
Designing and Implementing a Middleware for
Data Dissemination in Wireless Sensor Networks

Ronald Beaubrun

Department of Computer Science and Software
Engineering

Université Laval
Quebec, Qc, Canada

e-mail: ronald.beaubrun@ift.ulaval.ca

Jhon-Fredy Llano-Ruiz, Alejandro Quintero
Department of Computer and Software

Engineering
École Polytechnique de Montréal

Montreal, Qc, Canada
e-mail: {jhon-fredy.llano-ruiz,

alejandro.quintero}@polymtl.ca

Abstract— In this paper, we propose an approach for designing
and implementing a middleware for data dissemination in
Wireless Sensor Networks (WSNs). The designing aspect
considers three perspectives: device, network and application.
Each application layer is implemented as an independent
Component Object Model (COM) Project which offers
portability, security, reusability and domain expertise
encapsulation. For result analysis, the percentage of success is
used as performance parameter. Such analysis reveals that the
middleware enables to greatly increase the percentage of
success of the messages disseminated in a WSN.

Keywords- Data dissemination, design, implementation,
middleware, wireless sensor network.

I. INTRODUCTION
The main goal of a Wireless Sensor Network (WSN) is to

gather environmental information in a specific region and
make it available to users. For this purpose, it uses a set of
sensor nodes, i.e., a set of devices that sense and measure
environmental variables, such as light, temperature, humidity
and barometric pressure [1]. Another important component
of a WSN is the Base Station (BS). Since sensors are
normally battery-constrained and equipped with low system
capabilities, they need to transfer their collected data to a
long-life device. Laptops, Personal Computers (PCs),
handhelds and access points to a fixed infrastructure are
examples of physical devices used as BSs. To make the
communication possible between SNs and BSs, a gateway
(GW) is set in between, acting as a bridge. Figure 1 shows an
example of a WSN.

In a WSN, the exchange of information between the SNs,
the GW and the BS is done through a data-dissemination
technique where the information is transported towards
different destinations [2-5]. For this purpose, a middleware is
required between the network and the applications to offer
tracking capabilities of the disseminated information. Using
a data dissemination protocol, this middleware can take on-
time decisions when a maximum end-to-end delay constraint
is exceeded. This paper proposes an approach for designing

and implementing a middleware for data dissemination in
WSNs.

Figure 1. Example of a Wireless Sensor Network.

The rest of the paper is organized as follows. Section II

presents the designing aspects of the middleware. Section III
focuses on the software components that lead to the
middleware deliverables. Section IV describes the
implementation of each software component. Section V
presents some results and analysis, whereas Section VI gives
some concluding remarks.

II. DESIGNING ASPECTS

A. Reference architecture
Figure 2 illustrates the general architecture considered for

this research from the infrastructure point of view. It
integrates a WSN with two other networks: the source of
information is the sensor network, whereas the destination
can be Internet or a Cellular Network. This architecture
considers two roles: the Message Originator (MO), which is
responsible for initializing the notification process, and the
Message Terminator (MT), which receives the information

375

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

mailto:ronald.beaubrun@ift.ulaval.ca

and sends back a response. MT is a role played by any
person or device in the system. In case of a person, it can be
either a Security Group (SG) member, or a User Group
(UG). The MO represents each single sensor node that is
deployed. It collects information that could be disseminated.
If an event is detected, the sensor node starts the
dissemination process towards the gateway (GW), using the
forwarders in between. The GW is responsible for receiving
the information sent by any node in the WSN, and conveys it
to the base station (BS). Once the BS receives the
information, it will make a decision depending on its own
configuration, e.g., Send information to UG and SG through
different protocols, such as Short Message Services (SMS),
email or twitter.

B. Model roadmap
Figure 3 presents a general overview of the middleware.

Therein, the middleware is initially related to delay-
constrained applications, as it aims to produce support for
such type of applications. In order to guarantee this support,
it requires a direct communication with data dissemination
protocols at any moment. Therefore, the top layer represents
delay-constrained applications that use the middleware
which, in turn, is the intermediate layer. In the meantime, it
imposes some requirements (e.g., end-to-end delay) to the
underlying data dissemination protocols located in the
bottom layer.

The middleware deals with different data dissemination
protocols, and it requires to be executed on different types of
devices (i.e., SNs, GWs, BSs), which forces each
environment to control different configurations and
specificities. For such a purpose, the approach from [6] is
adopted. It considers three points of view: device, network
and application. Firstly, device perspective focuses on each
device and its components, considering five features: type of
devices, operating systems, radio technology, development
technologies and storage. Type of devices represents
different machines where the middleware is intended to be
executed (i.e., SNs, GWs, BSs). Operating systems represent
different operational platforms running on the types of
devices (i.e., TinyOS, Linux and Windows). Radio technology
is used to establish communication with other nodes of the
architecture (i.e., 802.11). Additionally, development
technologies features need to be taken into consideration. For
the suitability of these technologies and their widely
acceptance in the academia, nesC, Java and C++ have been
chosen. Finally, storage takes care of the persistence of the
information when needed (i.e., databases, XML files).

Secondly, network perspective represents the
dissemination of information among the network. It takes
into account several network characteristics, e.g., end-to-end
delay, confirmation mechanisms and energy optimization. In
other words, the network perspective takes into account three
network services in order to achieve the requirements:
delivery manager, message sender manager and service
manager. Delivery Manager (DM) is responsible for
managing the delivery process. It tracks messages sent along
the process while considering delay constraints. It includes:

reporting, receiving and analyzing capabilities. Message
Sender Manager (MSM) is in charge of the message sending
process. It is made up of three main processes: listening,
analyzing and sending. Service Manager (SM) is a service
that allows managing the protocols the system works with
and the resources associated to each of them.

Finally, the application perspective represents the
applications using the middleware services. It is divided into
two main categories: delay-constrained applications and
user applications. On one hand, delay-constrained
applications have strict Quality of Service (QoS) constraints,
and are used to warn people in emergency events. They
require a continuous feedback from the middleware. On the
other hand, user applications tolerate lower QoS constraints
due to their specific goals. Failures or delays are not as
critical as they are for the former category. As a result,
confirmation mechanisms could be avoided or delayed.
Despite of that, user applications can use the middleware as
well.

Figure 2. Global Architecture.

Figure 3. General overview of the middleware.

376

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

The integration of such perspectives constitutes the

roadmap of this proposition, guarantying a holistic view of
the system. This amalgamation is intended to show that all
perspectives are present at any time in the system and the
intersection of all of them produces the middleware. Figure 4
depicts such integration. The 3D-view offers the possibility
to analyze the system from different perspectives while
preserving the unity and respecting the requirements and
constraints.

III. SOFTWARE COMPONENTS
This section focuses on presenting the software

components that lead to the middleware deliverables. Firstly,
the class diagram that shows the class interactions within the
whole system is presented. Later on, the sequence diagrams
that show the interaction of the architecture components are
explained.

A. Class diagram
Figure 5 presents the class diagram of the middleware,

giving a static view of the system. It is divided into four
logical layers which depict the main components presented
in the reference architecture. The first three layers refer to
five main components: Interfaces, Message Sender
Manager, Delivery Reporter Manager, Data Access
Manager and Service Manager, whereas the bottom layer
represents the data dissemination protocols to be used. On
top of the diagram, a set of Interfaces classes offers a unique
way for consumers to use the middleware services. It is made
up of three classes that interact with the second layer
components. In the second layer, the Message Sender
Manager is responsible for managing the sending process
while considering three main classes: Listener, Analyzer and
Sender. Listener senses new messages that arrive to the
middleware. Analyzer consists of four classes, which means
that all classes need to participate in the process when the
analyzer is executing. Finally, Sender is in charge of sending
the analyzed message. Then, the Delivery Report Manager
classes track the message status. Similarly to the previous
component, it also considers three classes: Reporter,
Analyzer and Receiver.

Figure 4. Middleware roadmap.

Figure 5. Class diagram of the reference architecture.

Furthermore, Data Access Manager is responsible for

providing and modifying the data models (i.e., databases and
configuration files). It uses an ActionController which is
responsible for receiving an action to be executed and
identifying which component in the system will realize it.
Normally, this action is assigned to a Data Access Object
(DAO), which in turn, affects the information relying on any
Business Objects (BOs). Finally, the Service Manager is
responsible for interacting with the protocols and the
network to complete either the message sending process, or
the delivery report process. It consists of a set of classes that
offer system characteristics, such as end-to-end delay
(ETEDM), delivery report (DLR), environment events
(EnvironmentRecorder), Confirmation features
(ConfirmationAgent) and sending of messages (IServices and
IRessources). Service Manager relies on a ServiceLocator
which identifies the most appropriate services and protocols
according to the application requirements.

As previously discussed, the middleware is located in the
application layer. In order to perform its tasks, it should have
access to specialized protocols that are normally located in
lower layers in the communication stack. For such reason,
the bottom layer shows the available protocols to be used and

377

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

their interactions with the middleware. It is important to
notice that this proposal is protocol independent, which
means that any protocol could be used as long as it supports
the application requirements. Therefore, it is up to the
implementers to choose the right dissemination protocol.

B. Sequence diagrams
The sequence diagrams present a dynamic view of the

system. Two main processes are described: the message
sending process which shows how the components
participate in order to offer end-to-end delay and
confirmation support to the messages sent, and the delivery
report process which enables to have knowledge about
messages states at any moment.

1) Message sending process: As depicted in Figure 6,

this process is initiated by a sensor, a gateway or a base
station when a new message arrives. Any of them may
register a new message using the Registrar interface. This
interface puts the message into a Queue waiting for Listener
to be in charge of it. Listener is a daemon process
responsible for the surveillance of new messages that arrive.
For this purpose, it executes asynchronous calls to
MessageQueue. Once it discovers a message standing there,
it takes the message and passes it to a new phase to be
analyzed. This process is broken up into 4 stages: analysis
of destinations, priorities, rules and throughput. These
stages heavily depend on the environment where the
middleware is deployed. Once the whole analysis is
completed, a Sender class is called to send the message.
Later, the ServiceLocator class receives the Sender request
in order to locate the service and the resource that will be
responsible for disseminating the information towards the
destinations. For such a purpose, this class takes into
consideration basic information, such as priorities and rules.
Once the resource is identified (i.e., dissemination protocol
with its parameters), IRessource begins to interact with the
protocol, which finally is responsible to convey the
information to the destinations, considering the application
requirements.

At the same time, ETEDM, which is the process to offer
timeliness support, is activated. It controls delay-constraints
for each message sent while verifying the acknowledgements
(ACKs) or negative acknowledgements (NACKs) sent by the
protocol. If no response is received by the end of this time
period, it asks the ServiceLocator to look for another service
and resource to disseminate the information, i.e., the lookup
process. This cycle is repeated based on the middleware
configuration.

2) Delivery report process: Any device (i.e., a sensor

node, a gateway, a base station) or internal component in the
architecture (e.g., a sender) may want to know the status of
a message sent at any time. The sequence shown in Figure 7
details how this process is executed. Once a device or a
component interrogates the Status interface, this request is
transferred to the system, then analyzed further to identity
the message that is going to be tracked. Once this

identification is performed, ConfirmationAgent is
interrogated. It reads and analyzes the information presented
by EnvironmentRecorder, which tracks all the events that
happen with the message, such as end-to-end delay
information, DLR and network failures. Based on this
analysis, ConfirmationAgent presents a response to the
system, which is sent back to the Status interface, then to the
user or component interested in this information.

IV. IMPLEMENTATION
The application is divided into three main logic

components: Interfaces, Business Rules and Data Services.
Each layer is implemented as an independent Component
Object Model (COM) Project which offers portability,
security, reusability and domain expertise encapsulation.

A. Interfaces Layer
The Interfaces layer exposes functionalities as services

and variables. It provides a method called registrar for the
applications to register the events. The definition of this
method is presented as follows:

Figure 6. Message sending process.

Figure 7. Delivery report process.

378

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

public static void registrar(int priority,
 String shortDescription,
 String description,
 String source,
 int type,
 String comments);

It receives six mandatory parameters. First, priority is used
to establish the priority of the message (e.g.,
100=emergency). Then, shortDescription contains a brief
description about the event. The third parameter, description,
contains a more detailed description of the incident (e.g.,
sensor x registered a value of light intensity y in the z-
building). Next, source indicates the origin of this
information. Then, type refers to the type of the originator
(e.g., sensor node, gateway, base station). Finally, comments
permits to include any additional information required to
complement the message. This information can be presented
in an XML format for a better portability. Using this service,
the events that come from the WSN are initiated in the
middleware.

B. Business Rules Layer
The Business Rules layer is the core of the system, since

it implements the basic components: Message Sender
Manager, Service Manager and Delivery Report Manager,
enabling messages to be sent through different protocols. To
set up these protocols, an XML file is generated. It might be
noticed that each protocol is composed by one or multiple
resources, supporting the definition made in Figure 5. Table I
describes the tags composing the file. As described in this
table, each resource might require several parameter values
to be described and configured. Figure 8 presents a fragment
of resources.xml file for the implemented prototype.

It can be noticed that the instance shows an SMS
resource configuration. The tag name is used to identify the
protocol used. The tag class describes the name of the class
that implements the service. It is dynamically executed using
on-the-fly .Net capabilities (also known as assemblies). This
feature makes the environment execution more versatile,
since it only requires setting up the XML. The information is
sent in strict order according to its appearance in this file.
The maximum set up time for each resource to complete its
task is obtained from the XML file. This information is
defined using a probabilistic approach based on studies done
on the efficiency of these resources, as stated in [7]. The
DLR interface is simulated using these probabilistic values to
know whether the message was successfully received or not.

C. Data Services Layer
This layer is responsible for providing the interfaces the

access to the information. This information is mainly stored
in two locations: the database and the XML resources file.
Figure 9 presents the Entity/Relation (E/R) diagram for the
middleware. It can be seen that there is a table called
queued_message, where the message is initially queued

using the registrar service. Then, the middleware using the
listener processes moves the record to the message table.
Later on, after the analysis is done, the single message is
multiplexed into multiple records. Each message is
addressed to a single user, using a different protocol and
device (e.g., SMS-blackberry, Email-iPhone), as defined in
the XML file and in the database configuration. This
information is stored in the sent_message table. The DLR
obtained from each service is recorded in the status attribute.
By using this information, the middleware knows the state of
each single message sent to any user in the system.

TABLE I. XML RESOURCES FILE DESCRIPTION

Tag Name Tag Description

Protocols Indicates the beginning and the end of the resources file

Protocol Indicates the beginning or the end of a protocol

name

(protocols)

Contains the name of a protocol

Classname Describes the name of the class fully specified.

Package.ClassName. This value is used by the middleware to

dynamically execute the class using on-the-fly capabilities (i.e.,

assemblies loaded and executed when needed). It allows the

middleware to execute assemblies that might or might not be

part of it.

description Brief description of the protocol

Resource Indicates the beginning or the end of a resource. For instance, a

SMS could be sent using different SMS Gateways.

name (resource) Contains the name of a resource.

param-name Details all the parameters required to describe a resource. For

instance, a SMS Gateway requires an IP address, a port, a user,

a password and URL among others. It additionally describes

maximum time to wait for a response and the probability of

receiving an ACK.

Figure 8. Resource file.

379

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Figure 10. Comparison of percentage of success.

VI. CONCLUSION
In this paper, we proposed an approach for designing and

implementing a middleware for data dissemination in WSNs.
For the analysis, the percentage of success is used as
performance parameter. Such analysis reveals a middleware
success close to 98%, which is highly superior to the success
of other individual resources.

Figure 9. Entity/Relation Diagram.

V. RESULTS AND ANALYSIS
For the experiments, we use the architecture shown in

Figure 2, with 3 sensor nodes in the WSN. For each message
sent through a resource (i.e., SMS, email or twitter), the
percentage of success, i.e., the ratio between the number of
messages sent and those successfully received by the
destination, is registered. These values are then processed
and analysed in MATLAB. Table II presents a fragment of
the results obtained from the first experiment. The first
column shows the corresponding statistical attributes
analyzed, i.e., the percentage of success, the number of
received ACKs, the number of received NACKs or no
responses (NRs). For the middleware, the percentage of
success is 98.25%. Accordingly, 7 destinations are not
successfully notified among 400 messages sent.

Now, we can analyze the percentage of success for each
resource in 20 experiments. Figure 10 shows that the
middleware outperforms the other resources taken
individually. More specifically, the overall success of the
middleware is close to 98%, which represents a great
improvement when compared with the performance of the
resources individually. For instance, SMS shows an average
success of 78%. A slightly increment is seen in email with
79%. Finally, twitter offers the lowest success of the three
individual resources (61%).

ACKNOWLEDGMENT
This research has been supported by Prompt-Quebec and

Imaginovation.

REFERENCES
[1] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor

network survey," Computer Networks, vol. 52, pp. 2292-
2330, August 2008.

[2] H. M. Ammari and S. K. Das, "A trade-off between energy
and delay in data dissemination for wireless sensor networks
using transmission range slicing," Computer
Communications, vol. 31, pp. 1687-1704, June 2008.

[3] D. Virmani and S. Jain, "Comparison of proposed data
dissemination protocols for sensor networks using J-Sim," in
2009 IEEE International Advance Computing Conference.
IACC 2009, Patiala, India, 2009, pp. 1179-1186.

[4] Y. Zhang and L. Wang, "A comparative performance analysis
of data dissemination protocols in wireless sensor networks,"
in Proceedings of the 7th World Congress on Intelligent
Control and Automation, Chongqing, China, 2008 pp. 6663-
6668.

[5] S. Saha and M. Matsumoto, "A framework for disaster
management system and WSN protocol for rescue operation,"
in TENCON 2007 - 2007 IEEE Region 10 Conference,
Taipei, Taiwan, 2007, pp. 1315-1318.

[6] F. C. Delicato, L. Fuentes, N. Gamez, and P. F. Pires, "A
middleware family for VANETs," in Ad-Hoc, Mobile and
Wireless Networks. 8th International Conference, ADHOC-
NOW 2009, Murcia, Spain, 2009, pp. 379-384.

TABLE II. RESULTS FROM THE FIRST EXPERIMENT

 SMS Email Twitter Middleware

Percentage of
Success

79.50% 70.73% 70.83% 98.25%

[7] R. Pries, T. Hobfeld, and P. Tran-Gia, "On the suitability of
the short message service for emergency warning systems," in
VTC 2006-Spring. 2006 IEEE 63rd Vehicular Technology
Conference, Melbourne, Vic., Australia, 2006, pp. 991-995.

ACK 318 58 17 393

NACK, NR 82 24 7 7

380

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

	I. Introduction
	II. Designing aspects
	A. Reference architecture
	B. Model roadmap

	III. Software components
	A. Class diagram
	B. Sequence diagrams
	1) Message sending process: As depicted in Figure 6, this process is initiated by a sensor, a gateway or a base station when a new message arrives. Any of them may register a new message using the Registrar interface. This interface puts the message into a Queue waiting for Listener to be in charge of it. Listener is a daemon process responsible for the surveillance of new messages that arrive. For this purpose, it executes asynchronous calls to MessageQueue. Once it discovers a message standing there, it takes the message and passes it to a new phase to be analyzed. This process is broken up into 4 stages: analysis of destinations, priorities, rules and throughput. These stages heavily depend on the environment where the middleware is deployed. Once the whole analysis is completed, a Sender class is called to send the message. Later, the ServiceLocator class receives the Sender request in order to locate the service and the resource that will be responsible for disseminating the information towards the destinations. For such a purpose, this class takes into consideration basic information, such as priorities and rules. Once the resource is identified (i.e., dissemination protocol with its parameters), IRessource begins to interact with the protocol, which finally is responsible to convey the information to the destinations, considering the application requirements.
	2) Delivery report process: Any device (i.e., a sensor node, a gateway, a base station) or internal component in the architecture (e.g., a sender) may want to know the status of a message sent at any time. The sequence shown in Figure 7 details how this process is executed. Once a device or a component interrogates the Status interface, this request is transferred to the system, then analyzed further to identity the message that is going to be tracked. Once this identification is performed, ConfirmationAgent is interrogated. It reads and analyzes the information presented by EnvironmentRecorder, which tracks all the events that happen with the message, such as end-to-end delay information, DLR and network failures. Based on this analysis, ConfirmationAgent presents a response to the system, which is sent back to the Status interface, then to the user or component interested in this information.

	IV. Implementation
	A. Interfaces Layer
	B. Business Rules Layer
	C. Data Services Layer

	V. Results and analysis
	VI. Conclusion
	Acknowledgment
	References

