
End – to – End Secure Data Delivery in Wireless Sensor Networks

Alexandros Zaharis

University Of Thessaly

Volos, Greece

alzahari@inf.uth.gr

Leonidas Perlepes

University Of Thessaly

Volos, Greece

leperlep@inf.uth.gr

George Stamoulis

University Of Thessaly

Volos, Greece

georges@inf.uth.gr

Panagiotis Kikiras

University Of Thessaly

Volos, Greece

kikirasp@inf.uth.gr

Abstract — Typical sensor nodes are resource constrained

devices containing user level applications, operating system

components, and device drivers in a single address space, with

no form of memory protection. A malicious user could easily

capture a node and tamper the applications running on it, in

order to perform different types of attacks. In this paper, we

propose a 3-Tier Security Framework composed by physical

security schemes, cryptography of communication channels

and live forensics protection techniques that allows for secure

WSN deployments. Each of the abovementioned techniques

maximizes the security levels leading to a tamper proof sensor

node. Even if the physical protection of the nodes is bypassed

which is common in wireless sensor attacks, the attacker must

surpass 2 more security tiers in order to perform a valid attack

on the underlying network. By applying the proposed security

framework, secure communication between nodes is

guaranteed, identified captured nodes are silenced and their

destructive effect on the rest of the network infrastructure is

minimized due to the early measures applied. Our main

concern is to propose a framework that balances its attributes

between robustness, as long as security is concerned and cost

effective implementation as far as resources (energy

consumption) are concerned.

 Keywords - Security Framework; Sand-boxing; live forensics;

cryptography; wireless sensor networks.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are emerging as an
important tier in the IT ecosystem where active research
involving hardware and system design, networking,
distributed algorithms, data management and security, is
blended to deal with a unique environment with distinctive
characteristics and demands. The main function of a sensor
network is the utilization of tiny sensing devices which are
capable of sensing various types of incidents/parameters and
communicating those with other devices. Sensor networks
sensing can be applied for many applications such as target
tracking, surveillance, environmental monitoring, etc. [30].

Due to the unattended environment on which wireless
sensors operate and the resource constrained nature of these
devices in the manner of computational capabilities, memory
size and available energy, it is a major challenge to employ

efficient security schemes coming from the computers or ad
hoc wireless networks domain [2][30].

In this paper, the critical security issues in wireless sensor
networks are addressed, various types of threats and attacks
against them are explored in order an efficient multi-tier
security framework to be proposed.

Furthermore, an evaluation of the combination of
cryptography of the communication channel is presented
along with valid sand-boxing techniques for providing
protection in energy constrained embedded sensor nodes

The three layers of the proposed framework are:
a) Physical Sensor Protection
b) Sand-Boxing
c) Crypto-Communication

Framework‘s primary goal is the effective blending of

common security techniques such as physical security or

cryptography with more modern ones like sand-boxing

[1][2][26][27].

The proposed protection framework is thoroughly

presented along with real life use examples that prove its

robustness and effectiveness against the most popular WSN

security attacks. The overall concept of combining live

forensics along with ―sand-boxing‖ techniques and other

commonly used security schemes as cryptography in a

single framework is, to our knowledge, a unique and out of

the box security attempt that can lead to an impenetrable

multi-tier security framework.

The remainder of this paper is organized as follows:

Section II provides a review of similar security techniques

and frameworks. In Section III, we briefly explain the

Layer 1: Physical

Layer 2: Sand- boxing

+Forensics

Layer 3: Crypto-
 Communication

Figure 1: Multi layer Security Framework

356

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

components on which the framework is based on. Section

IV describes in details the proposed framework. In Section

V, the framework‘s efficiency against different types on

attacks in explained. Finally, Section VI some concluded

remarks are presented.

II. SIMILAR WORK

Attacks on the sensor network can be classified as:

a) Physical attacks on sensor devices, e.g., destroying,

analyzing, and/or reprogramming sensors.

b) Service disruption attacks on routing, localization

c) Data attacks, e.g., traffic capture, spoofing.

d) Resource-consumption and denial-of-service (DoS)

attacks.

One of the serious attacks to the sensor networks

deployed in an unattended environment is physical

tampering with sensors. An adversary can easily capture,

reverse-engineer the sensor, and deploy (multiple clones of)

manipulated sensors. The compromised sensors will then be

exploited by the adversary to mount actual attacks which

will facilitate the subversion of the entire network.

Traditionally, the tamper-proofing of programs relies on

tamper-resistant hardware [1][2]. However, hardware-based

protection will likely fail to provide acceptable security and

efficiency on its own because 1) strong tamper-resistance is

‗expensive‘ to be implemented in resource-limited sensor

devices and 2) the tamper-resistant hardware itself is not

always absolutely safe due to various tampering techniques

[1][3][4] such as reverse-engineering on chips,

microprobing, glitch and power analysis, and cipher

instruction search attacks.

Existing approaches to generating tamper-resistant programs

without hardware support can be classified as:

a) Code obfuscation that transforms the executable code

to make analysis/modification difficult [5][6][7][8].

b) Result checking that examines the validity of

intermediate results produced by the program

[9][10][11].

c) Self-decrypting programs that store the encrypted

executables and decrypt them before execution

[12][13].

d) Self-checking that embeds, in programs, codes for

hash computation as well as correct hash values to be

invoked to verify the integrity of the program under

execution[12][14][15].

e) Software based Attestation to remotely verify the

integrity of sensor software [20].

However, most of the above mentioned approaches will

more likely fail on sensor networks where a program runs

on slow, less-capable microcontrollers.

Software attestation is a challenge-response protocol

where a verifier (e.g., base station) sends an attestation

command to the attester (the node being attested) asking for

certain state information as the evidence of its software

integrity. Such state can be computed correctly only if the

attester‘s system meets certain integrity requirement. After

receiving the response, the verifier compares it with the

known good state to check if the software at the attester has

been corrupted. If a sensor node fails to give the correct

answer, actions can be taken to revoke this node from the

network. Several software attestation schemes have been

proposed to attest the static memory regions of the software

[17][18][19][20].

Physical hardening of the sensor is the first obstacle an

attacker must overcome in order to tamper a wireless sensor.

The effectiveness of the physical security on sensors is

usually low and a WSN based only on physical security

cannot be considered as secure. In our approach physically

securing a sensor is the layer of defense mostly used to

prevent less determined attackers. Our second defense

scheme strips the major functions of a live forensics check

on an average system in order to match with the limited

resources of a sensor, leading to the important conclusion of

whether a sensor is compromised.

The live forensics security layer proposed in this paper

verifies the integrity of the program residing in each sensor

through a process that has been specifically designed to:

a) Prevent altering / manipulation / reprogramming of

the sensor

b) Be purely software-based.

c) Work on sensor devices with severe resource

limitations

d) The verification of the different parameters tested

does not add large overhead to the communication.

e) Prevent eavesdropping attacks on the

communication channel.

III. LIVE FORENSICS FRAMEWORK

As the need for decentralized security emerges in large

public wireless sensor networks; new application level

security mechanisms aim at providing application

developers with appropriate abstractions for designing the

security aspects of the target software.

In computer security, a sandbox is a security mechanism

for separating running programs. It is often used to execute

untested code, or untrusted programs from unverified third-

parties, suppliers and/or untrusted users.

It typically provides a tightly-controlled set of resources

for guest programs to run in, such as scratch space on disk

and memory. In this sense, sandboxes are a specific example

of virtualization.

Zaharis et al. [26] proposed a protocol based on

sandboxing technique. According to this approach, they

divide isolates in two categories:

 The Security-Dedicated Isolates (―SDI‖)

 The Work-Dedicated Isolates (―WDI‖)

An Isolate Verification Server plays a key role on

verifying the genuine WDIs from the malicious ones while

performing all the computational and energy consuming and

needy tasks.

357

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

The verification of genuine WDIs is based on 1) RAM

dumbing and 2) Hashing techniques.

This framework uses a secure RAM dumping technique

specially designed for sensors. This technique provides the

framework with safer intrusion recognition while complying

with the classic digital forensic techniques.

The Hashing technique that is used by the framework is

based on the Randomized Hashing Function [16]. This

technique is used on the Work-Dedicated isolates in order to

acquire highly secure tamper-proofing on sensor-resident

programs. The hashing function plays a key role in the

effectiveness of the proposed architecture as it is robust

technique, used frequently in computer security and digital

forensics due to its precision in detecting altered code.

Our goal is to improve this mechanism by enriching it

with cryptographic procedures, in order to provide a secure

end-to-end data delivery framework.

A. Cryptography

The Tiny Encryption Algorithm (TEA) is a

cryptographic algorithm designed to minimize memory

footprint and maximize speed. It is a Feistel type cipher that

uses operations from mixed (orthogonal) algebraic groups

[31]. Despite its robustness minor extensions have been

published in order to present safer encryption results. In this

research, we determine the weaknesses and identify the

robustness of TEA, XTEA and XXTEA algorithms in

wireless sensor networks and implement them in secure

framework to harden security during communication

[27][28][29].

The conditions must be met in order the algorithm to bet

truly ―inseparable‖ are:

 The distribution of keys must have been to all

nodes in a secure manner.

 Each message uses a secure, unique key.

 The key generation has become with a truly

random cryptographic way

In order to generate a set of unique, truly random keys,

we use the Random Number Generator service designed and

operated by the University of Trinity [25].

RANDOM.ORG‘s source of entropy is atmospheric noise.

This noise is obtained by tuning a radio to a radio frequency

that no one is using. It is then played into a workstation

where a program converts it to an 8-bit mono signal at a

frequency of 8 KHz. Then the first seven bits are discarded

and the remaining bits are gathered together. This stream of

bits has very high entropy.

A possible attack on the generator is to broadcast on the

frequencies that the RANDOM.ORG radios use in order to

affect the generator. However, radio frequency attacks of

this type would be difficult for a variety of reasons. First,

the frequencies that the radios use are not published, so an

attacker would have to broadcast across all frequencies of

all bands used for FM and AM broadcasting. Second, this is

not an attack that can be launched from anywhere in the

world, only reasonably close to the generator.

RANDOM.ORG currently has radio receivers in several

different countries, which would make it difficult to

coordinate this type of attack. Third, if an attacker actually

did succeed at broadcasting highly regular signals (e.g.,

perfect sine waves) at exactly the right frequencies from the

right locations, then the RANDOM.ORG real-time

statistics would pick up the drop in quality very rapidly ,

which would raise an alert [25].

IV. NETWORK ARCHITECTURE

Our sensor network consists of an Isolate Verification

Server (IVS) an Isolate Verification Database (IVDB) and

numerous sensors which consist of an SDI and one or more

WDIs. The Security-Dedicated Isolate (SDI) is the one

executed on start up and conducts the forensics check of the

second isolate. The ‗SDI‖ is the one responsible for the

communication with the Isolate Verification Server (IVS)

The Role of the Isolate Verification Server is:

 To communicate with the SDI of every sensor in its

vicinity.

 To update/manage its local IVDB.

 To act as a trusted authentication third party.

For scalability, we let cluster-heads in a cluster-based

hierarchical architecture serve as IVSs. This allows each

IVS to maintain a local IVDB that stores SDI_IDs of the

sensors belonging to its own cluster.

It is undesirable to equip only one IVS in a network as it

becomes a single point of failure and the performance

bottleneck and so use multiple IVSs can be deployed over

the entire network. We assume that there exists a

mechanism for a sensor to learn how to discover, and reach,

an IVS.

The proposed architecture leads to a decentralized model

of sensor protection where its cluster head / IVS is

responsible for its sensors. Of course, all this information

must be gathered in a master IVS with the total IVDB of the

whole WSN.

A. Sandboxing In Action

In order to achieve the maximum tampering protection

of our sensors, sand-boxing is applied to achieve safety

against malicious code execution. While more than one

Security-Dedicated Isolates can run on a sensor in our

proposed Framework we will use one per sensor.

Figure 2: The isolates on a sensor

358

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

On the other hand, more than one Work-Dedicated

Isolates can run on a sensor performing different tasks. The

verification process performed on a single WDI applies for

more than one instance with the same results. Failure to

verify one of the WDIs leads to locking and blacklisting of

the sensors.

1) Security dedicated isolate

The Security-Dedicated Isolate is actually a mini

forensics tool case specially created to perform live

forensics in a sensor, on demand or periodically in order to

specify if the sensor is compromised and react depending on

the result.

The Security-Dedicated Isolate has a unique id/key for

every sensor, the ―SDI_ID‖ that is used in order to

communicate with the Isolate Verification Server.

On the first supervised boot the SDI is the first to execute

and perform a mini mapping and state validation of the

sensor. These results are stored on the Isolate Verification

Database (‗IVDB‘) which resides on the Isolate Verification

Server (‗IVS‘). As in every Digital Forensics case these data

are going to be used as a proof of the sensors authenticity on

the field.

From now on all data transmitted by the SDI are going to

be compared to those stored on the ‗IVDB‘ depending on

the ―SDI_ID‖.

The tasks the SDI is responsible for are:

a) Communicating safely with IVS.

b) Checking the Work-Dedicated Isolates.

c) Applying countermeasures upon intrusion

detection.

2) Work dedicated isolate

The Work-Dedicated Isolate performs the everyday tasks

of a typical sensor. Due to the sand-boxing technology,

more than one WDI can be executed simultaneously on a

sensor, performing different tasks. Execution of non

verifiable WDIs will lead to the activation of

countermeasures by the SDI.

Figure 3: More than one WDI and their check parameters

The fingerprinting of the performance of every isolate on

different parameters is stored on Isolate Verification

Database along with the SDI_ID of the sensor on which the

WDIs belong.

The fingerprinting parameters of a WDI can depend on:

a) The hash value of the isolate.

b) The RAM dump of the isolate.

B. State-Transition Diagram

Each sensor device is associated with one of four states:

a) ―LOCKED‖

b) ―VERIFYING‖

c) ―ACTIVATED‖

d) ―COUNTERMEASSURES‖

When a sensor starts its execution, it is in the LOCKED

state. Upon deployment a sensor device will remain in

LOCKED state until it securely authenticates with IVS. No

other tasks can be performed until it is authenticated.

After a valid authentication, it makes a transition to the

VERIFYING state by executing the SDI verification checks.

The stripped results are transmitted back to the IVS where:

If the verification fails, it returns to the LOCKED state,

causing the network to deny this sensor‘s access to the

network. Otherwise, it transitions to the ACTIVATED state,

in which the WDIs code is normally executed. Periodic re-

verification by the SDI during ACTIVATED state can lead

to LOCKED state or COUNTERMEASSURES state.

COUNTERMEASSURES is the state in which a sensor is

already accepted on the network and then compromised. In

order to avoid denial of service attacks on which the

attacker can lead all sensors to LOCK state, the

COUNTERMEASSURES state can be used. In this state the

compromised sensor tries to identify the type of attack on

which it has been subjected through a different type of live

forensics process. All other nodes ignore the compromised

node through an alarm message send by the IVS. Finally it

returns to the LOCKED state.

Figure 4: State Diagram

C. Authentication Protocol

The proposed protocol is consisted by three phases where

certain actions must take place. These phases are divided into

actions prior to deployment, during the ―initialization‖ phase and,

while in regular operation.

1) Pre-deployment phase

During the phase prior to deployment a set of random

keys is generated by the base station. This set is stored to

the tamper resistant storage area and it is the same for each

of the network‘s nodes. This set will act as the key

repository from where the nodes and the base station will

choose their encryption keys during the operational life of

the network.

The generation of the keys prior to deployment allows

for significant gains in the energy consumed by the nodes,

due to the fact that in order to compute a strong

359

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

cryptographically key, a number of complex mathematical

operations and a sequence of iterations are required, which

are energy consuming and computational demanding

operations.

2) Initialization phase

 After the deployment of the network the following

actions are taking place:

a) Initiation: This step starts the authentication

protocol between the IVS and the sensor by

transmitting the SDI_ID. The sensor, after

receiving the IVS_ID, asks for authentication.

If the authentication fails the protocol is

terminated.

b) If authentication succeeds, SDI is executed.

c) The result of SDI is transmitted back to IVS. IVS

checks the IVDB and validates the results. The

received hash value and Ram dump are checked. If

it passes the test, the IVS registers the sensor in the

IVDB. Then, the IVS notifies the sensors SDI of

the verification result.

d) Based on the verification result, the sensor is either

activated or locked. The sensor state will be

changed to either ACTIVATED or LOCKED,

accordingly.

Step 1 ensures sensor security, i.e., a malicious device

can neither passes the authentication procedure nor has its

own code executed on the sensor as far as the IVS‘s

authentication key is kept secret from the attacker.

3) Regular operation

After the initialization phase, the activated sensors can

perform the data‘s collection, encryption and transmit ion to

the base station.

All message transactions, described to the above phases,

are encrypted using the XTEA cryptographic algorithm.

Each message is encrypted with a key belonged to the set of

random keys deployed during the Pre-Deployment Phase of

the protocol.

D. Verification Protocol

The verification of a sensor is based on two widely used

digital forensics techniques 1) Hashing (RHF) and 2) RAM

dumping per WDI.

Figure 5: Fingerprinting a WDI

1) Hashing

Every Work-Dedicated Isolates has a unique Randomized

Hashing Function (RHF)[16] which can be easily and with

a minimum cost be calculated. Once calculated for every

user it is stored on ISDB along with the SDI of every sensor

creating the first fingerprint of the sensor.

Also thanks to the fact that sensors of the same network

usually perform the same task can lead to a smaller number

of different hash patterns stored on ISDB per WDI.

Each WDI can be classified as being 1) common to all

sensors in the network, 2) common to a group of sensors

with the same missions, or 3) unique to a specific sensor.

2) RAM Dump

When using this technique, our SDI reads arbitrary RAM

contents from the different WDIs running on the sensor.

Every process running on a system leaves specific, well

distinguished footprint on the RAM. Our goal is to create

hash like footprint of the memory and store it on ISDB

along with the SDI of every sensor creating the second

fingerprint of the sensor. In order to keep our framework in

energy efficient levels specific parts of the RAM dump are

checked concerning the execution of the WDIs.

These WDI –specific fingerprints are also hashed using

the Randomized Hashing Function providing an extra

protection parameter.

E. Protocol Implementation

In order to evaluate our protocol we have implemented

it on Mica2 sensor nodes [23]. The MICA2 is a third

generation mote module used for enabling low-power,

wireless sensor networks. It consists of an ATMega128L

CPU, 4kb of Ram, 128kb of program memory and 512kb of

serial flash memory and a ChipCon CC1000 radio. The

Crossbow MTS310 sensor board was used which provides

temperature, and other sensor types.

The protocol is implemented in two parts; the first part

corresponds to IVS code (Figure 6) and the second to sensor

code (Figure 7).

Figure 6: IVS Code

IVS Code
on receive UserHashMsg:
 receive(idAddr , UserHashMsg);

decrypt(UserHashMsg);
 if(check (UserHashMsg) == valid()){
 VerifyMsg = Valid;
 encrypt(VerifyMsg);
 send(idAddr , VerifyMsg);
 }
 else{
 VerifyMsg = Invalid;
 encrypt(VerifyMsg);
 send(idAddr , VerifyMsg);
 }

on receive HashMsg:
 receive(idAddr , HashMsg);

decrypt(HashMsg);
 if(IVDBcheck (HashMsg) == valid()){
 VerifyMsg = Valid;
 encrypt(VerifyMsg);
 send(idAddr , VerifyMsg);
 }
 else{
 VerifyMsg = Invalid;
 encrypt(VerifyMsg);
 send(idAddr , VerifyMsg);
 }

360

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

The messages sequence diagram of the aforementioned code

implementation can be seen in Figure 8.

Figure 7: Sensor Code

Figure 8: Protocol Messages

a) During the Pre-deployment Phase, each node equipped

with a set of secure keys. (120 keys.)

b) The client node encrypts the SDI_ID using the XTea

algorithm.

c) The client node sends the 80-bit encrypted message to

IVS

d) The IVS decrypts the message and checks the

authenticity of the SDI_ID (this step was simulated

with 1 sec delay during simulation).

e) IVS sends to the sensor the appropriate response

(valid/invalid).

f) On valid response sensors turns from locked to

verifying status, initiates the hashing and RAM-

dumbing procedure (during the simulation we have

used the SHA-1 algorithm (~13ms/hash) [24]. For the

calculation of the hash – value the algorithm utilizes

512 bytes from the memory and produces a 160 bit

hash.

g) The sensor encrypts the 160-bit hash values, producing

a 208-bit message. The sensor transmits the 208bit

message to the IVS for validation.

h) IVS verifies the validity of the sensor's hash value.

(This step was simulated with 1 sec delay during

simulation).

i) IVS validates or the sensor.

j) Sensor turns status into ACTIVATED or LOCKED in

accordance with IVS message.

F. Energy Analysis

In order to measure protocol‘s energy consumption we

have implemented it and simulate its performance in Avrora

Simulator. Avrora [22] is a set of simulation and analysis

tools for programs written for the AVR microcontroller

produced by Atmel and the Mica2 sensor nodes. Avrora

contains a flexible framework for simulating and analyzing

assembly programs, providing a clean Java API and

infrastructure for experimentation, profiling, and analysis.

Avrora uses the AOEN (Accurate Prediction of Power

Consumption)[21] energy consumer model. AOEN uses

empirical current consumption measurements (of hardware

such as the radio transceiver, microcontroller and sensors) to

calculate the overall power consumption. AOEN is based

on the execution of real application and OS code and

measurements of node current draw, this model enables

accurate prediction of the actual energy consumption of

nodes. Thus, it prevents erroneous assumptions on device

and network lifetime. Such a detailed prediction allows the

comparison of different low power and energy aware

approaches in terms of energy efficiency and the estimation

of the overall lifetime of a sensor network.

1) Energy cost of cryptography operations.

Table 1 compares the energy consumed by the different

versions of TEA cryptography algorithm. The values

represent the energy consumed by a node in order to execute

the following procedure:

 Encryption and sending of a 64-bit packet

 Receiving and decryption of the 64-bit packet.

The SIMPLE algorithm represents the procedure of sending

and receiving the raw packet, without the execution of any

cryptographic command.

We do not present the cost of key generation. We assume

that the key is created during the pre-deployment phase, as

described on section IV.

TABLE 1. ENERGY COST OF TEA CRYPTOGRAPHY ALGORITHMS IN ORDER

TO ENCRYPT-SEND/DECRYPT-RECEIVE 64BIT DATA.(ΜJOULE)

Algorithm
Energy Cost

Encryption – Send Receive - Decryption

SIMPLE 6041.81μJoule 6002.94 μJoule

TEA 6067.82 μJoule 6030.77 μJoule

XTEA 6071.98 μJoule 6033.19 μJoule

XXTEA 6087.23 μJoule 6042.30 μJoule

Sensor Code
on boot:
 state = LOCKED;

encrypt(UserHashMsg);
 send(broadcastAddr , UserHashMsg);

on receive VerifyMsg:
 receive(idAddr , VerifyMsg);

decrypt(VerifyMsg);
 if(VerifyMsg==Valid && state==LOCKED){
 state = VERYFING;
 HashMsg = computeHashValue();

 encrypt(HashMsg);
 send(broadcastAddr , HashMsg);
 }
 else if(VerifyMsg==Valid && state==VERYFING){
 state = ACTIVATED;
 start_data_process();
 }
 else{
 state = LOCKED;
 }

361

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Figure 9: Energy cost of TEA cryptography algorithms. (μJoule)

2) Energy Cost of Attestation Protocol.

We analyze the energy usage of the Attestation‘s protocol

handshake procedure. Table 2 compares the energy

consumed by the 2 different version of the protocol. The

main difference between these versions is the encrypted

message transactions that are implemented in the second

protocol. As described above, in the Encrypted Attestation

Algorithm we the TEA cryptographic algorithm in order to

provide an end-to-end secure data delivery protocol. For our

analysis we chose to focus on XTEA version of TEA‘s

family cryptographic algorithms.

TABLE 2. ATTESTATION‘S PROTOCOL ENERGY COST (JOULE).

Protocol
Energy Cost

CPU

Energy
Radio Energy Total Energy

Attestation

0.02286
Joule

0.06034 Joule 0.08321 Joule

Encrypted

Attestation

0.02311

Joule
0.06094 Joule 0.08406 Joule

Figure 10: Energy cost of Attestation‘s protocol handshake procedure.

(Joule)

V. SECURITY ANALYSIS

Examples of our proposed framework efficiency against

different types on attacks will be displayed in this paragraph

along with real life scenarios that prove its robustness.

A. Physical Attacks

Physical attacks that can impact the coverage of the

WSN and in many cases make the WSN inoperable.

Because of the widespread placement of the individual

nodes in an often non-secure and unmonitored area,

individual nodes are subject to capture. Physical hardening

of the sensors against reverse-engineering on chips,

microprobing, glitch and power analysis, and cipher

instruction search attacks on the first layer of security of the

proposed framework can lead to the needed results.

B. Replay Attacks

Replay attacks (i.e., intercepting a message and

replacing it with an old message) cannot succeed as the

proposed hash computation and verification are keyed

operations that can be defeated as following: First, reporting

a different SDI_ID will be detected by IVS when its

uniqueness is checked and, moreover, the malicious sensor

will not be able to pass the hash of RAM dump test unless it

has the matching program which must be free of malicious

codes and created an exact fingerprint. Second, modifying

the Hash algorithm will cause inconsistency between two

hash outputs and, hence, the verification will fail.

Encryption of the communication channel makes it more

difficult for an attacker to forge messages, as the messages

have to be encrypted with the appropriate secret key.

C. Forgery Attacks

We will now show that it is impossible for the adversary

to forge the hash value without the knowledge of all the

specific parameters previously described, for each WDI.

Consider the situation where the adversary reprograms the

sensor with a malicious program and attempts to fake the

verification process by nullifying the effect of the output of

the Hash algorithm. This is impossible because the Hash

algorithm is inherently a nonlinear function of program

blocks. Thus it is impossible to create a malicious WDI that

has the same RHF as the original. Encryption of the

communication channel makes it impossible for an attacker

to forge the communication between two nodes as unique

keys are distributed to every node.

So, what can prevent an attacker from capturing and

reverse-engineering a sensor, and using the same sand-

boxing technique to keep a good copy of the sensor running

in order to feed good answers to the challenge-response

protocol initiated by the verifier?

The attacker will not be able to manipulate the sending

data of the captured sensor by internal means as changes

will be detected by the present SDI. Any attempt to copy

only the WDIs will fail as no authenticated messages are

going to be sent to the authentication authority leading to

rendering the sensor useless. Any attempt to copy both

images SDI and WDI in a different sensor or a more

resource efficient device will lead in creating different Ram

dumps, both in size and structure leading to non verification

of the WDI and locking the sensor out of the network. The

only way you can copy both SDI and WDI in a different

device and get valid results is by copying them in the exact

362

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

sensor model (hardware and software) thus leading to

forensically sound proof results.

D. Hardware Tampering Attacks

If the malicious sensor has enough memory to maintain

the original program blocks some of the previously stated

attacks can succeed. However, as it has been previously

defined upon initiation of our Framework a specific

fingerprint of both the hash value of the WDIs and RAM

dump has been stored.

Therefore, there is no room left in the sensor for the

adversary to save and execute arbitrary code. The adversary

may attach more memory to each sensor, but it will incur a

considerable amount of hardware modification while the

Ram dump check will identify the attack. Moving/Copying

the isolates in different sensors, as far as hardware specs is

concerned, or a personal computer will lead to rendering the

sensor useless because of the RAM dump check

inconsistencies.

E. Encryption Algorithms

TEA operates on 64-bit blocks and uses a 128-bit key. It

has a Feistel structure with a suggested 64 rounds, typically

implemented in pairs termed cycles. It has an extremely

simple key schedule, mixing all of the key material in

exactly the same way for each cycle.

TEA has a few weaknesses. Most notably, it suffers from

equivalent keys—each key is equivalent to three others,

which means that the effective key size is only 126 bits.

TEA is also susceptible to a related-key attack which

requires 223 chosen plaintexts under a related-key pair, with

232 time complexity.

Because of these weaknesses, we chose to focus on

XTEA version of TEA‘s family cryptographic algorithms.

XTEA is a 64-bit block Feistel network with a 128-bit key

and a suggested 64 rounds. Several differences from TEA

are apparent, including a somewhat more complex key-

schedule and a rearrangement of the shifts, XORs, and

additions.

Also, a third version Corrected Block TEA (often

referred to as XXTEA) was designed, in order to correct

weaknesses of the other previous two versions.

Our implementation is based on XTEA cryptographic

algorithm, because it is more secure than the TEA and is

less energy–harvesting than the XXTEA version, as

described on table 1.

VI. CONCLUSION

In this paper, we have proposed a complete tamper-

proofing framework based on physical security schemes,

encryption, digital forensics and sand-boxing techniques

which offer 1) prevention of manipulation, reverse-

engineering, and reprogramming of sensors; 2) purely

software based protection with/without tamper-resistant

hardware; and 3) infrequent triggering of the verification.

Through securely executed isolates a verification of the

Integrity of the program of each sensor device is performed

successfully. For verification, it remotely calculates, 1) hash

value of every WDI being executed, 2) RAM dumps and

checks if the values match with those stored on IVDB

depending on the SDI_ID. All communication is through

encrypted channels.

Our security analysis has proven that the proposed

framework effectively defeats different types of attacks

while improving the state of the art in software based

protection mechanisms, furthermore from the simulations

conducted the protocol has proven to be low

REFERENCES

[1] R. Anderson and M. Kuhn, ―Tamper Resistance—A
Cautionary Note,‖ Proc. Second USENIX Workshop
Electronic Commerce, pp. 1-11, 1996.

[2] D.W. Carman, P.S. Kruus, and B.J. Matt, ―Constraints and
Approaches for Distributed Sensor Network Security,‖ NAI
Labs Technical Report, vol. 00, no. 010, Sept. 2000.

[3] R. Anderson, ―Why Cryptosystems Fail,‖ Comm. ACM, vol.
37, no. 11, Nov. 1994.

[4] S. Blythe, B. Fraboni, S. Lall, H. Ahmed, and U. Riu, ―Layout
Reconstruction of Complex Silicon Chips,‖ IEEE J. Solid-
State Circuits, vol. 28, no. 2, pp. 138-145, Feb. 1993.

[5] C. Collberg, C. Thomborson, and D. Low, ―Breaking
Abstractions and Unstructuring Data Structures,‖ Proc. IEEE
Int‘l Conf. Computer Languages (ICCL ‘98), pp. 28-38, May
1998.

[6] C. Wang, J. Hill, J. Knight, and J. Davidson, ―Software
Tamper Resistance: Obstructing Static Analysis of
Programs,‖ technical report, Dept. of Computer Science,
Univ. of Virginia, 2000.

[7] C. Wang, J. Hill, J. Knight, and J. Davidson, ―Protection of
Software-Based Survivability Mechanisms,‖ Proc. Int‘l Conf.
Dependable Systems and Networks, pp. 193-202, July 2001.

[8] G. Wroblewski, ―General Method of Program Code
Obfuscation,‖ Proc. Int‘l Conf. Software Eng. Research and
Practice (SERP), June 2002.

[9] M. Blum and S. Kannan, ―Designing Programs that Check
Their Work,‖ J. ACM, vol. 42, no. 1, pp. 269-291, 1995.

[10] H. Wasserman and M. Blum, ―Software Reliability via Run-
Time Result-Checking,‖ J. ACM, vol. 44, no. 6, pp. 826-849,
1997.

[11] F. Ergun, S. Kannan, S.R. Kumar, R. Rubinfeld, and M.
Vishwanathan, ―Spot-Checkers,‖ Proc. ACM Symp. Theory
of Computing (STOC ‘98), pp. 717-751,May 1998.

[12] D. Aucsmith, ―Tamper Resistant Software: An
Implementation,‖ Information Hiding, pp. 317-333, Springer-
Verlag, 1996.

[13] C.S. Collberg and C. Thomborson, ―Watermarking, Tamper-
Proofing, and Obfuscation—Tools for Software Protection,‖
IEEE, Trans. Software Eng., vol. 28, no. 8, pp. 735-746, Aug.
2002.

[14] B. Horne, L. Matheson, C. Sheehan, and R.E. Tarjan,
―Dynamic Self-Checking Techniques for Improved Tamper
Resistance,‖ Proc. First ACM Workshop Digital Rights
Management (DRM), pp. 141-159, 2002, 308 IEEE
TRANSACTIONS ON MOBILE COMPUTING, VOL. 4,
NO. 3, MAY/JUNE 2005

363

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

[15] H. Chang and M.J. Atallah, ―Protecting Software Code by
Guards,‖ Proc. Second ACM Workshop Digital Rights
Management (DRM), pp. 160-175, 2002.

[16] Taejoon Park, Kang G. Shin, ―Soft Tamper-Proofing via
Program Integrity Verification in Wireless Sensor Networks‖,
IEEE Transactions on mobile computing, VOL. 4, NO. 3, pp.
297-309, May/June 2005.

[17] Squawk Project, http://labs.oracle.com/projects/squawk/
(Accessed 4 April 2011)

[18] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
Software-based ATTestation for Embedded Devices. In IEEE
Symposium on Security and Privacy, pp. 272-282, May 2004.

[19] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote
software-based attestation for wireless sensors. In
Proceedings of the 2nd European Workshop on Security and
Privacy in Ad Hoc and Sensor Networks, pp. 27-41, 2005.

[20] Y. Yang, X.Wang, S. Zhu, and G. Cao. Distributed
softwarebased attestation for node compromise detection in
sensor networks. In Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems,
pp. 219-230, 2007.]

[21] O. Landsiedel, K. Wehrle, and S. Gotz, ―Accurate prediction
of power consumption in sensor networks,‖ in Proc. 2nd
IEEE Workshop on Embedded Networked Sensors (EmNetS-
II). IEEE Computer Society, 2005, pp. 37–44.

[22] B. L. Titzer, D. K. Lee, and J. Palsberg, ―Avrora: scalable
sensor network simulation with precise timing,‖ in Proc. 4th
Int‘l Conf. Information Processing Sensor Networks (IPSN
‘05), 2005, p. 67.

[23] http://www.xbow.com (Accessed 10 April 2011).

[24] NIST, ―Digital hash standard,‖ Federal Information
Processing Standards Publication 180-1, April 1995

[25] L. Foley, S. Wilson, "Analysis of an On-line Random Number
Generator", Trinity College Dublin, http://www.random.org, (
Accessed 8 April 2011).

[26] A. Zaharis, A. I. Martini, L. Perlepes, G. Stamoulis, and P.
Kikiras. 2010. Live forensics framework for wireless sensor
nodes using sandboxing. In Proceedings of the 6th ACM
workshop on QoS and security for wireless and mobile
networks (Q2SWinet '10), pp. 70-77

[27] D. Wheeler and R. Needham."TEA, a Tiny Encryption
Algorithm." 1995. Springer-Verlag.

[28] S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, and S. Lee.
"Differential cryptanalysis of TEA and XTEA." In
Proceedings of ICISC 2003, pp. 402-417, 2003b.

[29] E. Yarrkov. Cryptanalysis of xxtea. Cryptology ePrint
Archive, Report 2010/254, 2010. http://eprint.iacr.org/
(Accessed 27 May 2011).

[30] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci. 2002. Wireless sensor networks: a survey. Comput.
Netw. 38, 4 (March 2002), pp. 393-422. DOI=10.1016/S1389-
1286(01)00302-4

[31] Feistel H. "Cryptography and Computer Privacy", Scientific
American Vol. 228 No. 5, pp. 15-23, 1973

364

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

http://labs.oracle.com/projects/squawk/
http://www.xbow.com/
http://eprint.iacr.org/

