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Abstract—In wireless sensor networks, frequent faults are
caused by general characteristics and the direct exposure to
the environment. Accumulation of these faults can lead to
the progressive decrease of reliability and accuracy of sensor
readings. We focus on detection and classification of faults
within sensory data independently of the underlying cause. We
propose a complete and consistent fault classification based on
two aspects. The first aspect is continuity and frequency of the
occurrence, and the second is the existence of observable and
learnable patterns. Given that modeling of faults prior to the
detection is a fundamental process, we address it with statistical
analysis and theoretical approach. We rely on centralized and
straightforward detection methods using neighborhood vote.
For the full classification phase, we propose the use of statistical
pattern recognition with a priori modeling of faults. Current
results show that this method works comparatively well when
applied to collected data in data centric dense wireless sensor
network.
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I. INTRODUCTION

Wireless sensor networks (WSN) are complex systems
that consist of a large number of small, cheap devices.
We deploy a WSN to collect and process data in order to
understand the behavior of a monitored entity. Often, the
network needs to perform demanding scenarios in a harsh
environment. The significantly lower intrinsic reliability of
sensors and actuators than that of integrated circuits in
enclosed packaging comes from their direct contact with the
environment [1].

Ultimately, the goal of WSN is to provide accurate data
about monitored phenomena efficiently over the maximum
possible period. Even when perfectly calibrated in the begin-
ning, network will accumulate a number of faults over the
time. This leads to the shortening of its effective lifetime,
defined as the time of operation in which network reliably
provides accurate data.

This research focuses on detecting faults that occur in
sensor readings within dense data-centric WSN. In particu-
lar, it keeps a focus on the pattern of occurrences as they
appear in readings of each sensor node. These observations
are independent of the underlying cause of the fault. In this
case, a fault is the manifestation of erroneous reading within
the data, regardless of the underlying cause for this reading.
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In this case, we rely on the neighborhood vote and spatial
and temporal correlation of the readings, while there is no
correlation amongst faults developing on each node.

One of the challenges for fault detection is a proper
modeling of faults. Detection of faults relies on these models
for the accuracy. We attempt to provide initial models for the
detection and classification of faults as they can be observed
in collected readings. Frequency and continuity of occur-
rence is the basis for the proposed classification of faults.
The aim is to provide complete and consistent classification,
independent of the underlying causes for faults, such as
errors in calibration or packet loss.

Amongst challenges that WSN face is the quality of
service, where the most important aspect is the amount and
the quality of the information that can be extracted at any
given sink about the observed object or area. Fault tolerance
at all levels of the network is a necessary trait of the required
QoS, especially the quick recovery from a fault.

Lifetime of a network is another crucial figure of merit. It
depends largely on the energy consumption. For this reason,
fault tolerance mechanisms have to find a way to balance
the cost of communication and computation. One straightfor-
ward definition of a lifetime is given as the time before a first
node runs out of energy and stops transmitting [2]. However,
data accuracy and reliability might fail long before that, due
to accumulated faults. Goal of this research is to use fault
mechanism to prolong the effective lifetime of the network,
defined as a time in which network provides reliable and
accurate data.

Analysis of related work on fault tolerance in WSN is
discussed in Section II. Details of the proposed approach and
results are presented in Section III, followed by conclusion,
discussion and future work in Section IV.

II. FAULT TOLERANCE IN WIRELESS SENSOR
NETWORKS

Fault tolerance is a fundamental requirement for efficient
and reliable operation of WSN. In order to provide a quick
recovery, fault latency must be low. This means that a
network must be able to eliminate the effect of the fault
in a short time. Some classic approaches rely on neighbor-
hood vote techniques or data redundancy, and the existing
literature covers them extensively [2], [3]. Apart from these
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techniques, there is a trend towards using intelligent data
fusion and machine learning to provide more flexible fault
recovery, for example, Shell et al. propose fuzzy data driven
fusion with statistical process control [4].

For example, Takruri et al. propose SVR-UKF-IMM
framework for auto calibration [5]. It is an efficient method
for fault detection and error correction, but it requires a
repetition in each round of data collection. The presented
method enables each sensor to predict a correct reading
based on information from the previous cycle. Although
this approach is flexible, it leaves the network unaware of
the occurrence and location of a fault. The sink will never
receive an actual reading from the sensor, only a corrected
one. With the centralized approach, the network would be
aware of the exact node where the fault has occurred.

Koushanfar et al. give a detailed analysis of fault toler-
ance [1]. Amongst other requirements, they state that it is
preferable to develop approaches that require little additional
computation regardless of any additional communication
requirements as the answer to the common dilemma about
the tradeoff between computation and communication. We
believe that centralized approach to the fault tolerance cor-
responds to this requirement since it does not require addi-
tional communication, and it ensures enough computational
power. Centralized approach is supported by Ni at al. [6].
Also, they point out that any value exceeding a high value
threshold is not necessarily a fault. Assumption that nodes
need only to be correlated and have similar trends is not
enough. Authors emphasize the role of modeling of data
since it might provide the basis for comparison if there is a
lack of other references. Consistent initial classification of
faults can provide a sufficient basis for better modeling of
faults initially, as well as learning models from experience.
Sharma et al. examine the prevalence of sensor faults in dif-
ferent datasets obtained from real deployments [7]. Authors
focus on several types of transient errors and evaluate several
different methods for the fault detection. Their conclusion is
that the frequency of appearance varies. It ranges from 0%
- 20% for different types of errors and different datasets. In
the end, authors conclude that the influence to the overall
functionality of the network is significant regardless of the
frequency of faults. Also, they believe that online handling
of faults is an important task. Yao et al. in [8] support this
opinion and they propose a straightforward approach to the
online detection using time series.

Approach presented here addresses fault tolerance in data
centric, densely deployed network with assumed spatial and
temporal correlation. For comparison, literature offers some
interesting examples of different approaches in different
settings, as seen in Tiwari and Thai, who are concerned with
providing a fault tolerant virtual backbone as the routing
infrastructure [9]. Dual cluster cooperating scheme for data
gathering network is proposed by Huang et al. [10]; with the
advantages of reduced data loss and a small communication
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overhead. Also, this scheme can detect both, link faults and
node faults. Interesting application and results from a real-
time deployment in the avionics is reported by Alena [11].
Fault tolerance is an essential part of reliable sensor
network operation. It is obvious that different types of
networks and different applications pose varied require-
ments. To provide a satisfactory fault tolerance scheme, any
approach should concern itself with all of the main aspects
of fault tolerance, fault models, detection and diagnosis and
resiliency mechanisms. Classical techniques, like neighbor-
hood vote, provide a reliable, easy to adapt approach for de-
tection. However, machine learning techniques provide more
flexibility for recognizing the type of faults and handling
them accordingly. Also, these methods provide a critical
difference in terms of early discovery of faults that occur
continually over the prolonged period. This significantly
affects capability of the network for the quick recovery.

III. CLASSIFICATION WITH STATISTICAL PATTERN
RECOGNITION

Part of the fault tolerance recognition and resiliency
mechanisms are various criteria for fault classification. In
general, error is a manifestation of a fault inside of a program
that can occur either at the fault site or at some distance.
Together with the fact that each level of abstraction has its
own types of faults, current literature covers classification
of faults based on various criteria.

Faults can occur in different layers of WSN. If we look
at the location and cause of faults, most commonly they
appear at physical layer, since sensors and actuators are
most prone to malfunctioning. Faults that can occur at this
level can besuch as physical layer, where we can have
communication faults or hardware malfunctions and energy
supply problems. Since sensors and actuators are the most
vulnerable components, at this level we can classify faults
as:

« calibration systematic errors,

« random noise

« complete malfunctioning

Calibration errors are probably a key source of all faults
since they can manifest themselves as a bias or a drift
throughout the lifetime of the sensor node.

In the middleware, focus moves towards data aggregation,
filtering and sensor fusion, all of which are tasks dependent
on accurate and reliable sensor readings. However, it is
difficult to provide a fault tolerance at the level of a single
sensor node in an economic way. Addressing faults at the
application level is efficient, but requires a customized way
of addressing each issue. On the other hand, this provides
flexibility to address faults regardless of the resource or level
in which faults appear [1].

If we take a different look at faults, for example, how
often and how long they appear, they can be classified
based on the time and persistence as permanent faults,
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continuos and stable in time; intermittent faults, occasional
manifestation due to unstable characteristics and transient
faults, reflective of temporary environmental impact.

Ni et al. give extensive taxonomies of faults that cover
definitions, causes, duration and impact of faults [6]. For
example, calibration fault can be detected as the fault where
the reported value is offset in some way from the ground
truth. Bias and drift are primary causes of these faults. This
fault is persistent, and it remains present throughout the
deployment. However, data should not be discarded, since
proper calibration formula can correct them. As opposed to
this, faults occurring at hardware or connection level render
data useless and should be disregarded. In a similar manner,
spikes do not provide a meaningful information, and data
should be disregarded. The difference is that spikes might
occur only sporadically, while hardware error is persistent.
It would make sense to keep the first node active, while the
second should be deactivated.

We believe that the capability to distinguish between
different types of faults would provide WSN with increased
flexibility in handling faulty nodes. This flexibility can be
achieved by learning from observations. In this way, a
network could improve its behavior based on the study of
its own experience. Given the goal in this work to recognize
and classify different types of faults that occur on sensor
nodes, we have chosen to focus on statistical learning, more
specifically on statistical pattern recognition [12], [13].

The review of existing literature led us to focus on
reliability of data-centric, densely deployed sensor networks.
In this sense, we have formed a classification of faults in
sensor readings independent of the cause of fault or the
location of occurrence.

A. Fault Classification

In this work, we focus on faults that can be observed
in readings through the effect they produce in data. This
is a data-centric, diagnostic approach. Data features are
statistical in nature, and a confident diagnosis of any single
fault may require the use of more than one of those features.
In dense, data-centric, networks readings are spatially and
temporally correlated, so statistical patterns of readings can
be used to identify and describe faults.

After analyzing existing classifications and underlying
criteria, we have chosen to determine if faults can be
recognized based on the pattern of behavior that they leave in
the data. We propose a complete and consistent classification
of faults in sensory data in terms of:

o Continuity of the occurrence

o Frequency of the occurrence

¢ Observable and learnable pattern

Criteria we have chosen draw from existing experience,
and generalize and abstract existing criteria. We believe that
a classification based on these criteria is flexible and appli-
cable to a wide range of sensor readings. At the same time,
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it decouples models of faults from physical characteristics
of a network and from the environment. Underlying cause of
the error does not affect this classification. The focus of this
work is on the pattern of fault occurrences on each sensor
node.
If a sensor reading is represented with r; + ¢; , where ¢;
is a fault, we can define fault classification as follows:
« Discontinuous - Fault occurs from time to time, occur-
rence of ¢; is discrete.
— Malfunction - Frequent occurrence of faulty read-
ings, €; > T, where 7 is threshold frequency.
Also, there is no observable pattern in the fault
occurrences.
— Random - Infrequent occurrence of a faulty read-
ings, €; < 7.
« Continuous - After the certain point in time, a sensor
returns constantly inaccurate readings, and it is possible
to observe a pattern in the form of a function:

E; = f(t, [al,ag....})

— Bias - The function of the error is a constant, ; =
const. This can be a positive or a negative offset.

— Drift - The deviation of data follows a learnable
function, such as polynomial change

-1
g =wr%e; | Fagxe, 1 +..ap

Figure 1 illustrates the main concept of this classification.
Knowing the type of the error provides a network with
flexibility in handling faulty nodes appropriately, according
to their type. Random faults can be smoothed out through
data fusion while malfunctioning nodes can be switched off.
Continuous faults are more interesting and challenging to
handle in this case. This classification can provide a basis
for the use of hypothesis finding techniques in order to learn
a function of the fault and apply that function (model) to
subsequent readings. Furthermore, models we learn can be
used to update a priori set models of expected faults.

The classification process is a part of a possible frame-
work illustrated in the Figure 2. This framework addresses
a full cycle of modeling-detection-resiliency mechanism.
However, this full cycle is out of the scope of this paper.

B. Proposed Method and Results

This work deals with the discovery of faults in sensor
readings of data-centric WSN. One of the most significant
metrics is accuracy, defined as the difference between result-
ing value and true value [2]. We rely on a neighborhood vote,
keeping the assumption of spatial and temporal correlation of
measurements. This means that we expect nodes in the same
area to measure the same phenomena at the same time. The
assumption holds for data-centric densely deployed WSN,
as opposed to the use of saving mechanisms that turn off
the network interface opportunistically which leads to inter-
mittent connectivity and the formation of a Delay/Disruption
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Figure 2. The process of fault handling with automated framework

Tolerant Network (DTN) [14]. An important characteristic
of these networks is the lack of a simultaneous path between
source and destination, while existing literature on routing
in DTNs assumes that data packets are independent and
uncorrelated with one another.

For the proposed method, it is necessary to assume the
existence of a good connectivity between the nodes in the
same area. Nodes are capable of clustering based either
on the recognition of a nearby neighbors or an in-built
detailed knowledge about the network layout, both physical
and relational.

Every fault tolerant system has to decide between connec-
tivity and communication overhead. Some of the existing
work shows good results with on-node fault correction,
with the benefit of flexibility and a quick response. On the
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Classification of faults based on frequency, continuity and an observable pattern

other hand, this approach can cause a significant loss of
information about a node’s behavior. The network would
always have to rely on corrected readings based on the
prediction instead of on actual readings. In the centralized
approach, the network becomes aware of the behavior of
each node. When the network is capable of recognizing the
type of fault, it can correct the readings and handle the
node accordingly. Centralized approach does not cause any
increase in communication overhead and provides sufficient
resources for potential heavy computation requirements.

For the experiments, we have used the well known Intel
Berkely laboratory dataset [15]. This set provides data on
time and epoch of measurements, temperature, humidity,
light and voltage. Dataset was split based on the location
of sensor nodes, for example, a group of nodes with id 44
- 48.

In the first step, we analyze collected data in the time
series to discover any discrepancies that might indicate the
existence of faults. We are using statistical features of data
for this purpose. For the initial calculations we rely on
calculating the median, p = {r;;} 1 =7, of the group for
the each epoch and chosen measurement, e.g. temperature.
Median is chosen over the average as a more robust metrics.
It is less likely to change drastically if extreme spikes in
measurements occur on some of the nodes.

The difference between the reading and the median is
calculated for each node, within the given tolerance rate:

|77i_rij| ST*’@

Tolerance rate 7 largely depends on characteristics and
the intended application of the network. For most of the
experiments we have set it to 7 = 0.2, or 20% margin.

For the further analysis we use standard deviation s?
LS (r; —7)? and variance ¢ = V/s2

Figure 3 shows results of this analysis. We can see
in Figure 3a which node has developed a fault, and in
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Figure 3. Identifying nodes that have developed faults

Figure 4. Decision tree

Figure 3b, we can see the time when the fault has started
to develop. Also, here we can see that temperature and
humidity measurements might be highly correlated. It might
indicate that the node is becoming unreliable entirely.
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Since we propose the use of a limited number of fault
classes based on a small set of classification criteria, decision
tree approach for pattern classification is a well fitting
algorithm [16]. We can see this tree in the Figure 4. The
outline of the process is given in the Algorithm 1.

Algorithm 1 Decision tree algorithm

Require: finite set of classes C' € [wy,ws, w3, ws]
find the set of features [f1, fa,...., fn]
for all data do

analyze the time series
check the continuity
if ¢; is discrete then
check the frequency
if ¢; > 7 then
malfunction
end if
if ¢, <7 then
random
end if
end if
if ¢; is continuos then
check the function ¢; = f(¢, [o1, o1....])
if f(t,[a1,1....]) = const then
bias
end if
if f(t,[01,01....]) # const then
drift
end if
end if
end for

Much of the work in designing trees focuses on on
deciding which property test or query should be performed at
each node. For this end, we have used MATLAB Treebagger
function to run through various models of trees. This allows
us to try many combinations and models of trees in a short
time. Which combination will be suitable for a specific data
set depends on many factors, and detailed discussion of this
process is out of the scope of this paper.

Finally, in Figure 5, we can show at which point of time
and which node has developed a drift with high probability.

At the current phase of the work, discovered fault is
smoothed out. Since experiments are conducted on already
collected dataset, there is no possibility to actually handle
a faulty node in an adequate manner, and the comparison
of the performance is left for the future work. Further
development of the model requires experiments on simulated
or deployed network, and it is also a part of future work.

Our experiments show around 15-20% occurrence of
faults within the test data, which is consistent with other
related experiments on the same dataset [7]. The method
was able to correctly detect faults in approximately 90%
of fault occurrences. These results are average from several
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runs on the same dataset. Minor differences occur due to the
nature of Treebagger function which splits data into training
and test set differently in each run.

At the moment, the method focuses on detecting the
manifestation of faults in data, without looking into the
underlying cause. However, a proper classification of a
fault might indicate that cause. For example, malfunction
is probably caused by an error in hardware, while drift
might be caused by low battery levels or miscalibration. This
provides for a flexible way of dealing with each node in an
appropriate manner.

IV. CONCLUSION AND FUTURE WORK

In this work, we focused efforts on discovering faults in
sensor readings within a data-centric dense wireless sensor
network. The focus is on the pattern of the occurrences of
the faults on the node, regardless of the underlying cause.
Key concept is a classification of faults based on frequency,
continuity and observable pattern in the faults. We keep
the assumption of spatial and temporal correlation between
sensor readings. Also, we use centralized approach in order
to ensure computational power with low communication
overhead. In this way, the network is aware of when and
where faults have developed, and it can handle a faulty node
accordingly.

Statistical pattern recognition using decision tree method
and classification work comparatively well for the data-
centric and dense networks. However, if we can not assume
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density or spatial and temporal correlation of readings, this
method is insufficient. It requires further development of a
priori fault modeling to provide a basis for comparison of
correct readings against faulty readings.

Providing an economic way of handling faults at the level
of a single sensor is difficult. We believe that proposed
classification, together with the detection method, provides
a way to combine benefits of the centralized approach, such
as bigger computational power with the flexibility of on-
node correction. The network would be able to recognize
fault on each node, handle it appropriately and keep the
communication overhead low.

We have conducted experiments on Intel Berkeley dataset.
So far they confirm that the method has a potential for
flexible handling of faults in WSN. However, we plan to
expand the experiments to use more datasets from different
settings (urban and outdoor deployments) in order to test the
hypothesis about spatial and temporal correlation.

Next, we plan to focus on a priori fault modeling and
inclusion of developed models in the detection and clas-
sification phase. This would allow lesser dependence on
neighboring nodes and stable connectivity.

To ensure the continually reliable operation, WSN has
to be capable to address the full cycle of fault tolerance,
which includes recognition of a faulty node, elimination
or counteracting of its readings and self calibration where
applicable. To meet this goal, we plan to expand proposed
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method by introducing hypothesis finding techniques to
discover fault models from the data. This is especially
interesting for the continuos errors, such as drift or bias.
If the network can learn these models, it can use them for
correction of faults. It would enable the network to adapt its
behavior and structure based on experience.

Finally, we would like to address some common issues
that are often encountered when developing algorithms for
WSN in the real world [17]. These issues include the
assumption of a reliable communication, precise analysis
of energy consumption in terms of communication and
computation, synchronicity of readings and the assumption
of a stable set of neighbors for each sensor node.

We believe that proposed method is viable for use in dense
data-centric network setting with assumed good knowledge
of network’s topology. More importantly it provides a basis
for further improvements and development of a complete
scheme for self-repairing wireless sensor networks, which
is the ultimate goal of the ongoing research.
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