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Abstract—Wireless Sensor Networks (WSNs) are 
collections of sensor nodes deployed in a geographical 
area with the purpose of monitoring the environment in 
which they are deployed and detect events of interest. 
Sensor nodes are tiny devices with limited battery power 
and communication range.  Data fusion is the process of 
combining raw data from the various sensor nodes to 
obtain information of greater quality and make accurate 
decisions about the events of interest.  Given that energy 
is the main constrain in WSNs, data fusion can also be 
used to reduce the volume of data transmitted over the 
network, thereby extending the network’s lifetime.  In 
this paper, we propose a data fusion framework that 
uses fuzzy set theory to aggregate data from multiple 
sensors at the cluster level.  The algorithm is capable of 
handling the inherent inaccuracy and conflicts in 
environmental data readings.  

Keywords-wireless sensor networks; data fusion; data 
aggregation. 

I.  INTRODUCTION 
Wireless Sensor Networks (WSNs) are collections 

of large numbers of sensor nodes capable of collecting, 
relaying, and processing sensor readings from the 
physical world.  They have a wide range of 
applications in both military and civilian environments 
ranging from natural habitat monitoring to enemy 
detection and tracking in the battlefield [1].  In most 
cases, power sources in the sensor nodes are not 
rechargeable- they are battery based and the nodes are 
deployed in remote and/or hostile environments.  Since 
a sensor network is usually expected to operate for 
several months without recharging, energy 
conservation is an important design objective to 
prolong the network’s lifetime [2].  At the same time, 
the network’s ability to collect and communicate the 
data of interest on a timely fashion is also a critical 
objective. 

In most applications, sensor nodes are deployed 
randomly and in large numbers over a target area (e.g., 
dropped from an airplane).  Since data is collected by a 
large array of densely deployed neighboring nodes, 

there tends to be a high degree of redundancy and 
correlation in the data collected. Additionally, due to 
the harsh conditions in which sensors are often 
deployed, they tend to be prone to various source of 
errors such as noise from external sources, hardware 
noise, sensors inaccuracies and imprecision, and 
various environmental effects [3].  Data fusion is the 
process of combining raw data from various sensor 
nodes. Its main purpose is to obtain information of 
greater quality and make accurate decisions about the 
events of interest based on the data collected from the 
various sensors [4][7][8].  Our proposed data fusion 
framework uses Fuzzy set theory [6] to handle the 
inaccuracies that are inherent in sensor data readings 
and for combining conflicting information from 
various sources.  Moreover, by performing data 
aggregation at the cluster-level, an additional benefit is 
the reduction of the amount of raw data transmitted 
over the network, which prolongs the network lifetime.  
A secondary benefit is to prevent flooding the Base 
Station with raw data. 

In the next section, we lay out our data fusion 
framework and its underlying assumptions. In Section 
3, we present a simple cluster-level data fusion 
algorithm that assumes accurate sensor readings. In 
Section 4, we present a base station-level aggregation 
algorithm. In Section 5, we present our cluster-level 
fuzzy fusion algorithm, and in Section 6, we present 
our concluding remarks and future extensions. 

II. DATA FUSION FRAMEWORK  
We assume a network of sensors deployed 

randomly and in large numbers in a bounded area 
where events of interest are expected to occur. Sensors 
are assumed to be stationary (i.e., not mobile).  They 
are capable of self-organizing into clusters with one 
node serving as a cluster head for each cluster.  The 
clustering algorithm partitions the network into groups 
of nodes each covering a subset of the whole coverage 
region.  All nodes in a cluster send their data readings 
to their cluster head which aggregates and forwards its 
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decisions to the base station. The base station collects 
information coming from all cluster heads and 
produces the final decisions.  Figure 1 depicts a 
diagram of a cluster based wireless sensor network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1:  Cluster-based Wireless Sensor Network 
 

There are several clustering algorithms proposed for 
WSNs [5].  We assume that each cluster consists of N 
sensor nodes, with N possibly different for each cluster, 
and each node is capable of sensing one feature or 
attribute of interest such as the surrounding 
temperature, humidity, light intensity, smoke density, 
amount of Carbone Monoxide (or any other chemical), 
etc. 

We propose a framework whereby a data fusion 
processor is employed at the cluster-level.  The data 
fusion processor serves to aggregate the raw data 
transmitted by the cluster nodes and generate decisions 
that are transmitted to the base station. 

III. CLUSTER-LEVEL DATA FUSION 
In each cluster, we assume one sensor is activated to 

monitor one of the features of interest. Assuming there 
are m features to be monitored, there will be m sensors 
with the ith sensor observing feature Fi.  The m readings 
are to be aggregated by the cluster data fusion 
processor to reach a decision concerning the 
occurrence of an event of interest (e.g., the intrusion of 
an enemy or the occurrence of a fire). 

We assume each cluster fusion processor is provided 
with a local decision matrix D defined as: 

 
D = [ ,  , …, ] 

 
where  is a vector of feature values ([f1,k, f2,k, …, 
fm,k]) supporting decision dk.   

As an example, let us consider an application where 
a sensor network is used for the detection of fire in a 

forest.  The set of monitored features may consist of 
the following:  

F1: temperature 
F2: smoke density 
F3: humidity 
 

The set decisions: 
d1: Fire unlikely 
d2: Fire likely 
 

A decision matrix can be defined as: 
 

 
 
where ∟x indicates any value smaller than x is 
replaced with x and x⅂ indicates any value larger than 
x is replaced with x.  The above example decision 
matrix indicates that if feature F1 (temperature) is 70 
(degrees Fahrenheit) or less, feature F2 (smoke 
density) is 10 or less, and F3 (humidity) is greater or 
equal to 70 then decision d1 is taken (i.e., Fire 
unlikely); and if F1 (temperature) is 130 (degrees 
Fahrenheit) or more,  F2 (smoke density) is 70 or 
more, and F3 (humidity) is 20 or less then decision d2 
is taken (i.e., Fire likely). 

Given an actual sampling/reading R =  [r1, r2, …, rm] 
collected by a cluster from its m sensors, the cluster 
data fusion processor takes decision dj  so that:  

 
     )  ≤              (1) 

for all k = 1, 2, …n. 
 

Note that  is a measure of how close 
the actual data collected by the sensors is to the feature 
values expected to support decision dk.  Conversely, 
we can define the strength of a decision dk as the 
inverse of the Cartesian distance: 
  Strength(   =        (2) 

 
The larger the distance of the data 

reading R to the feature values expected to supported 
decision dk, the weaker the decision.  

For the example decision matrix above, if the data 
reading R = [140, 50, 30] then: 
 
Strength(d1) = 1/( (70-140)2 +(10-50)2 + (70 - 30)2 ) = 
1/8100 

Base Station 
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Strength(d2) = 1/( (130-130)2 +(70-50)2 + (20 - 30)2 ) = 
1/500 
 

Decision d2 (Fire likely) has more strength which, 
intuitively, is the expected decision for the example 
reading. 

IV. BASE STATION-LEVEL DECISION FUSION  
Assuming there are S clusters (where S can vary 

from cluster to cluster), the base station receives S 
decisions , , … , one from each cluster head.  If 
the clusters are disjoint, then each cluster decision is 
representative of the data collected from the area 
covered by its sensors.  On the other hand, if the 
clusters have overlapping coverage then a number of 
aggregation algorithms can be used to select a decision 
from the S decisions received.  The simplest method 
would be to use a simple voting scheme, where the 
selected decision is the one generated by the most 
clusters.  A better approach would be to use the 
strength of each decision in the selection process, 
where the strength of a decision is defined in equation 
(2).  The disadvantage of this approach is that each 
cluster head needs to transmit, in addition to its 
decision, the decision strength of its decision.  It can, 
however, lead to more accurate decisions. The 
additional information can, for example, be used to 
weed out weak decisions, by considering only 
decisions that have decision strength above a certain 
threshold. This can reduce any bias caused by clusters 
that don’t have enough information to make a strong 
decision (because they are far from the event of 
interest, for example).  From the remaining decisions, 
we can select the decision that has the majority of 
votes, or the one with the largest average strength. 

V. FUZZY DATA FUSION 
The data fusion process described above assumes 

exactly one sensor is deployed to monitor each feature 
and sensor readings are accurate and precise. Most 
often, however, environmental data tends to be vague 
and noisy, and sensors tend to be prone to errors and 
malfunction.  To overcome these limitations, multiple 
sensors can be activated to monitor each feature of 
interest. Fuzzy set theory allows us to map inaccurate 
crisp sensor readings into fuzzy values that include a 
measure of confidence or belief of the accuracy of the 
readings. It also allows us to aggregate conflicting data 
readings.  We first give a brief overview of fuzzy sets. 

A. Overview of Fuzzy Sets 
A fuzzy set A on space X is defined by its 

membership function: 
 

 A: X  [0, 1] 
 

The membership function is a generalization of the 
characteristic function of a crisp (i.e., ordinary) set.  
For each x ,  A(x) denotes the degree to which 
element x  is a member of fuzzy set A. For a crisp set, 
of course,  
 
 A(x) =  
 

For fuzzy sets, .  Those x's for which 
 0 constitute the support of fuzzy set A.  For 

notational convenience, we do not distinguish between 
the membership function and the fuzzy set itself.  In 
effect, the membership function is the fuzzy set.  
When the domain  is finite, we 
represent fuzzy set A by the notation: 

 
where  ) denotes the degree to which 

belongs to A or the confidence of the belief that 
belongs to A 

 

B. Data Fuzzification   
A stated above, we assume within each cluster, each 

feature is observed by an array of s sensors. Therefore, 
for each of m features Fi, s readings are collected by 
each cluster.  The process of data fuzzification begins 
by partitioning the domain of each feature Fi into a set 
of v intervals, I1, I2, …, Iv and mapping each of the s 
readings into the interval that it belongs to. For each 
interval Ik, we can get the fraction αik of sensors 
observing feature Fi whose reading falls in interval Ik.   

If we represent each interval Ik with its mid-point Pk, 
we obtain a function: 

 
fi: Pk  αik , for all k =1, 2, …,v  

 
where v is the number of sampling intervals and i is 
the ith feature.  After normalizing fi and taking a linear 
interpolation, we obtain a continuous function i that 
peaks at 1. The normalized values αik for feature Fi 
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represent the confidence level that the value of feature 
Fi is Pk. 
 

i :  x  X  µx, where  µx Є [0, 1]  
 

As an example, let us assume a given cluster has 10 
temperature sensors with the following readings: 97, 
95, 78, 99, 102, 98, 97, 82, 119, 96.  Let us also 
assume we have 5 sampling intervals I1=[0, 32[, 
I2=[32,70[, I3=[70, 90[, I4=[90, 110[, and I5=[110, 
130].  Alternatively, we can express these temperature 
intervals in linguist terms such very low, low, medium, 
high, and very high. 

Figure 2(a) shows the fraction of readings for each 
of the sampling intervals represented with the 
interval’s midpoint and Figure 2(b) shows its 
normalized counterpart.  

 

 
(a) 
 

 
(b) 

Figure 2: Example data fuzzification 
 

Based on Figure 2(b), the temperature value deduced 
from the 10 sensor readings is 
 

temperature = 0.28/80 + 1/100 + 0.14/120 
 
indicating a high confidence that the temperature is 
close to 100 and lower confidence for the other two 
values. 

C. Cluster-Level Decision Making 
As in the crisp case, each cluster head uses a 

decision matrix: 
D = [ ,  , …, ] 

 
where  is a vector [f1,l, f2,l, …, fm,l] of the ideal 
feature values supporting decision dl. Ideally, if the 
feature values computed by a cluster head (based on its 
senor readings) are exactly equal to vector Dl, then the 
cluster head (i.e., the data fusion processor) should 
take decision dl. However, in general the computed 
value will not match exactly any of the vectors Dl.  
The objective of the decision making process is to 
select the decision that matches best the computed 
features values.   

Let R =  [ 1, 2, …, m] be a set of fuzzy membership 
functions computed by a cluster head based on its 
sensor readings, where i  is the membership function 
for feature Fi. Note that each i is a fuzzy membership 
function computed using the procedure described in 
the previous section. Using the notation of the 
previous section: 
 

i =  
where  µik Є [0, 1] for all i and k. 

 
We define the strength of decision dl as: 

 
Strength(dl) =   ))  

(3) 
 

Noting that the min function produces the weakest 
link among a set of series links and the max function 
generates the strongest link among a set of parallel 
links, we use the max function to weed out readings 
that either have low confidence level or large distance 
to the ideal value for each feature, then we use the min 
function to represent the strength of a decision with the 
strength of its weakest feature reading. Other 
aggregate functions such as the mean can also be used 
instead of the min and the max functions.  
 

As an example, let us assume the decision matrix 
below with 2 features F1 and F2 and 3 decisions d1, d2, 
and d3: 
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Assume at a given cluster, we get the following 
feature membership values based on our sensor 
readings and using the fuzzification procedure of the 
previous section: 

 
1 =  0.8/1  + 0.2/3 
2 =  0.4/3 + 0.6/4 

 
Intuitively, the readings support decisions d1 and d2, 

while decision d3 should be the weakest.  Applying 
equation (3), we get the strength of each decision: 
 
Strength(d1) =  min[ (max(0.8 , 0.2   ), 
max(0.4 , 0.6   ) ] 
 
Strength(d1) = min(max(0.8, 0.0036), max(0.268  , 
0.011)) = 0.268 
 
Similarly, we compute  
Strength(d2) = min(max(0.8 , 0.2 ), 
max(0.4 , 0.6   ) )  
 
Therefore, Strength(d2) = min(0.2 , 0.6) = 0.2 
 
Strength(d3) = min(max(0.8 , 0.2 ), 
max(0.4 , 0.6   ) )  
 
Therefore, Strength(d3)= min(0.00366, 0.011) = 
0.00366. 
 

Based on the above results, decision d3 is the 
weakest, which intuitively is what we expected, while 
decision d1 and d2 are stronger, with d1 slightly stronger 
than d2.  

VI. CONCLUSION AND FUTURE WORK 
Data fusion in wireless sensor networks is critical to 

reduce raw data transmission across the network, which 
would in turn increase the network’s lifetime and 
prevent flooding the base station.  In this paper, we 
presented a cluster-level data fusion algorithm based on 
fuzzy set theory that’s capable of handling inaccurate 
and conflicting sensor readings.  We plan to extend this 
algorithm to aggregate sensor readings over time so 
that sensor nodes update their cluster heads only when 
significant changes occur in the sensed feature 
readings, and in turn, cluster heads update the base 
station only when a significant change occurs in the 
decision taken or it confidence level.  We also plan to 
further investigate decision fusion among partially 
overlapping clusters. 
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