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Abstract—Electromagnetic (EM) radios have been recently
proposed for underwater sensor networks. Due to the short
transmission range of EM radio transmissions underwater,
new localization techniques are required for underwater sensor
networks using these radios. We propose and evaluate three
localization approaches for EM-based underwater sensor net-
works: (1) multilateration with the aid of autonomous under-
water vehicles (AUVs), (2) multi-dimensional scaling (MDS)
without the AUVs, and (3) a hybrid approach combining MDS
and multilateration. We compare performance of the three
approaches with simulations. The main disadvantage of AUV-
aided localization with multilateration is that it does not always
provide complete localization coverage of the network. On
the other hand, MDS provides complete localization coverage,
but its performance decreases in sparse networks. The hybrid
approach provides complete network coverage and improves
the performance of MDS in sparse networks.

Keywords-Underwater Localization; Multi-dimensional Scal-
ing; Multilateration; AUV-aided Localization.

I. I NTRODUCTION

The importance of underwater sensor networks (UWSNs)
for environmental monitoring is becoming more important
as demonstrated by man-made disasters such as the recent
oil spill in the Gulf of Mexico, natural disasters such
as Tsunamis, as well as ongoing concerns about climate
change. The monitoring capabilities of UWSNs are essential
to limit the impact of disasters and to predict the future of
Ocean resources. An important service required for effective
environmental monitoring is localization of environmental
sensors, which ensures that the environmental information
can be mapped. Due to the unavailability of the Global
Positioning System (GPS) underwater, UWSN localization
is a very challenging problem. In this work, we tackle
the localization problem for UWSNs using electromagnetic
(EM) based underwater radios.

The EM underwater radio is a recent technology, which
promises a cost-effective and reliable underwater commu-
nications [1]. Current underwater acoustic communication
technologies suffer from serious drawbacks: they are unre-
liable due to their susceptibility to environmental noise and
require expensive signal processing to deal with the multi-
path underwater acoustic channel. Underwater, EM-based
signals do not suffer from multi-path arrivals and are not
susceptible to environmental noise, so they do not require
expensive processing for signal decoding.

The major drawback of using the EM-based radio un-
derwater is its limited communication range due to the
rapid attenuation of EM waves in the water. This short
communication range requires a large number of nodes to
provide connectivity across large areas. However, since the
cost of EM-based radios is significantly lower than that of
acoustic based radios we do not expect the cost of these
networks to be large. In fact, a network with hundreds of
EM-based nodes would be less expensive than a network
with only a few nodes using acoustic modems.

Localization of nodes in a network is a highly desired
capability for sensor network applications. Location stamps
are used to tag sensor measurements, ensuring that obser-
vations can be mapped to the location where they were
taken. Even though UWSNs do not have access to the GPS,
localization can be achieved in acoustic-based UWSNs [2].
Due to their short range, localization of EM-based UWSNs
needs to be handled differently than localization in acoustic-
based UWSNs.

We propose and evaluate three different localization algo-
rithms for UWSNs using EM-based radios:

(i) Multilateration using an autonomous underwater vehi-
cle (AUV) to act as a mobile beacon. The AUV may
not reach all nodes, so this localization approach does
not in general cover the entire network.

(ii) Multi-dimensional scaling (MDS) using neigbourhood
distance information. MDS requires all inter-node dis-
tances, which may not be available due to the limited
transmission range of the nodes. Missing distances
are estimated with a shortest path algorithm, which
introduces localization errors.

(iii) A hybrid approach, which uses MDS, but where
instead of finding the missing inter-node distances
with shortest-path algorithms, the missing distances are
calculated from the positions estimated with multilater-
ation. The hybrid approach improves the performance
of MDS in sparse networks.

An exhaustive review of localization techniques for acous-
tic UWSNs is available in [2]. Here we briefly point out
why many of these techniques cannot be used for EM-based
UWSNs, due to their shorter communication range.

Current localization approaches in underwater acoustic
networks rely heavily on the use of anchors [2]. Surface
anchors have a known location through the GPS [3]–[5],
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while dive’n’rise (DNR) anchors get their position on the
surface from the GPS and then dive underwater for local-
ization [6], [7]. Underwater anchors get their position from
the surface anchors or from the DNR anchors. Given loca-
tions of the anchors and distances to the anchors measured
by directly communicating with them, UWSN nodes can
localize themselves [4]–[7]. For large networks, the anchors
may not be able to communicate directly with all nodes.
A solution is to use already localized nodes as anchors to
localize other nodes in the network, which are then used as
anchors, until the entire network is localized [3]. Another
approach is to use mobile anchors [8], which can move
and reach every node in the network, so that all nodes are
covered and localized.

The approaches using direct communication with anchors
would not work in EM-based UWSNs since they would
require an enormous number of anchors to reach all nodes
in a network. In the case of surface anchors, the approach
may not work at all if the UWSN is located at a high
depth. The incremental approach may also require a large
number of anchors to provide desired performance, since the
localization errors propagate as new nodes become anchors.
Mobile anchors [8] can get closer to the nodes in the UWSN,
which is the reason why we propose their use in this work.
Moreover, the MDS approach used in this paper is especially
good at eliminating the propagation of localization errorsin
large sensor networks.

II. SYSTEM ARCHITECTURE

The underwater network considered in this paper is used
for environmental monitoring similar to the floats used in
the ARGO project [9]. The nodes are dropped off as a
swarm to monitor and collect environmental information.
Normally, the nodes dive below the surface of the ocean to
collect data. Periodically, they rise to the surface and report
their data to the sink over a satellite link or are picked up
from the water at the end of the monitoring missions and
their information is physically retrieved. In either case,the
collected information is used for off-line analysis of a given
environmental phenomena.

The network may include a roaming AUV for the purpose
of augmenting the localization process. The AUV may also
be used for other purposes, such as facilitating delay tolerant
networking (DTN) if satellite links are not available [10].In
DTN, the data is picked when the AUV is near a sensor and
transmitted to the satellite at a later time by the AUV.

All nodes are assumed to be equipped with EM-based ra-
dios for peer-to-peer underwater communications [1]. Since
EM waves suffer extremely high attenuation in the underwa-
ter medium, the radio range of the nodes is several orders of
magnitude shorter than that of an acoustic-based networks.
We provide more details on node range in Section IV.

The nodes are required to stamp their data with the
location of where the data is collected. As the nodes may be

moving due to currents, the location where the information is
retrieved (by satellite or by ship) may be very different from
the location at the time the environmental data was collected.
However, since the collected information is analyzed off-
line, the sensor nodes do not actually require the knowledge
of their location at the time that observations are made –
the location estimates are only needed during the analysis
of the observed data. Hence, location estimation can be done
off-line, in tandem with the analysis of the observed data.
This means that, the localization related information does
not need to be sent to a central processor on the fly, even
for centralized localization algorithms, significantly reducing
the communication cost of sensor localization.

As we show later, geometrical information about the
network (distances between nodes and between nodes and
the AUV), is sufficient for localizing the nodes. In our
system, the sensor nodes tag the observations with the
geometrical data instead of estimating their own location
and tagging the observations with the estimated location.
The observation data and the geometrical data are later
transferred to the sink for off-line processing. During off-
line processing, the location estimates are obtained from the
geometrical data and the observed data is then mapped with
the location estimates.

While it may seem that this amount of geometrical data is
large (in the order of the number of nodes in the network),
in practical situations each node is only connected to a few
neighbours at any given time. In our simulations, a typical
number of neighbours is only20 even for networks with
several hundred nodes. With the current advancement in
computer hardware, this storage requirement can be achieved
with off-the-shelf hardware.

III. L OCALIZATION ALGORITHMS

We now discuss three localization approaches tailored
for EM-based underwater networks: multilateration, MDS
and a hybrid approach. All three approaches use distance
information to localize the nodes. For notational purposes,
we assume that there aren nodes in the network and
that they are distributed on a plane, i.e., two-dimensional
localization is considered. The extension to three dimensions
is trivial.

Multilateration uses distance measurements from the AUV
to a node i, which are them distance measurements
d
(i)
1 , . . . d

(i)
m to the AUV and the corresponding set ofm

AUV positions at which the measurements were taken
(

x
(i)
1 , y

(i)
1

)

, . . . ,
(

x
(i)
m , y

(i)
m

)

. MDS uses the set of distances
from each node to each of its neighbours. This information
is represented by ann × n Euclidian distance matrixD
in which an entryDij is the distance between nodesi
and j. The hybrid approach uses both sets of geographical
information: the distance measurements to the AUV and the
positions of the AUV, and the Euclidean distance matrixD.
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A. A Two-way Ranging Protocol

Distances between pairs of nodes, or a node and the AUV,
are obtained with a two-way ranging protocol. If nodei
sends a ranging packet at timet1, which is received by node
j at timet2, and at timet3 nodej responds with a ranging
packet received by nodei at time t4, the propagation time
can be found with

t
(prop)
ij =

1

2
[(t4 − t3) + (t2 − t1)]

=
1

2
[(t4 − t1) + (t3 − t2)]

and the distance betweeni andj can be computed with

dij = t
(prop)
ij vEM

where vEM is the propagation speed of electromagnetic
waves in the water. Note that nodej can be the mobile
AUV.

The two-way ranging protocol time-stamps the ranging
packets and also sends the clock differences required to
find the propagation delays. For example, nodej sends the
differencet2−t1 in its ranging packets, while time-stamping
the packet witht3. The time-stamp and the clock difference
is sufficient information for nodei to determine the distance
to nodej. In a two-way ranging exchange with the AUV,
the AUV also sends its current location in addition to the
time difference.

The exchange of ranging packets is performed periodi-
cally in order to provide the current distance information
in the presence of node movement. We note that this type
of packet exchange is found in networks for synchronization
purposes [11]. If the network supports synchronized medium
access control, the ranging process comes for ”free” and
does not require extra communications between nodes.

Since the ranging packets are time-stamped with the
computer time and not the actual time, the distance estimate
contains errors due to inaccurate clock reading and clock
skew. However, since the propagation speed of EM waves
in the water is relatively low (105 m/s) and the actual
propagation time in EM-based networks is in the order of
milliseconds, the clock errors contribute a very small amount
of perturbation to the distance estimate (in the order of
centimeters).

B. Multilateration from AUV Measurements

The multilateration localizes each individual sensor node
using the distance measurements from the node to the AUV.
The set of distance measurements to the AUV and the
positions of the AUV associated with those measurements
are used to form a system ofm non-linear equations

(

x
(i)
j − xi

)2

+
(

y
(i)
j − yi

)2

=
(

d
(i)
j

)2

, 1 ≤ j ≤ m

where (xi, yi) is the unknown position of the nodei. In
order to localize a node on a plane,m ≥ 3 distance

measurements from non-collinear AUV locations for each
system of equations.

The unknown square terms can be eliminated by subtract-
ing the last equation from the firstm−1 equations to arrive
at a linear set of equations for each node

Ai

[

xi

yi

]

=
1

2
bi, (1)
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An estimate of the node position is a least squares solution
to (1), which minimizes the Euclidian norm

∥

∥

∥

∥

1

2
bi −Ai

[

xi

yi

]
∥

∥

∥

∥

.

This solution is given by
[

x̂i

ŷi

]

=
1

2

(

AT
i Ai

)−1
AT

i bi. (2)

Geographical information collected through the ranging
process with the AUV is sufficient for each node to use
multilateration to estimate its location without any exchange
of information with its neighbours. However, there are sev-
eral problems with the AUV approach, which may prevent
its effective use. First, it is unlikely that the AUV can
reach each node in the network from multiple non-collinear
locations, meaning that some nodes may not have sufficient
number of measurements to localize themselves. Second,
since the AUV is underwater, it does not have access to
the GPS satellites and must use dead-reckoning techniques
to estimate its location. Dead-reckoning only provides a
very rough estimate of the AUV’s location and has the
disadvantage of error propagation (errors grow with time),
which ultimately affects the localization performance. Third,
the AUV takes time to visit every node in the network,
by which time some nodes may have moved away. So,
the location estimates obtained with the AUV may become
outdated quickly.
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C. Multi-dimensional Scaling

The MDS localization algorithm [12] simultaneously finds
the position of all of the nodes in the network. Unlike the
multilateration approach with the use of AUV, this approach
provides complete localization coverage of the network. In
addition, MDS is known to be relatively resilient to distance
measurement errors due to the over-determined nature of the
solution. The output of the algorithm is the estimated relative
positions of the nodes

P̃ =







x̃1 ỹ1
...

...
x̃m ỹm







The algorithm works on the full Euclidian distance matrix
D, which contains the distances between all pairs of nodes.
First, the MDS algorithm calculates the square distance
matrix ∆

(2) in which each entry corresponds to a square
entry in the distance matrix

∆
(2)
ij = (Dij)

2

Then, the MDS algorithm calculates an estimate of the Gram
matrix B̃ = P̃ P̃ T by applying double centering to the
square distance matrix

B̃ = −
1

2
J∆(2)J , (3)

whereJ = I − 1/n11T , I is ann×n identity matrix, and
1 is ann× 1 column vector of1s.

Finally, the position matrix is recovered from the Gram
matrix with the use of eigenvalue decomposition. Given the
eigendecomposition of̃B

B̃ = QΛQT , (4)

whereQ is the matrix of eigenvectors andΛ is the diagonal
matrix of eigenvalues, the estimate of the position matrix is
given by

P̃ = Q+Λ
1/2
+ , (5)

whereQ+ is ann× 2 matrix obtained fromQ by retaining
the two eigenvectors corresponding to the two largest eigen-
values andΛ1/2

+ is ann×n matrix obtained by retaining the
columns ofΛ corresponding to the two largest eigenvalues
and taking their square root and making all other entries in
the matrix0.

The last step in the MDS algorithm minimizes the ”strain”
error between the position matrix and its Gram matrix [12]

∥

∥

∥
P̃ P̃ T − B̃

∥

∥

∥
.

The MDS approach assumes that the distance matrixD is
fully populated. However, this is only the case if all nodes
can communicate directly with each other. In general, the
distance matrix is sparse and missing distances should be
approximated or estimated. To fill in the missing entries,

we use the standard method where a shortest path algorithm
[13] estimates the missing distances from available distance
measurements. In our simulations we use the all-pair Ford-
Fulkerson algorithm to fill in the missing entries in the
distance matrix.

D. Hybrid MDS-Multilateration Localization

Even though the MDS algorithm estimates the positions
of all nodes in the network, its major drawback is that it
relies on estimates of inter-node distances obtained by the
shortest path algorithm. When a network is dense and has
a regular shape, the shortest path distance corresponds well
to its Euclidean distance. However, if a network is sparse
or has an irregular shape, a shortest path distance will not
match its Euclidean distance, resulting in localization errors.

To improve the performance of MDS localization in
sparse UWSNs, we propose a hybrid approach, which com-
bines the multilateration estimates and the MDS algorithm.
In the hybrid approach, the position estimates from multilat-
eration are used to calculate the missing inter-node distances
in the distance matrix. These estimates have the potential to
improve the shortest path estimates as long as the error from
multilateration is small.

IV. SIMULATION RESULTS

To analyze and compare the performance of the proposed
localization algorithms, we perform a set of Monte-Carlo
simulations using Matlab. In each Monte-Carlo run, sensor
nodes are uniformly distributed over a disk with a1000 m
radius. The transmission range of the nodes is assumed
to be 100 m, corresponding to the range of EM radio
signals in water [1]. The AUV path and the locations of
beacon transmissions are the same for every Monte-Carlo
run. For each run, we calculate the inter-node distances and
the distances from each node to the AUV. We pass the
distance smaller than the maximum range to the localization
algorithms.

The AUV moves in a spiral pattern with a trajectory given
by the coordinates in timexuuv(t + t0) = At cos(t + t0)
and yuuv(t + t0) = At sin(t + t0), whereA = 10 and
−19π ≤ t ≤ 19π are chosen to ensure that the AUV can
visit every node in the network andt0 is the uniform random
variable chosen from the interval[0, 2π]. The AUV sends out
a beacon every10 s, nodes in the100 m radius of the AUV
at the time of the beacon transmission can perform two-way
ranging with the AUV.

Since the AUV moves underwater and only occasionally
updates its coordinates using the GPS, most of the time it
uses dead-reckoning to determine its coordinates. We model
the error due to dead reckoning by nudging the AUV away
from its nominal path with a random perturbation. The
AUVs coordinates are randomly sampled from a uniform
disk with a given radius centered at the point on the AUVs
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Figure 1. Mobile Beacon Coverage.

nominal path. This radius of this circle is indicated as ”AUV
error” in our plots.

We vary the speed of the AUV to achieve different amount
of node coverage. We use speeds from about10 m/s to
about0.5 m/s, corresponding to the network traversal time
from about30 minutes to about9 hours, respectivelly. At a
high speed the AUV can only send a few beacons before it
traverses its entire pre-programmed path. The consequence
of high speed then is that many nodes may not receive
a sufficient number of beacons to localize themselves. At
a lower speed the AUV sends out more beacons while
traversing its path, thus increasing the number of nodes that
received more than3 non-collinear beacons.

Figure 1 shows the localization coverage of the mobile
beacon approach as the total time to traverse the network
(AUV speed) changes. We see that at high speeds the
coverage is very low (about30 %). The coverage can be
100 % at lower speeds, albeit at the cost of longer time to
cover the entire network. These results are consistent with
previously published results [8] for acoustic based networks.
The figure also shows that the coverage does not improve
at higher node densities.

Figure 2 and Figure 3 compare the performance of the
three localization algorithms. Figure 2 shows the perfor-
mance for a relatively sparse network (400 nodes), while
Figure 3 shows the performance results for a relatively dense
network (600 nodes). In both cases, the AUV error is30 m.
The estimated position error is the average across all node
errors for all runs.

For the sparse network scenario (Figure 2), we see that
multilateration performs better than MDS. However, mul-
tilateration cannot localize all nodes for traversal timesof
less than4 hours. At higher AUV speeds the nodes that
can be localized by multilateration also have fewer ranging
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measurements with the AUV, than at lower speeds. This de-
crease in the number of measurements accounts for a larger
multilateration error at higher speeds. The hybrid approach
is able to localize all nodes, since it uses MDS. In addition,
it is able to provide improved localization performance when
the AUV is at both high and low speeds. So, using the
position estimates from multilateration decreases the error
of the MDS position estimates for that scenario.

For the dense network scenario (Figure 3), the MDS
approach always outperforms the multilateration approach.
The error from estimating inter-node distances with the
shortest path algorithm is lower than the error due to the
uncertainty of AUV’s location. For higher speeds, the hybrid
approach can be thought of as a MDS refinement of the
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multilateration approach. At lower speeds, the error in the
multilateration position estimates affects the performance of
the hybrid approach.

Figure 4 compares the performance of the three algorithms
for different network sizes and AUV errors, when the AUV
traversal time is set to 2 hours. The error bars show the
standard deviation of the localization error. The figure shows
that MDS performs better in dense networks and that the
hybrid approach can improve MDS performance in sparse
networks. However, if the error introduced by the AUV is
too large, MDS should be used by itself.

V. CONCLUSION AND FUTURE WORK

We proposed and analyzed three approaches for local-
ization in EM-based underwater sensor networks. The first
approach uses an AUV and a multilateration algorithm.
One drawback of this approach is that it may not be
able to localize all nodes in the network when the AUV
moves at high speeds. The second approach uses MDS
to localize nodes based on their neighbourhood inter-node
distance measurements. While the MDS approach localizes
all nodes in the network, it may suffer from localization
errors in sparse networks where not all inter-node distance
measurements are available. The performance of MDS de-
grades in sparse networks because the missing inter-node
distance measurements are estimated with a shortest path
algorithm. The third approach is a hybrid approach that
aims at improving the performance of the MDS by using
the position estimates from multilateration to calculate the
missing inter-node distances. Our simulations show that the
hybrid approach improves the performance of MDS in sparse
networks.
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