In order to identify whether the optical responsivity is
bolometric (thermal), we have compared it with \(dR/dT \) as
a function of the temperature (Fig. 3). It is found that
the dependence of optical responsivity \(\mathcal{R}_{v} \) at 1 Hz on the
temperature follows well the variation of \(dR/dT \) versus
temperature, and they reach a maximum value at the
same temperature 318K. This suggests that the major
component of the response at 1 Hz is bolometric.

C. Dynamic characterisations

Figure 4 shows the dependence of the optical
responsivity as a function of the laser power modulation
frequency for different bias currents. We have an optical
responsivity of \(0.65 \) \(\text{V} \cdot \text{W}^{-1} \) at 1 Hz for the bias current
equals to 400 \(\mu \text{A} \).

Figure 2. Sample’s electrical resistance and \(\beta \) versus temperature

Figure 3. Optical responsivity \(\mathcal{R}_{v} \) at bias current 400 \(\mu \text{A} \) and
frequency 1 Hz and \(dR/dT \) versus temperature curves.

Three different behaviours can be observed in Fig. 4.
From 1 Hz up to the cut-off frequency (around 1 kHz),
the optical responsivity is almost constant, whatever is
the value of \(I_{b} \). In the 1-10 kHz decade, we observe a
low-pass behaviour and then an increasing of the optical
responsivity as function of frequency. Equation (3) can
be used to identify the plateau and the low pass filtering.
Inset of Fig. 4 shows that the optical responsivity
increases linearly with increasing the bias current,
according to (3).

We do not observe a constant plateau in our
experiment. One possible explanation could be the heat
diffusion across the substrate. The increasing optical
responsivity at higher frequencies (more than 1 kHz)
could be related to the contribution of photo-induced
effects in LSMO or in the LSMO/STO/Si heterostructure
\([8][21]\). Further studies are in progress to characterize
this non-bolometric component.

An optical step of incident power light was applied
to the sample, and then the output voltage time-response
of sample was measured. Thus, we can extract the effective
thermal time constant \(\tau_{\text{eff}} \) of the sample by using the
fitting of sample’s time-response as a first order system.
We found that \(\tau_{\text{eff}} \) is of the order of 180 \(\mu \text{s} \), which is
consistent with the measured cut-off frequency (Fig. 4).
This effective thermal time constant is quite short for a
thin film bolometers \([8][21][22]\).

Figure 4. Optical responsivity versus laser modulation frequency at
different bias currents at 318 K. The inset shows optical responsivity
versus bias current at 1 Hz and 318 K.
We can also estimate $G = 47 \times 10^{-3} \text{W·K}^{-1}$ by using (3) in the pass-band frequencies, and using the value of absorption $\eta = 85\%$ from earlier measurements on this material [9][20]. We found that $G_{\text{eff}} = G$ at bias current equals 400 μA. By knowing the thermal time constant and the thermal conductance, we can estimate the thermal capacitance of our sample $C = 8.5 \times 10^{-6} \text{J·K}^{-1}$.

D. Noise, NEP and D^*

The voltage noise spectral density (S_v) of the sample was measured using the four-probe configuration for different values of the bias current at 318 K, as shown in Fig. 5.

As expected, the white noise level does not depend on the bias current and the 1/f noise increases with bias current. Measurement results give a value of S_v equals to $4.4 \times 10^{-15} \text{V}^2\text{Hz}^{-1}$ at 30 Hz, for bias current equals to 400 μA. Using the value of the optical responsivity, we can estimate the value of NEP and D^*. The measured NEP and D^* value at 318 K, 400 μA and 30 Hz, are 1.1×10^{-7} $\text{W·Hz}^{1/2}$ and $1.7 \times 10^5 \text{cm·Hz}^{1/2} \cdot \text{W}^{-1}$ respectively.

Table I presents a comparison with other manganite bolometers [23]. We notice that our sample present better optical responsivity at the same bias current (1.95V·W^{-1} at 1.2mA, using (3)) even it has a smaller surface. So, in terms of optical responsivity, LSMO bolometer presents a better performance than LPSMO. Also, even if our sample has smaller D^*, it presents a smaller effective time constant (τ_{eff}). So, in terms of impulse detectivity, which includes both parameters, our sample achieves same value as that of [23], but with a decrease of about 4 factor in Joule heating.

The summary of results of the tested bolometer, with comparison of other uncooled bolometers, is shown in Table II. We can note that the D^* of our sample is still limited compared to these bolometer materials, like Poly-SiGe [24] and VOx [25], but our sample present better time response. It is also still limited in terms of impulse detectivity. This is mainly related to the fact that other bolometers used suspended structures, which decrease the thermal conductance (about 10^{-7} W·K^{-1}), thus enhancing the specific detectivity by about 4 orders of magnitude.

V. CONCLUSION

In this paper, the potentialities of LSMO thin films as thermal detector at room temperature have been reported. We have fabricated and characterized the LSMO/STO/Si sample at an operating temperature of 318 K. The sample showed high β ($24 \times 10^{-3} \text{K}^{-1}$) and low electrical noise.

The sample presents a very good quality LSMO film deposited on Si substrate. This proves the compatibility with silicon microelectronics fabrication process, and gives the opportunity to the integration of LSMO as uncooled thermal detector with the readout electronics.

Figures of merits of bolometer have been measured and analyzed. It showed that due to a thermal conductance of $47 \times 10^{-3} \text{W·K}^{-1}$, the device performance is limited to a D^* of $1.7 \times 10^5 \text{cm·Hz}^{1/2} \cdot \text{W}^{-1}$ at 30 Hz and 400 μA. Though, a small effective thermal time constant of 180 μs was measured.

Further studies are in progress to optimize the geometrical parameters of the sample, like size and number of lines in the meander, and on different substrates in order to achieve maximal performance of this promising material as thermal detector.

TABLE I. COMPARISON WITH OTHER MANGANITE BOLOMETERS

<table>
<thead>
<tr>
<th>Film/Substrate</th>
<th>This work</th>
<th>Ref. [23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSMO/STO/Si</td>
<td>LPSMO*/LaAlO$_3$</td>
<td></td>
</tr>
<tr>
<td>Pixel pitch size (μm/(\mu$m)</td>
<td>150×230</td>
<td>2500×3000</td>
</tr>
<tr>
<td>β (%K$^{-1}$)</td>
<td>$2.4 @318K$</td>
<td>$5.5 @300K$</td>
</tr>
<tr>
<td>G (W·K$^{-1}$)</td>
<td>47×10^{-7}</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>I_b (mA)</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>$R\cdot L$ (mW)</td>
<td>0.34</td>
<td>1.58</td>
</tr>
<tr>
<td>\mathcal{R}_v (V·W$^{-1}$)</td>
<td>0.65</td>
<td>0.60</td>
</tr>
<tr>
<td>τ_{eff}</td>
<td>180 μs</td>
<td>500 ms</td>
</tr>
<tr>
<td>NEP at 30Hz (W·Hz$^{-1/2}$)</td>
<td>1.1×10^{-7}</td>
<td>3.0×10^{-4}</td>
</tr>
<tr>
<td>D^* at 30Hz (cm·Hz$^{1/2}$·W$^{-1}$)</td>
<td>1.7×10^7</td>
<td>9.0×10^6</td>
</tr>
<tr>
<td>$D^*/\kappa v$ (cm·J$^{-1}$)</td>
<td>1.3×10^7</td>
<td>1.3×10^7</td>
</tr>
</tbody>
</table>

LPSMO/LSMO/LaAlO$_3$/La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LPSMO) deposited on Si substrate. This proves the compatibility with silicon microelectronic fabrication process, and gives the opportunity to the integration of LSMO as uncooled thermal detector with the readout electronics.
TABLE II. COMPARISON WITH OTHER UNCOOLED BOLOMETERS

<table>
<thead>
<tr>
<th>Film/Substrate</th>
<th>This work</th>
<th>Ref. [24]</th>
<th>Ref. [25]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSMO/STO/Si</td>
<td>Poly-SiGe/Si</td>
<td>VO$_2$/Si</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>not suspended meander</th>
<th>suspended microbridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel pitch size (μm)</td>
<td>150×230</td>
<td>50×60</td>
</tr>
<tr>
<td>Resistance at 300K ($k\Omega$)</td>
<td>2.13</td>
<td>350</td>
</tr>
<tr>
<td>β at 300K (%K$^{-1}$)</td>
<td>1.9</td>
<td>-1.9</td>
</tr>
<tr>
<td>G (W.K$^{-1}$)</td>
<td>47×10$^{-3}$</td>
<td>1×10$^{-6}$</td>
</tr>
<tr>
<td>R_E (mW)</td>
<td>0.34</td>
<td>0.45</td>
</tr>
<tr>
<td>τ_M</td>
<td>180 ms</td>
<td>16.6 ms</td>
</tr>
<tr>
<td>$D^*_\text{at 30Hz}$ (cm2 Hz$^{-1/2}$ W$^{-1}$)</td>
<td>1.7×10$^{-5}$</td>
<td>7.5×10$^{-5}$</td>
</tr>
<tr>
<td>D^*/τ_M (cm2 K$^{-1}$)</td>
<td>1.3×10$^{-3}$</td>
<td>5.8×10$^{-3}$</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

The authors would like to thank the CIMAP laboratory at ENSICAEN for providing optical equipment.

REFERENCES

