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Abstract—Electromagnetic (EM) radios have been recently
proposed for underwater sensor networks. Due to the short
transmission range of EM radio transmissions underwater,
new localization techniques are required for underwater sesor

networks using these radios. We propose and evaluate three

localization approaches for EM-based underwater sensor re
works: (1) multilateration with the aid of autonomous under-
water vehicles (AUVs), (2) multi-dimensional scaling (MD$
without the AUVs, and (3) a hybrid approach combining MDS
and multilateration. We compare performance of the three
approaches with simulations. The main disadvantage of AUV-
aided localization with multilateration is that it does not always
provide complete localization coverage of the network. On
the other hand, MDS provides complete localization coverag
but its performance decreases in sparse networks. The hyhti

approach provides complete network coverage and improves

the performance of MDS in sparse networks.

Keywords-Underwater Localization; Multi-dimensional Scal-
ing; Multilateration; AUV-aided Localization.

I. INTRODUCTION

The major drawback of using the EM-based radio un-
derwater is its limited communication range due to the
rapid attenuation of EM waves in the water. This short
communication range requires a large number of nodes to
provide connectivity across large areas. However, sinee th
cost of EM-based radios is significantly lower than that of
acoustic based radios we do not expect the cost of these
networks to be large. In fact, a network with hundreds of
EM-based nodes would be less expensive than a network
with only a few nodes using acoustic modems.

Localization of nodes in a network is a highly desired
capability for sensor network applications. Location gtam
are used to tag sensor measurements, ensuring that obser-
vations can be mapped to the location where they were
taken. Even though UWSNSs do not have access to the GPS,
localization can be achieved in acoustic-based UWSNs [2].
Due to their short range, localization of EM-based UWSNs
needs to be handled differently than localization in adoust
based UWSNSs.

The importance of underwater sensor networks (UWSNs) We propose and evaluate three different localization algo-
for environmental monitoring is becoming more importantrithms for UWSNs using EM-based radios:
as demonstrated by man-made disasters such as the recer(f) Multilateration using an autonomous underwater vehi-

oil spill in the Gulf of Mexico, natural disasters such
as Tsunamis, as well as ongoing concerns about climate
change. The monitoring capabilities of UWSNSs are essential

cle (AUV) to act as a mobile beacon. The AUV may
not reach all nodes, so this localization approach does
not in general cover the entire network.

to limit the impact of disasters and to predict the future of (ii) Multi-dimensional scaling (MDS) using neigbourhood

Ocean resources. An important service required for effecti
environmental monitoring is localization of environmdnta
sensors, which ensures that the environmental information
can be mapped. Due to the unavailability of the Global
Positioning System (GPS) underwater, UWSN localization

distance information. MDS requires all inter-node dis-

tances, which may not be available due to the limited
transmission range of the nodes. Missing distances
are estimated with a shortest path algorithm, which

introduces localization errors.

is a very challenging problem. In this work, we tackle (iii) A hybrid approach, which uses MDS, but where

the localization problem for UWSNs using electromagnetic
(EM) based underwater radios.

The EM underwater radio is a recent technology, which
promises a cost-effective and reliable underwater commu-
nications [1]. Current underwater acoustic communication

instead of finding the missing inter-node distances
with shortest-path algorithms, the missing distances are
calculated from the positions estimated with multilater-

ation. The hybrid approach improves the performance
of MDS in sparse networks.

technologies suffer from serious drawbacks: they are unre- An exhaustive review of localization techniques for acous-
liable due to their susceptibility to environmental noisela tic UWSNs is available in [2]. Here we briefly point out
require expensive signal processing to deal with the multiwhy many of these technigues cannot be used for EM-based
path underwater acoustic channel. Underwater, EM-basedWSNSs, due to their shorter communication range.

signals do not suffer from multi-path arrivals and are not

Current localization approaches in underwater acoustic

susceptible to environmental noise, so they do not requireetworks rely heavily on the use of anchors [2]. Surface

expensive processing for signal decoding.
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anchors have a known location through the GPS [3]-[5],
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while dive’'n’rise (DNR) anchors get their position on the moving due to currents, the location where the informatson i
surface from the GPS and then dive underwater for localretrieved (by satellite or by ship) may be very differentifro
ization [6], [7]. Underwater anchors get their positionrfro the location at the time the environmental data was coliecte
the surface anchors or from the DNR anchors. Given locaHowever, since the collected information is analyzed off-
tions of the anchors and distances to the anchors measuréde, the sensor nodes do not actually require the knowledge
by directly communicating with them, UWSN nodes can of their location at the time that observations are made —
localize themselves [4]-[7]. For large networks, the amsho the location estimates are only needed during the analysis
may not be able to communicate directly with all nodes.of the observed data. Hence, location estimation can be done
A solution is to use already localized nodes as anchors toff-line, in tandem with the analysis of the observed data.
localize other nodes in the network, which are then used a$his means that, the localization related information does
anchors, until the entire network is localized [3]. Anothernot need to be sent to a central processor on the fly, even
approach is to use mobile anchors [8], which can movdor centralized localization algorithms, significanthydresing
and reach every node in the network, so that all nodes arthe communication cost of sensor localization.
covered and localized. As we show later, geometrical information about the
The approaches using direct communication with anchoraetwork (distances between nodes and between nodes and
would not work in EM-based UWSNSs since they would the AUV), is sufficient for localizing the nodes. In our
require an enormous number of anchors to reach all nodesystem, the sensor nodes tag the observations with the
in a network. In the case of surface anchors, the approadjeometrical data instead of estimating their own location
may not work at all if the UWSN is located at a high and tagging the observations with the estimated location.
depth. The incremental approach may also require a larg€he observation data and the geometrical data are later
number of anchors to provide desired performance, since thieansferred to the sink for off-line processing. During-off
localization errors propagate as hew nodes become ancholihe processing, the location estimates are obtained fram t
Mobile anchors [8] can get closer to the nodes in the UWSNgeometrical data and the observed data is then mapped with
which is the reason why we propose their use in this workthe location estimates.
Moreover, the MDS approach used in this paper is especially While it may seem that this amount of geometrical data is
good at eliminating the propagation of localization erriors  large (in the order of the number of nodes in the network),
large sensor networks. in practical situations each node is only connected to a few
neighbours at any given time. In our simulations, a typical
number of neighbours is onlg0 even for networks with
The underwater network considered in this paper is usedeveral hundred nodes. With the current advancement in

for environmental monitoring similar to the floats used in computer hardware, this storage requirement can be achieve
the ARGO project [9]. The nodes are dropped off as awith off-the-shelf hardware.

swarm to monitor and collect environmental information.

Normally, the nodes dive below the surface of the ocean to I11. L OCALIZATION ALGORITHMS

collect data. Periodically, they rise to the surface anarep ) o _

their data to the sink over a satellite link or are picked up We now discuss three localization approaches tailored

from the water at the end of the monitoring missions andor EM-bas_ed underwater networks: multilateration, _MDS

their information is physically retrieved. In either cagee ~ @nd a hybrid approach. All three approaches use distance

collected information is used for off-line analysis of aejiv information to localize the nodes. For notational purppses

environmental phenomena. we assume that there are nodes in the network and
The network may include a roaming AUV for the purposethat _they are distri_buted on a pIane,_ ie., two—dimensio_nal

of augmenting the localization process. The AUV may a|50!oca_ll_zat|on is considered. The extension to three dinwerssi

be used for other purposes, such as facilitating delayaoter 1S trivial. . .

networking (DTN) if satellite links are not available [10h Multilateration uses distance measurements from the AUV

DTN, the data is picked when the AUV is near a sensor an(‘]%)a nog)ez‘, which are them distance measurements
transmitted to the satellite at a later time by the AUV. di’,...dm to the AUV and the corresponding set of

All nodes are assumed to be equipped with EM-based raAUV positions at which the measurements were taken
dios for peer-to-peer underwater communications [1]. &inc wgl),yiz? yeees (:cﬁ,?,y,(,?). MDS uses the set of distances
EM waves suffer extremely high attenuation in the underwafrom each node to each of its neighbours. This information
ter medium, the radio range of the nodes is several orders a represented by an x n Euclidian distance matrixD
magnitude shorter than that of an acoustic-based networks which an entryD;; is the distance between nodes
We provide more details on node range in Section IV. andj. The hybrid approach uses both sets of geographical

The nodes are required to stamp their data with thenformation: the distance measurements to the AUV and the

location of where the data is collected. As the nodes may bpositions of the AUV, and the Euclidean distance malbix

Il. SYSTEM ARCHITECTURE
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A. A Two-way Ranging Protocol measurements from non-collinear AUV locations for each

Distances between pairs of nodes, or a node and the AU\ByStem of equations.
are obtained with a two-way ranging protocol. If node The unknown square terms can be eliminated by subtract-
sends a ranging packet at timg which is received by node ing the last equation from the first — 1 equations to arrive

j at timet,, and at timet; node;j responds with a ranging at a linear set of equations for each node
packet received by nodeat time t,, the propagation time

can be found with A; [ 21 } = %bi, (1)
7O 1 7
tor = 5 [t —13) + (t2 = t1)] where
1 i i
= St —t1) + (ts — )] @ —2m) (@~ ym)
2 A . .

and the distance betweérandj can be computed with _ _
(prop) (xw?—l — Tpm) (yr(é)—l — Ym)
dij = ti? P VEM -

and
where vg), is the propagation speed of electromagnetic .2 .2 N2 -
waves in the water. Note that nodgecan be the mobile (dﬁ)) + (:cgl)) + (y%”)
AUV.

The two-way ranging protocol time-stamps the ranging e Ly Ty o
packets and also sends the clock differences required to (dwﬁ)) + (152)—1) + (yfjl)_l)
find the propagation delays. For example, ngdeends the o s N
differencet, —t; in its ranging packets, while time-stamping (dgl) + (z&)) + (y,(l))

the packet withts. The time-stamp and the clock difference .

is sufficient information for nodéto determine the distance ) : ) )
to nodej. In a two-way ranging exchange with the AUV, (dff;)_l) + (x%)) i (y%))
the AUV also sends its current location in addition to the

time difference. . . ~ An estimate of the node position is a least squares solution
The exchange of ranging packets is performed periodi, (1), which minimizes the Euclidian norm
cally in order to provide the current distance information .
2

in the presence of node movement. We note that this type

of packet exchange is found in networks for synchronization 2 Yi

purposes [11]. If the network supports synchronized mediunThis solution is given by

access control, the ranging process comes for "free” and . 1

does not require extra communications between nodes. { i } = (AiTAi)_1 Alb;. (2)
Since the ranging packets are time-stamped with the Yi 2

computer time and not the actual time, the distance estimate Geographical information collected through the ranging

contains errors due to inaccurate clock reading and Clocbrocess with the AUV is sufficient for each node to use
skew. However, since the propagSatlon speed of EM waveg, jiilateration to estimate its location without any exabe

in the water is relatively low 10° m/s) and the actual f intormation with its neighbours. However, there are sev-
propagation time in EM-based networks is in the order ofg problems with the AUV approach, which may prevent
milliseconds, the clock errors contribute a very small amou s effective use. First. it is unlikely that the AUV can
of perturbation to the distance estimate (in the order Ofeach each node in the network from multiple non-collinear
centimeters). locations, meaning that some nodes may not have sufficient
B. Multilateration from AUV Measurements number of measurements to localize themselves. Second,

The multilateration localizes each individual sensor node>'"'¢€ the AUV. is underwater, it does not haye access to
using the distance measurements from the node to the AU\BJ.1e GI_DS sat(_elhtes ar_ld must use dead_—reckomng tec_hnlques
The set of distance measurements to the AUV and thd® estimate its location. Dead-reckoning only provides a

positions of the AUV associated with those measurement ery rough estimate of the Al_JVS location and _has_ the
are used to form a system of non-linear equations isadvantage of error propagation (errors grow with time),
which ultimately affects the localization performanceir@ih

(I§i) _ Ii)Q n (ygi) _ yi)Q _ (d§i))2 1<j<m the AUV takes time to visit every node in the network,

' by which time some nodes may have moved away. So,
where (x;,y;) is the unknown position of the node In the location estimates obtained with the AUV may become
order to localize a node on a plang; > 3 distance outdated quickly.
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C. Multi-dimensional Scaling we use the standard method where a shortest path algorithm

The MDS localization algorithm [12] simultaneously finds [13] estimates the missing d|st-ances from available Qazaan
measurements. In our simulations we use the all-pair Ford-

the position of all of the nodes in the network. Unlike the . i e .
multilateration approach with the use of AUV, this approach':_UIkerson algonthm to fill in the missing entries in the
provides complete localization coverage of the network. Ind|stance matrix.
addition, MDS is known to be relatively resilient to distanc
measurement errors due to the over-determined nature of t
solution. The output of the algorithm is the estimated redat Even though the MDS algorithm estimates the positions
positions of the nodes of all nodes in the network, its major drawback is that it

- _ relies on estimates of inter-node distances obtained by the

IPe‘ Hybrid MDS-Multilateration Localization

. N shortest path algorithm. When a network is dense and has
P = : : a regular shape, the shortest path distance corresponts wel
Tm  Um to its Euclidean distance. However, if a network is sparse

The algorithm works on the full Euclidian distance matrix or has_an wregular sr_lape, a shorte_st path d|§tan_ce will not
match its Euclidean distance, resulting in localizatiomes.

D, which contains the distances between all pairs of nodes. To i h ‘ ¢ MDS localization. i
First, the MDS algorithm calculates the square distance O Improve the periormance ot ocafization In
matrix A in which each entry corresponds to a squareP2>¢ UWSNSs, we propose a hybrid approach, which com-
entry in the distance matrix bines the multilateration estimates and the MDS algorithm.
In the hybrid approach, the position estimates from muitila
Az(.f.) = (Dyj)? eration are used to calculate the missing inter-node distan
' in the distance matrix. These estimates have the poteatial t
improve the shortest path estimates as long as the error from
Mhnprove the shortest path estimat long as th f

multilateration is small.

Then, the MDS algorithm calculates an estimate of the Gra
matrix B = PPT by applying double centering to the
square distance matrix

- 1
B - _QJA(Q)J’ 3) IV. SIMULATION RESULTS

To analyze and compare the performance of the proposed
whereJ = I —1/n117, I is ann x n identity matrix, and  |ocalization algorithms, we perform a set of Monte-Carlo
lis ann x 1 column vector ofls. simulations using Matlab. In each Monte-Carlo run, sensor

Finally, the position matrix is recovered from the Gram nodes are uniformly distributed over a disk withl@00 m
matrix with the use of eigenvalue decomposition. Given th&adius. The transmission range of the nodes is assumed
eigendecomposition oB to be 100 m, corresponding to the range of EM radio

B = QAQT, 4) signals in wate_r [_1]. The AUV path and the locations of
beacon transmissions are the same for every Monte-Carlo
where@ is the matrix of eigenvectors amil is the diagonal run. For each run, we calculate the inter-node distances and
matrix of eigenvalues, the estimate of the position masix i the distances from each node to the AUV. We pass the
given by distance smaller than the maximum range to the localization
P=qQ. AV (5)  algorithms.

. . . - The AUV moves in a spiral pattern with a trajectory given
where@ . is ann x 2 matrix obtained fronQ by retaining by the coordinates in tirae:uj(t +to) = At C(J)s(t +yt§])

the two eigenvectors corresponding to the two largest eigen .
: . . e and t +tyg) = Atsin(t + tg), whereA = 10 and
values andA/? is ann x n matrix obtained by retaining the Yuun 0) in( o)

| fA ding to the two | L ei | —197 < t < 197 are chosen to ensure that the AUV can
columns OIA corresponding to the two largest eigenvalues, every node in the network ang is the uniform random

and takiljg their square root and making all other entries iq/ariable chosen from the intervial, 27]. The AUV sends out
the matrix0. . . L ... abeacon every0 s, nodes in tha00 m radius of the AUV
The last step in the MDS algor_lthm minimizes the s_traln at the time of the beacon transmission can perform two-way
error between the position matrix and its Gram matrix [12]ranging with the AUV.
HISPT _ BH ' Since the AUV moves underwater and only occasionally
updates its coordinates using the GPS, most of the time it
The MDS approach assumes that the distance mAtrix ~ uses dead-reckoning to determine its coordinates. We model
fully populated. However, this is only the case if all nodesthe error due to dead reckoning by nudging the AUV away
can communicate directly with each other. In general, thdrom its nominal path with a random perturbation. The
distance matrix is sparse and missing distances should b&JVs coordinates are randomly sampled from a uniform
approximated or estimated. To fill in the missing entries,disk with a given radius centered at the point on the AUVs
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Percentage of Localized Nodes vs. AUV speed (AUV error 30 m) Localization Error vs. Traversal Time ( 400 nodes, AUV error 30 m)
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Figure 1. Mobile Beacon Coverage. Figure 2. Localization Error (sparse networks)

Localization Error vs. Traversal Time ( 600 nodes, AUV error 30 m)

nominal path. This radius of this circle is indicated as "AUV 21 TS
error” in our plots. 18] T hteraton

We vary the speed of the AUV to achieve different amount
of node coverage. We use speeds from abiutm/s to
about0.5 m/s, corresponding to the network traversal time _ 1+
from about30 minutes to abou$ hours, respectivelly. At a
high speed the AUV can only send a few beacons before it g
traverses its entire pre-programmed path. The consequenc% 1o
of high speed then is that many nodes may not receive
a sufficient number of beacons to localize themselves. At
a lower speed the AUV sends out more beacons while
traversing its path, thus increasing the number of nodds tha 4}
received more thafA non-collinear beacons.

Figure 1 shows the localization coverage of the mobile
beacon approach as the total time to traverse the network o ’ . . . : : : : : ‘

6 7 8 9 10

rror (m)

Average lo

(AUV speed) changes. We see that at high speeds the Traversal Time (hours)
coverage is very low (aboui0 %). The coverage can be
100 % at lower speeds, albeit at the cost of longer time to Figure 3. Localization Error (dense networks).

cover the entire network. These results are consistent with
previously published results [8] for acoustic based nekwor
The figure also shows that the coverage does not improveeasurements with the AUV, than at lower speeds. This de-
at higher node densities. crease in the number of measurements accounts for a larger
Figure 2 and Figure 3 compare the performance of thenultilateration error at higher speeds. The hybrid apgtoac
three localization algorithms. Figure 2 shows the perfor-is able to localize all nodes, since it uses MDS. In addition,
mance for a relatively sparse network0( nodes), while itis able to provide improved localization performance whe
Figure 3 shows the performance results for a relatively densthe AUV is at both high and low speeds. So, using the
network 600 nodes). In both cases, the AUV error3g m. position estimates from multilateration decreases thererr
The estimated position error is the average across all nodef the MDS position estimates for that scenario.
errors for all runs. For the dense network scenario (Figure 3), the MDS
For the sparse network scenario (Figure 2), we see thapproach always outperforms the multilateration approach
multilateration performs better than MDS. However, mul-The error from estimating inter-node distances with the
tilateration cannot localize all nodes for traversal tineés shortest path algorithm is lower than the error due to the
less than4 hours. At higher AUV speeds the nodes thatuncertainty of AUV’s location. For higher speeds, the hgtbri
can be localized by multilateration also have fewer rangingapproach can be thought of as a MDS refinement of the
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Localization Error (Traversal Time 2 hours)
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] (2]

Average localization error (m)
= n
(5] o
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400 500 600 700 [4]
Number of Nodes

Figure 4. Localization Error (dense networks). [5]

multilateration approach. At lower speeds, the error in the
multilateration position estimates affects the perforoeaof [6]
the hybrid approach.

Figure 4 compares the performance of the three algorithms
for different network sizes and AUV errors, when the AUV
traversal time is set to 2 hours. The error bars show the
standard deviation of the localization error. The figurevgho  [7]
that MDS performs better in dense networks and that the
hybrid approach can improve MDS performance in sparse
networks. However, if the error introduced by the AUV is
too large, MDS should be used by itself.

(8]

V. CONCLUSION AND FUTURE WORK

We proposed and analyzed three approaches for Iocal—[g]
ization in EM-based underwater sensor networks. The first
approach uses an AUV and a multilateration algorithm.
One drawback of this approach is that it may not be
able to localize all nodes in the network when the AUV
moves at high speeds. The second approach uses MDS
to localize nodes based on their neighbourhood inter-nod
distance measurements. While the MDS approach localizes
all nodes in the network, it may suffer from localization
errors in sparse networks where not all inter-node distance
measurements are available. The performance of MDS ddlll
grades in sparse networks because the missing inter-node
distance measurements are estimated with a shortest pgiy
algorithm. The third approach is a hybrid approach that
aims at improving the performance of the MDS by using
the position estimates from multilateration to calculdte t
missing inter-node distances. Our simulations show that th
hybrid approach improves the performance of MDS in sparse
networks.

(13]
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