
Adaptive Security on Service-based SCM Control System

Gabriel Serme
Eurecom

serme@eurecom.fr

Muhammad Sabir Idrees
Eurecom

idrees@eurecom.fr

Abstract—On a large-scale application subject to dynamic
interactions, the description and enforcement of security rules
are complex tasks to handle, as they involve heterogeneous
entities that do not have the same capabilities. In the context
of SCM-application for example, we have different goods that
are being transported across different systems. At one point,
items and systems communicate together to signal presence,
report issues during transport, certify validity of previous
checks, etc. Security capabilities of the involved parties are
heterogeneous and one might want to specify security policies
on an abstract level and let the involved systems enforce them
according to their contexts and the specific capabilities of each
party. In this paper, we propose a framework for security
mechanisms adaptation when services are involved by using
Aspect-Oriented-Programming (AOP) concepts that can be
applied to SCM applications. The novelty is the expressivity
of security policy at a global level and the enforcement at a
local level, through a specific and distributed aspect model that
has a larger semantic to catch up events relevant for business
usage and dedicated to security concerns.

Keywords-SOA, Security, AOP.

I. INTRODUCTION

An SCM application can be viewed as a long chain
process along which goods have to pass through mandatory
gates. It involves various devices, from embedded systems
like sensors to large-scale servers in backend systems.
Sensors usages are dedicated to data collection and signal
triggering. They try to capture real-world status and measure
it. Backend systems allow for data processing but need to
adapt to all devices communicating with them, as each can
have a different communication protocol and data format.

The heterogeneity of platforms and software used in
devices makes it difficult to manage simple security rules,
especially across a supply chain. In order to deal with the
multiple possibilities and not to interfere with the business
part of software, one might want to describe security be-
havior for one system that adapts to security capabilities of
systems communicating with it. To do so, we propose an
architecture that allows correct modularization of security
concerns to quickly intervene in applications and make them
adapt to the conditions they can face up to.

The application uses the SOA architectural style to pro-
vide a loosely-coupled platform where entities can integrate
with each other. In the following sections, we start by ex-
plaining the different concepts we are using in our proposed
architecture. Namely, Web Services and SOA concepts,

security properties we aim to express in an adaptive manner
and also AOP (Aspect-oriented programming) paradigm.
Then, we describe the proposed architecture and process to
handle service adaptation with two examples highlighting
difficulties to adapt security for systems accordingly.

II. SERVICES

Service Oriented Architectures (SOA) enable a world
of loosely-coupled and interoperable software components
towards reusability. Nowadays, the main entity used to
represent a software service is a Web Service. Web-Services
represent a paradigm defined by W3C as ”a software sys-
tem designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed
by its description using SOAP messages, conveyed using
HTTP with an XML serialization in conjunction with other
Web-related standards” [1]. Web Services can also be ad-
dressed through other transport mechanisms such as JMS or
ESBs.

The Web Service standards stack goes beyond the atomic
service, and proposes different approaches depending on the
level of abstraction. Service behavior can be defined when
linking different services together, e.g., with BPEL4WS or
BPMN 2.0 [2]. It allows definition of service composition
to realize a so-called business process.

III. SECURITY

As services are advancing fast and are being extensively
deployed in applications spanning different organizations,
it becomes crucial to ensure security and trust for these
applications to hold their promise. It was only recognized
in recent years that services are themselves susceptible to
various attacks at different levels of system conceptualiza-
tion [3].

Since SOA has a flexible set of design principles used
during the phases of system development, integration, and
evolution, one obvious and common challenge is to secure
SOA. This often involves invasive modifications, in particu-
lar to enable new security functionalities that require modifi-
cations to applications. Furthermore, enforcing crosscutting
security functionality in service-based systems is difficult to
specify and implement because the security of services and

405

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

their compositions is not modular. Modifications made to
one part of an application may interact strongly with the
security properties of other parts of the same application.
Security properties generally pervade software systems, that
is, security properties crosscut service-oriented architectures.
Enforcing service level security needs specialization based
on the implementation.

We propose in the following an aspect-based service
model that proposes an original method to introduce several
security properties. These security properties are specified in
a security policy language that is then interpreted to generate
crosscutting concerns. It includes Integrity which relates
to communication, storage (resources), and execution (pro-
cess - infrastructure) integrity. The execution environment
integrity is an important security objective together with
data integrity measures. Confidentiality relates to message
exchange between entities such as sensors and services,
or need-to-know principles limitation applied to specific
resources. Authentication and Authorization crosscut appli-
cations to decide at several points if a given subject is
allowed to perform an action on a given resource. Whereas
authorization decisions are mainly on server-side, authen-
tication mechanism needs to adapt all peers to agree on
the scheme, including sensors authentication. Applying non-
repudiation requires the implementation of an asymmetric
encryption scheme in the execution environment supporting
the computation.

The aforementioned properties represent security goals we
want to apply on applications by adapting them with our
framework.

IV. ASPECT-ORIENTED PROGRAMMING

The term Aspect-Oriented-Programming [4] (AOP) has
been coined around 1995 by a group led by Gregor Kiczales,
with the goal to bring proper separation of concerns for cross
cutting functionalities. Roots for foundations can be traced
back to adaptive programming, or composition filters [5]. O.
Selfridge introduced a notion that can be related to AOP as
”demons that record events as they occur, recognize patterns
in those events, and can trigger subsequent events according
to patterns that they care about” [6]. But the approach has
then derived to become a discipline apart.

The aspect concept is composed of several advice/pointcut
couple. Pointcuts allow to define where (points in the source
code of an application) or when (events during the execution
of an application) aspects should apply modifications. Point-
cuts are expressed in pointcut languages and often contain
a large number of aspect-specific constructs that match
specific structures of the language in which base applications
are expressed, such a pattern language based on language
syntax. Advices are used to define modifications an aspect
may perform on the base application. Advices are often
expressed in terms of some general-purpose language with
a small number of aspect-specific extensions, such as the

proceed construct that allows the execution of the behavior
of the base application that triggered the aspect application
in the first place. The main advantage using this technology
is the ability to intervene in the execution without interfering
with the base program code, thus facilitating maintainability.

V. ARCHITECTURE PROPOSAL

In this paper, we shape the solution we are currently
implementing at the service layer. The root of the problem is
to instrument several services at the same time, potentially
not under the same execution environment to realize a
specific security property. Illustration examples are available
in next section. The architecture is presented in Figure 1.
It contains two parts, involving design and runtime part.
The design part involves business stakeholders to define
aforementioned security policies (also denoted rules), and
security experts to provide concrete security mechanisms
as pre-defined aspects. The runtime part of the architecture
leverages the aspect model to modify the different execution
environments and make them satisfy security policies spec-
ified by business and security stakeholders. The main piece
is the runtime engine whose goal is to detect a certain state
across platforms. The state is described by rules composed
of predicates. Upon matching between rules and a state, plat-
forms coordinate to realize a new behavior. Locally, systems
implement mechanisms to realize a behavior specified in
the knowledge base and make usage of context information
available at execution.

Figure 1. Proposed architecture

Runtime monitor agents and runtime engine work together
to realize a distributed aspect model, introduced in [7]. The
advantage of such an architecture is to intervene in one
specific organization where we separate security concerns
across different platforms. The security code is no longer
tied to the business code. Rather, it is decoupled from
business code intentionally and bound with the distributed
pointcut language. The runtime engine uses rules to gather
state of various services at the same time, and security
aspects are used in advice to dispatch security behavior

406

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

across several services. For example, in the integrity and
origination scenario, the distributed aspect model tracks all
places where messages come in the system to taint them.
Then, the system tracks these taint messages to weave
security aspects when behavior is needed.

Security policies are specified by business users, security
experts and architects then derived in rules to realize a
specific security property. To provide an enriched semantic
addressing all concerns of services and security at the
same time, we are developing a policy which contains high
level description of wanted behavior, through predicates.
The predicates allow matching with a particular state. The
language semantic relates to events and actions a platform
can generate, i.e., services, messages and resources. Services
can be atomic or composite, e.g., orchestration of services
with BPEL4WS or BPMN2.0, or simply a service that
consumes other services. Examples of predicates that can be
used are ”receive” or ”reply” to match a service call. There
are also predicates for messages and resources. Predicates
have different level of abstraction relating to the service
stack we discussed above.

The policies also contain behavior that stakeholders want
to introduce across systems. In our framework, we address
only security concerns such as the ones described in previ-
ous sections: confidentiality, integrity, authorization, etc. In
Listing 1, the policy describes integrity and non-repudiation
presence in messages when they are issued by sensors. The
message origination is verified when we are able to verify
signature. The behavior is described in an abstract way
to indicate which parties are concerned and what shall be
executed. Platforms receive this behavior and are in charge
of translating it according to mechanisms available for the
given platform. The Listing 2 in next section is an exemple
of java code to verify a given signature for a message. The
runtime monitor detects a certain application state through
the aforementioned predicates. Upon matching, the wanted
behavior is read from policies and spread to concerned
systems to satisfy and realize security properties.

1 message in (i s s u e r , msg) :
2 i s s u e r i n (s : s e n s o r s) => v e r i f y i n t e g r i t y (s ,

msg) , v e r i f y o r i g i n a t i o n (s , msg)
3 msg . t a i n t (UNSAFE) # D e f a u l t
4 msg : i n t e g r i t y , msg : non repudiat ion => msg . t a i n t (

SAFE)
5
6 v e r i f y i n t e g r i t y (msg) :
7 msg . c o n t a i n s (i n t e g r i t y) , i n t e g r i t y . check (msg) =>

msg : i n t e g r i t y
8
9 v e r i f y o r i g i n a t i o n (msg , i s s u e r) :

10 msg . c o n t a i n s (s i g n) , s i g n . i s s u e d (i s s u e r) =>
v e r i f y o r i g i n a t i o n (msg , s ign , i s s u e r) , msg :
non repudiat ion

Listing 1. Policy snippet for integrity and non-repudiation check

Our framework heavily relies on aspect oriented
paradigm. The runtime monitor is able to detect system state

using a distributed aspect pointcut language. On matching
system state, advices are executed with the system’s context
through context exposition mechanisms. For example, a
service can expose information about inputs, outputs, service
origination, as well as other security-related information.

The proposed architecture allows definition of security
policies for service systems at a global level that are then
enforced at a local level in an semi-automatic mode. We
propose to decouple definition of specific security properties
from the base application, and let declaration through rules
respecting application owners’ needs.

VI. APPLICATION EXAMPLE

We describe two scenarios illustrating when our
framework can be applied in a SCM application. The long
term scenario (cf Fig. 2) is a military container that is sent
to supply a camp thanks to a boat transport. Shipment is
not direct and the container has to pass through several
intermediaries, to refuel, change boat, etc.. Thus, it has
been decided by the army to frequently track and check
containers when they stop in harbors. The communication
between containers and the army system is made through
Web Services and use the Harbor system to certify the
shipment advancement.

Figure 2. Army shipment and control system

The first scenario leveraging our framework is on adap-
tation and tracking of sensitive data. It highlights integrity
and non-repudiation scenario and how it impacts the existing
architecture on the army systems. Over time, the army
deployed containers with protection mechanisms to detect
failure or intrusion composed of sensors and nodes. Different
software solutions are shipped with containers with different
security capabilities.

Maintaining applications, both in nodes and back-end
systems, is costly. It requires business owners to specify
each possible use case, at a time t. Upon release of new
version, they need to extend existing specifications and
activate their development team. The development team
has to correctly implement the solution and to not break
the previous solutions. The release cycle can be counted
in weeks or even months and is error prone. A suitable
solution is to have a framework that knows what to do
given a certain situation. For example we want to allow
communication between all nodes versions and the back

407

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

end system while keeping track of sensitive nodes - those
which do not implement security mechanisms. An example
of policy we might define to detect various versions of
protocols is described in Listing 1. The policy language used
is not yet fully developed and is used as an illustration.

1 @Aspect
2 C l a s s V e r i f i c a t i o n {
3 / / . . .
4 @Covers (SPL . v e r i f y o r i g i n a t i o n) / / P r o v i d e d by

framework
5 b o o l e a n v e r i f y O r i g i n a t i o n (Byte [] msg , Byte []

msgdsig , I d e n t i t y i s s u e r) {
6 / / g e t p u b l i c key o f i s s u e r
7 X509EncodedKeySpec pubKeySpec = new

X509EncodedKeySpec (S e c u r i t y . getPubKey (
i s s u e r)) ;

8 KeyFac to ry k e y F a c t o r y = KeyFac to ry . g e t I n s t a n c e
(”DSA” , ”SUN”) ;

9 Pub l i cKey pubKey = k e y F a c t o r y . g e n e r a t e P u b l i c (
pubKeySpec) ;

10
11 / / g e t message s i g n a t u r e
12 S i g n a t u r e s i g = S i g n a t u r e . g e t I n s t a n c e (”

SHA1withDSA ” , ”SUN”) ;
13 s i g . i n i t V e r i f y (pubKey) ;
14 s i g . u p d a t e (msg) ;
15
16 / / v e r i f y
17 b o o l e a n v e r i f i e s = s i g . v e r i f y (msgdsig) ;
18 r e t u r n v e r i f i e s ;
19 }
20 }

Listing 2. Java snippet for proof of origin as aspect

Figure 3 shows the sequence diagram of two containers
notifying the back-end system. Containers one (C1) and
two (C2) both send the same type of information to the
army system. But C2 uses a newer protocol which includes
a proof of origin to avoid tamper risk on transmission.
The rectangles and their attached dotted-lines in the figure
are points in architecture where our framework intervenes
and injects mechanisms. With our framework, the back-end
system intercepts data coming in the system and verifies
it, thanks to a runtime monitor agent. It detects security
protections from containers and provide to back-end services
the data formatted accordingly. A taint mechanism marks
data depending on its state and policy in place. Detection
is made through platform implementation, such the one de-
scribed in Listing 2. The listing respects policy declaration,
as shown in Line 4 which bind the code - hence the behavior
with the policy. The method signature is extracted from
the leaf policy verify origination(msg, sign, issuer). It
then allow verification of signature. The message is tainted
depending the method execution result. The piece of code is
processed only upon correct matching and return information
understandable by the ”runtime engine”. In our example,
the origination of data1 cannot be verified. As the policy in
Listing 1 expresses, the data is marked as UNSAFE. When
headquarters request this data, the army system knows the
data is unsafe and can propose notification mechanisms to

warn user about data uncertainty.
The second use-case shows authorization and

confidentiality check with our framework. The adaptation
relies heavily on the context. We first explain the
authorization part. The army system receives a document
composed of parts with different authorization level : L1
and L2. We are in the context of a Mandatory Access
Control thus strong hierarchy and definition of who is
allowed to perform which action on which resource.The
resource is composed of two parts. One that contains
logistics information, such as freight id, container weight or
event history of harbour. The second part contains details
about freight : composition of the fret, final destination and
usage, etc. The second part contains strategical information,
that only high-ranked militaries can consult. As shown in
Figure 4, a lieutenant and the logistics officer try to access
resources sent by the container. The former can access all
parts while the latter can only access the L2-part. When the
lieutenant accesses the sensitive part of the data, the runtime
monitor detects usage of a sensitive data and adapt the
platform to provide confidentiality between involved peers :
encryption for the lieutenant before data transmission and
decryption mechanism after transmission.

Our framework intervenes from security rules upon
detection of data from a specific container, the runtime
monitor triggers a code that marks different parts of the data.
Then, it introduces a behavior when sensitive information
is transmitted. The concrete implementation of mechanisms
is made locally. For instance, when the lieutenant requests
the sensitive part of the data, the encryption/decryption
mechanisms are executed. Systems agreed upon a behavior
then implementation and execution of security mechanisms
is made locally.

VII. RELATED WORK

We divide the related work in two separate categories
addressing security-related solutions with aspects, or aspects
for services. The former often imply modelling of security
properties beforehand to latter enforce them correctly on the
system. Translation mechanisms are often hand-written. The
second category focuses on AOP and how to introduce its
underlying concepts in services. To the best of our knowl-
edge, no concrete work has been done to address security
concerns that pervades both applications and services while
proposing decoupling from the business code.

In [8], Baligand uses AOP with Web Services to intro-
duce non-functional requirements, following a policy. The
difference with our work is they do not cover simultaneous
orchestration of different services to realize one capability.
[9] has the same goal but proposes an XML-centric ap-
proach to specify pointcuts and advice whereas we rely on
automatic matching from policy rules. In [10], Ganesan et
al.. addresses an aspect model for composite services. They

408

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Figure 3. Multi platform adaptation

introduce a specification language to design non-functional
requirements as distributed aspects, but they do not cover
security per se. In [11], Mostéfaoui et al. also address a
framework to decouple security concerns with aspects on
web services. They use frames concept to have a configura-
tion including both composite and component level. In [12],
the authors provide an architecture to have distributed as-
pects to modularize and adapt non-functional requirement
but only for composite services. Also, their approach implies
advice code to be already on target platform for execution.
In [13], Jakob et al. use AOP to secure distributed systems.
Their approach is rather to specify early security properties
thanks to pointcut language tied to an architecture diagram.
[14] exposes a concrete use case of applying authentication
with AOP in a SOA-based sensor architecture. Whereas it
provides concrete mechanisms as we aim to do, we go a
step further by binding these mechanisms with policies.
It makes policy analysis way more consistent over time.
In [15], Mourad et al. use an AOP-based language for
security hardening. The language introduces concepts close
to pointcuts. Therefore, the language does not cover services.

VIII. CONCLUSION

Addressing cross-cutting concerns that pervades services
with strong focus on security lead us to a new architecture
proposal. We have seen through our example that this
architecture can be applied to an SCM use case. It gives
tools and methods from early phase of application design

to implementation and maintenance of sensors to gather
accurate context information. From modelling information,
ones decide what are specifications that have to be enforced
during the execution of the application. In other words, the
proposed architecture allows definition of security policies
for service-based systems at a global level that are then
enforced at a local level in an semi-automatic mode. We
propose to decouple definition of specific security properties
from the base application, and let declaration through rules
respecting application owners’ needs. A prototype is under
development to address the runtime part - modification of
different execution environment with Aspects to introduce
security features. Currently, we limit complexity to one
platform at a time. We want to investigate modifications
across platforms in future work - platforms not located under
a same administrative domain. It requires trust and mecha-
nisms to ensure synchronisation, guaranties that security is
effectively implemented to mention a few.

ACKNOWLEDGMENT

This work has been carried out in the CESSA (Composi-
tional Evolution of Secure Services using Aspects) project,
supported by the ANR, the French national research orga-
nization (project id.: 09-SEGI-002-01).

REFERENCES

[1] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Cham-
pion, C. Ferris, and D. Orchard, “Web services architecture,”

Figure 4. Authorization and confidentiality mechanisms

409

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

http://www.w3.org/TR/ws-arch/, vol. 99, no. 7, pp. 1–100,
January 2004.

[2] R. Hull and J. Su, “Tools for design of composite web
services,” in Proceedings of the 2004 ACM SIGMOD inter-
national conference on Management of data, ser. SIGMOD
’04. New York, NY, USA: ACM, 2004, pp. 958–961.

[3] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey
of attacks on web services,” Informatik - Forschung Und
Entwicklung, vol. 24, pp. 185–197, 2009.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,”
in ECOOP, ser. Lecture Notes in Computer Science, M. Aksit
and S. Matsuoka, Eds. Springer Berlin / Heidelberg, 1997,
vol. 1241, pp. 220–242.

[5] C. V. Lopes, “AOP: A historical perspective (What’s in a
name?),” in Aspect-Oriented Software Development, R. E.
Filman, T. Elrad, S. Clarke, and M. Akşit, Eds. Boston:
Addison-Wesley, 2005, pp. 97–122.

[6] O. G. Selfridge, “Pandemonium: a paradigm for learning.
In Mechanisation of Thought Processes,” in Proceedings of
a Symposium Held at the National Physical Laboratory.
London: HMSO, 1958, pp. 513–526.

[7] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine,
and D. Suvée, “Explicitly distributed aop using awed,” in
Proceedings of the 5th international conference on Aspect-
oriented software development, ser. AOSD ’06. New York,
NY, USA: ACM, 2006, pp. 51–62.

[8] F. Baligand and V. Monfort, “A concrete solution for web
services adaptability using policies and aspects,” in Proceed-
ings of the 2nd international conference on Service oriented
computing, ser. ICSOC ’04. New York, NY, USA: ACM,
2004, pp. 134–142.

[9] M. M. B. Hmida, R. F. Tomaz, and V. Monfort, “Applying aop
concepts to increase web services flexibility,” in Proceedings
of the International Conference on Next Generation Web
Services Practices, ser. NWESP ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 169–.

[10] K. Ganesan, S. K. Mohalik, and C. Raj, “A distributed aspect
model for composite service,” in International Workshop on
Service-Oriented Engineering and Optimization, 2008.

[11] G. K. Mostéfaoui, Z. Maamar, N. C. Narendra, and S. Sat-
tanathan, “Decoupling security concerns in web services
using aspects,” Information Technology: New Generations,
Third International Conference on, vol. 0, pp. 20–27, 2006.

[12] K. Ponnalagu, N. Narendra, J. Krishnamurthy, and R. Ramku-
mar, “Aspect-oriented approach for non-functional adaptation
of composite web services,” in Services, 2007 IEEE Congress
on, july 2007, pp. 284 –291.

[13] H. Jakob, N. Loriant, and C. Consel, “An aspect-oriented
approach to securing distributed systems,” in Proceedings of
the 2009 international conference on Pervasive services, ser.
ICPS ’09. New York, NY, USA: ACM, 2009, pp. 21–30.

[14] S. V. Patel and K. Pandey, “Soa using aop for sensor web
architecture,” in Proceedings of the 2009 International Con-
ference on Computer Engineering and Technology - Volume
02. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 503–507.

[15] A. Mourad, M.-A. Laverdière, and M. Debbabi, “A high-
level aspect-oriented based language for software security
hardening,” in SECRYPT, J. Hernando, E. Fernández-Medina,
and M. Malek, Eds. INSTICC Press, 2007, pp. 363–370.

410

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

