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Abstract — Typical sensor nodes are resource constrained 

devices containing user level applications, operating system 

components, and device drivers in a single address space, with 

no form of memory protection. A malicious user could easily 

capture a node and tamper the applications running on it, in 

order to perform different types of attacks. In this paper, we 

propose a 3-Tier Security Framework composed by physical 

security schemes, cryptography of communication channels 

and live forensics protection techniques that allows for secure 

WSN deployments. Each of the abovementioned techniques 

maximizes the security levels leading to a tamper proof sensor 

node. Even if the physical protection of the nodes is bypassed 

which is common in wireless sensor attacks, the attacker must 

surpass 2 more security tiers in order to perform a valid attack 

on the underlying network. By applying the proposed security 

framework, secure communication between nodes is 

guaranteed, identified captured nodes are silenced and their 

destructive effect on the rest of the network infrastructure is 

minimized due to the early measures applied. Our main 

concern is to propose a framework that balances its attributes 

between robustness, as long as security is concerned and cost 

effective implementation as far as resources (energy 

consumption) are concerned.  

 Keywords - Security Framework; Sand-boxing; live forensics; 

cryptography; wireless sensor networks. 

I.  INTRODUCTION 

Wireless Sensor Networks (WSN) are emerging as an 
important tier in the IT ecosystem where active research 
involving hardware and system design, networking, 
distributed algorithms, data management and security, is 
blended to deal with a unique environment with distinctive 
characteristics and demands. The main function of a sensor 
network is the utilization of tiny sensing devices which are 
capable of sensing various types of incidents/parameters and 
communicating those with other devices. Sensor networks 
sensing can be applied for many applications such as target 
tracking, surveillance, environmental monitoring, etc. [30]. 

Due to the  unattended environment on which wireless 
sensors operate and the resource constrained nature of these 
devices in the manner of computational capabilities, memory 
size and available energy, it is a major challenge to employ 

efficient security schemes coming from the computers or ad 
hoc wireless networks domain [2][30].   

In this paper, the critical security issues in wireless sensor 
networks are addressed, various types of threats and attacks 
against them are explored in order an efficient multi-tier 
security framework to be proposed.  

Furthermore, an evaluation of the combination of 
cryptography of the communication channel is presented 
along with valid sand-boxing techniques for providing 
protection in energy constrained embedded sensor nodes 

The three layers of the proposed framework are: 
a) Physical Sensor Protection 
b) Sand-Boxing 
c) Crypto-Communication 

 
 

Framework‘s primary goal is the effective blending of 

common security techniques such as physical security or 

cryptography with more modern ones like sand-boxing 

[1][2][26][27].  

The proposed protection framework is thoroughly 

presented along with real life use examples that prove its 

robustness and effectiveness against the most popular WSN 

security attacks. The overall concept of combining live 

forensics along with ―sand-boxing‖ techniques and other 

commonly used security schemes as cryptography in a 

single framework is, to our knowledge, a unique and out of 

the box security attempt that can lead to an impenetrable 

multi-tier security framework. 

The remainder of this paper is organized as follows: 

Section II provides a review of similar security techniques 

and frameworks. In Section III, we briefly explain the 

Layer 1: Physical 

Layer 2: Sand- boxing        

+Forensics 

Layer 3:   Crypto-    
             Communication 

Figure 1: Multi layer Security Framework 
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components on which the framework is based on. Section 

IV describes in details the proposed framework. In Section 

V, the framework‘s efficiency against different types on 

attacks in explained. Finally, Section VI some concluded 

remarks are presented. 

II. SIMILAR WORK 

Attacks on the sensor network can be classified as: 

a) Physical attacks on sensor devices, e.g., destroying, 

analyzing, and/or reprogramming sensors. 

b) Service disruption attacks on routing, localization 

c) Data attacks, e.g., traffic capture, spoofing. 

d) Resource-consumption and denial-of-service (DoS) 

attacks. 

One of the serious attacks to the sensor networks 

deployed in an unattended environment is physical 

tampering with sensors. An adversary can easily capture, 

reverse-engineer the sensor, and deploy (multiple clones of) 

manipulated sensors. The compromised sensors will then be 

exploited by the adversary to mount actual attacks which 

will facilitate the subversion of the entire network. 

Traditionally, the tamper-proofing of programs relies on 

tamper-resistant hardware [1][2]. However, hardware-based 

protection will likely fail to provide acceptable security and 

efficiency on its own because 1) strong tamper-resistance is 

‗expensive‘ to be implemented in resource-limited sensor 

devices and 2) the tamper-resistant hardware itself is not 

always absolutely safe due to various tampering techniques 

[1][3][4] such as reverse-engineering on chips, 

microprobing, glitch and power analysis, and cipher 

instruction search attacks.  

Existing approaches to generating tamper-resistant programs 

without hardware support can be classified as: 

a) Code obfuscation that transforms the executable code 

to make analysis/modification difficult [5][6][7][8]. 

b) Result checking that examines the validity of 

intermediate results produced by the program 

[9][10][11]. 

c) Self-decrypting programs that store the encrypted 

executables and decrypt them before execution 

[12][13]. 

d) Self-checking that embeds, in programs, codes for 

hash computation as well as correct hash values to be 

invoked to verify the integrity of the program under 

execution[12][14][15].  

e) Software based Attestation to remotely verify the 

integrity of sensor software [20]. 

However, most of the above mentioned approaches will 

more likely fail on sensor networks where a program runs 

on slow, less-capable microcontrollers.  

Software attestation is a challenge-response protocol 

where a verifier (e.g., base station) sends an attestation 

command to the attester (the node being attested) asking for 

certain state information as the evidence of its software 

integrity. Such state can be computed correctly only if the 

attester‘s system meets certain integrity requirement. After 

receiving the response, the verifier compares it with the 

known good state to check if the software at the attester has 

been corrupted. If a sensor node fails to give the correct 

answer, actions can be taken to revoke this node from the 

network.  Several software attestation schemes have been 

proposed to attest the static memory regions of the software  

[17][18][19][20]. 

Physical hardening of the sensor is the first obstacle an 

attacker must overcome in order to tamper a wireless sensor. 

The effectiveness of the physical security on sensors is 

usually low and a WSN based only on physical security 

cannot be considered as secure. In our approach physically 

securing a sensor is the layer of defense mostly used to 

prevent less determined attackers. Our second defense 

scheme strips the major functions of a live forensics check 

on an average system in order to match with the limited 

resources of a sensor, leading to the important conclusion of 

whether a sensor is compromised. 

The live forensics security layer proposed in this paper 

verifies the integrity of the program residing in each sensor 

through a process that has been specifically designed to: 

a) Prevent altering / manipulation / reprogramming of 

the sensor 

b) Be purely software-based. 

c) Work on sensor devices with severe resource 

limitations 

d) The verification of the different parameters tested 

does not add large overhead to the communication. 

e) Prevent eavesdropping attacks on the 

communication channel. 

III. LIVE FORENSICS FRAMEWORK 

As the need for decentralized security emerges in large 

public wireless sensor networks; new application level 

security mechanisms aim at providing application 

developers with appropriate abstractions for designing the 

security aspects of the target software. 

In computer security, a sandbox is a security mechanism 

for separating running programs. It is often used to execute 

untested code, or untrusted programs from unverified third-

parties, suppliers and/or untrusted users. 

It typically provides a tightly-controlled set of resources 

for guest programs to run in, such as scratch space on disk 

and memory. In this sense, sandboxes are a specific example 

of virtualization. 

Zaharis et al. [26] proposed a protocol based on 

sandboxing technique. According to this approach, they 

divide isolates in two categories: 

 The Security-Dedicated Isolates (―SDI‖) 

 The Work-Dedicated Isolates (―WDI‖) 

An Isolate Verification Server plays a key role on 

verifying the genuine WDIs from the malicious ones while 

performing all the computational and energy consuming and 

needy tasks. 
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The verification of genuine WDIs is based on 1) RAM 

dumbing and 2) Hashing techniques. 

This framework uses a secure RAM dumping technique 

specially designed for sensors. This technique provides the 

framework with safer intrusion recognition while complying 

with the classic digital forensic techniques. 

The Hashing technique that is used by the framework is 

based on the Randomized Hashing Function [16]. This 

technique is used on the Work-Dedicated isolates in order to 

acquire highly secure tamper-proofing on sensor-resident 

programs. The hashing function plays a key role in the 

effectiveness of the proposed architecture as it is robust 

technique, used frequently in computer security and digital 

forensics due to its precision in detecting altered code. 

Our goal is to improve this mechanism by enriching it 

with cryptographic procedures, in order to provide a secure 

end-to-end data delivery framework.  

A. Cryptography 

The Tiny Encryption Algorithm (TEA) is a 

cryptographic algorithm designed to minimize memory 

footprint and maximize speed. It is a Feistel type cipher that 

uses operations from mixed (orthogonal) algebraic groups 

[31]. Despite its robustness minor extensions have been 

published in order to present safer encryption results. In this 

research, we determine the weaknesses and identify the 

robustness of TEA, XTEA and XXTEA algorithms in 

wireless sensor networks and implement them in secure 

framework to harden security during communication 

[27][28][29]. 

The conditions must be met in order the algorithm to bet 

truly ―inseparable‖ are: 

 The distribution of keys must have been to all 

nodes in a secure manner. 

 Each message uses a secure, unique key. 

 The key generation has become with a truly 

random cryptographic way 

In order to generate a set of unique, truly random keys, 

we use the Random Number Generator service designed and 

operated by the University of Trinity [25]. 

RANDOM.ORG‘s source of entropy is atmospheric noise. 

This noise is obtained by tuning a radio to a radio frequency 

that no one is using. It is then played into a workstation 

where a program converts it to an 8-bit mono signal at a 

frequency of 8 KHz. Then the first seven bits are discarded 

and the remaining bits are gathered together. This stream of 

bits has very high entropy. 

A possible attack on the generator is to broadcast on the 

frequencies that the RANDOM.ORG radios use in order to 

affect the generator. However, radio frequency attacks of 

this type would be difficult for a variety of reasons. First, 

the frequencies that the radios use are not published, so an 

attacker would have to broadcast across all frequencies of 

all bands used for FM and AM broadcasting. Second, this is 

not an attack that can be launched from anywhere in the 

world, only reasonably close to the generator. 

RANDOM.ORG currently has radio receivers in several 

different countries, which would make it difficult to 

coordinate this type of attack. Third, if an attacker actually 

did succeed at broadcasting highly regular signals (e.g., 

perfect sine waves) at exactly the right frequencies from the 

right locations, then the RANDOM.ORG real-time 

statistics would pick up the drop in quality very rapidly , 

which would raise an alert [25]. 

IV. NETWORK ARCHITECTURE 

Our sensor network consists of an Isolate Verification 

Server (IVS) an Isolate Verification Database (IVDB) and 

numerous sensors which consist of an SDI and one or more 

WDIs. The Security-Dedicated Isolate (SDI) is the one 

executed on start up and conducts the forensics check of the 

second isolate. The ‗SDI‖ is the one responsible for the 

communication with the Isolate Verification Server (IVS) 

The Role of the Isolate Verification Server is: 

 To communicate with the SDI of every sensor in its 

vicinity. 

 To update/manage its local IVDB. 

 To act as a trusted authentication third party. 

For scalability, we let cluster-heads in a cluster-based 

hierarchical architecture serve as IVSs. This allows each 

IVS to maintain a local IVDB that stores SDI_IDs of the 

sensors belonging to its own cluster.  

It is undesirable to equip only one IVS in a network as it 

becomes a single point of failure and the performance 

bottleneck and so use multiple IVSs can be deployed over 

the entire network. We assume that there exists a 

mechanism for a sensor to learn how to discover, and reach, 

an IVS. 

The proposed architecture leads to a decentralized model 

of sensor protection where its cluster head / IVS is 

responsible for its sensors. Of course, all this information 

must be gathered in a master IVS with the total IVDB of the 

whole WSN.   

A. Sandboxing In Action 

In order to achieve the maximum tampering protection 

of our sensors, sand-boxing is applied to achieve safety 

against malicious code execution. While more than one 

Security-Dedicated Isolates can run on a sensor in our 

proposed Framework we will use one per sensor.  

 
Figure 2: The isolates on a sensor 
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On the other hand, more than one Work-Dedicated 

Isolates can run on a sensor performing different tasks. The 

verification process performed on a single WDI applies for 

more than one instance with the same results. Failure to 

verify one of the WDIs leads to locking and blacklisting of 

the sensors. 

1) Security dedicated isolate 

The Security-Dedicated Isolate is actually a mini 

forensics tool case specially created to perform live 

forensics in a sensor, on demand or periodically in order to 

specify if the sensor is compromised and react depending on 

the result. 

The Security-Dedicated Isolate has a unique id/key for 

every sensor, the ―SDI_ID‖ that is used in order to 

communicate with the Isolate Verification Server.   

On the first supervised boot the SDI is the first to execute 

and perform a mini mapping and state validation of the 

sensor. These results are stored on the Isolate Verification 

Database (‗IVDB‘) which resides on the Isolate Verification 

Server (‗IVS‘). As in every Digital Forensics case these data 

are going to be used as a proof of the sensors authenticity on 

the field.    

From now on all data transmitted by the SDI are going to 

be compared to those stored on the ‗IVDB‘ depending on 

the ―SDI_ID‖. 

The tasks the SDI is responsible for are: 

a) Communicating safely with IVS. 

b) Checking the Work-Dedicated Isolates. 

c) Applying countermeasures upon intrusion 

detection. 

2) Work dedicated isolate 

The Work-Dedicated Isolate performs the everyday tasks 

of a typical sensor. Due to the sand-boxing technology, 

more than one WDI can be executed simultaneously on a 

sensor, performing different tasks. Execution of non 

verifiable WDIs will lead to the activation of 

countermeasures by the SDI.  

 

Figure 3: More than one WDI and their check parameters 

The fingerprinting of the performance of every isolate on 

different parameters is stored on Isolate Verification 

Database along with the SDI_ID of the sensor on which the 

WDIs belong. 

The fingerprinting parameters of a WDI can depend on: 

a) The hash value of the isolate. 

b) The RAM dump of the isolate. 

B. State-Transition Diagram 

Each sensor device is associated with one of four states: 

a) ―LOCKED‖ 

b) ―VERIFYING‖  

c) ―ACTIVATED‖ 

d) ―COUNTERMEASSURES‖ 

When a sensor starts its execution, it is in the LOCKED 

state. Upon deployment a sensor device will remain in 

LOCKED state until it securely authenticates with IVS. No 

other tasks can be performed until it is authenticated. 

After a valid authentication, it makes a transition to the 

VERIFYING state by executing the SDI verification checks. 

The stripped results are transmitted back to the IVS where: 

If the verification fails, it returns to the LOCKED state, 

causing the network to deny this sensor‘s access to the 

network. Otherwise, it transitions to the ACTIVATED state, 

in which the WDIs code is normally executed. Periodic re-

verification by the SDI during ACTIVATED state can lead 

to LOCKED state or COUNTERMEASSURES state. 

COUNTERMEASSURES is the state in which a sensor is 

already accepted on the network and then compromised. In 

order to avoid denial of service attacks on which the 

attacker can lead all sensors to LOCK state, the 

COUNTERMEASSURES state can be used. In this state the 

compromised sensor tries to identify the type of attack on 

which it has been subjected through a different type of live 

forensics process. All other nodes ignore the compromised 

node through an alarm message send by the IVS. Finally it 

returns to the LOCKED state. 

 
Figure 4: State Diagram 

C. Authentication Protocol 

The proposed protocol is consisted by three phases where 

certain actions must take place. These phases are divided into 

actions prior to deployment, during the ―initialization‖ phase and, 

while in regular operation. 

1) Pre-deployment phase 

During the phase prior to deployment a set of random 

keys is generated by the base station. This set is stored to 

the tamper resistant storage area and it is the same for each 

of the network‘s nodes. This set will act as the key 

repository from where the nodes and the base station will 

choose their encryption keys during the operational life of 

the network. 

The generation of the keys prior to deployment allows 

for significant gains in the energy consumed by the nodes, 

due to the fact that in order to compute a strong 
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cryptographically key, a number of complex mathematical 

operations and a sequence of iterations are required, which 

are energy consuming and computational demanding 

operations.   

2) Initialization phase 

 After the deployment of the network the following 

actions are taking place:  

a) Initiation: This step starts the authentication 

protocol between the IVS and the sensor by 

transmitting the SDI_ID. The sensor, after 

receiving the IVS_ID, asks for authentication.  

If the authentication fails the protocol is 

terminated. 

b) If authentication succeeds, SDI is executed.  

c) The result of SDI is transmitted back to IVS. IVS 

checks the IVDB and validates the results. The 

received hash value and Ram dump are checked. If 

it passes the test, the IVS registers the sensor in the 

IVDB. Then, the IVS notifies the sensors SDI of 

the verification result. 

d) Based on the verification result, the sensor is either 

activated or locked. The sensor state will be 

changed to either ACTIVATED or LOCKED, 

accordingly. 

Step 1 ensures sensor security, i.e., a malicious device 

can neither passes the authentication procedure nor has its 

own code executed on the sensor as far as the IVS‘s 

authentication key is kept secret from the attacker.  

3) Regular operation 

After the initialization phase, the activated sensors can 

perform the data‘s collection, encryption and transmit ion to 

the base station. 

All message transactions, described to the above phases, 

are encrypted using the XTEA cryptographic algorithm. 

Each message is encrypted with a key belonged to the set of 

random keys deployed during the Pre-Deployment Phase of 

the protocol. 

D. Verification Protocol 

The verification of a sensor is based on two widely used 

digital forensics techniques 1) Hashing (RHF) and 2) RAM 

dumping per WDI. 

 
Figure 5: Fingerprinting a WDI 

1) Hashing 

Every Work-Dedicated Isolates has a unique Randomized  

Hashing Function (RHF)[16]  which can be easily and with 

a minimum cost be calculated. Once calculated for every 

user it is stored on ISDB along with the SDI of every sensor 

creating the first fingerprint of the sensor. 

Also thanks to the fact that sensors of the same network 

usually perform the same task can lead to a smaller number 

of different hash patterns stored on ISDB per WDI. 

Each WDI can be classified as being 1) common to all 

sensors in the network, 2) common to a group of sensors 

with the same missions, or 3) unique to a specific sensor.  

2) RAM Dump 

When using this technique, our SDI reads arbitrary RAM 

contents from the different WDIs running on the sensor. 

Every process running on a system leaves specific, well 

distinguished footprint on the RAM. Our goal is to create 

hash like footprint of the memory and store it on ISDB 

along with the SDI of every sensor creating the second 

fingerprint of the sensor. In order to keep our framework in 

energy efficient levels specific parts of the RAM dump are 

checked concerning the execution of the WDIs. 

These WDI –specific fingerprints are also hashed using 

the Randomized Hashing Function providing an extra 

protection parameter. 

E. Protocol Implementation 

In order to evaluate our protocol we have implemented 

it on Mica2 sensor nodes [23]. The MICA2 is a third 

generation mote module used for enabling low-power, 

wireless sensor networks. It consists of an ATMega128L 

CPU, 4kb of Ram, 128kb of program memory and 512kb of 

serial flash memory and a ChipCon CC1000 radio. The 

Crossbow MTS310 sensor board was used which provides 

temperature, and other sensor types. 

The protocol is implemented in two parts; the first part 

corresponds to IVS code (Figure 6) and the second to sensor 

code (Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: IVS Code 

IVS Code 
on receive UserHashMsg: 
 receive( idAddr , UserHashMsg ); 

decrypt(UserHashMsg); 
 if( check (UserHashMsg) == valid() ){ 
  VerifyMsg = Valid; 
  encrypt(VerifyMsg); 
  send( idAddr , VerifyMsg ); 
 } 
 else{ 
  VerifyMsg = Invalid; 
  encrypt(VerifyMsg); 
  send( idAddr , VerifyMsg ); 
 } 
 
on receive HashMsg: 
 receive( idAddr , HashMsg ); 

decrypt(HashMsg); 
 if( IVDBcheck (HashMsg) == valid() ){ 
  VerifyMsg = Valid; 
  encrypt(VerifyMsg); 
  send( idAddr , VerifyMsg ); 
 } 
 else{ 
  VerifyMsg = Invalid; 
  encrypt(VerifyMsg); 
  send( idAddr , VerifyMsg ); 
 } 
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The messages sequence diagram of the aforementioned code 

implementation can be seen in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Sensor Code 

 

 
Figure 8: Protocol Messages 

 

a) During the Pre-deployment Phase, each node equipped 

with a set of secure keys. (120 keys.) 

b) The client node encrypts the SDI_ID using the XTea 

algorithm. 

c) The client node sends the 80-bit encrypted message to 

IVS  

d) The IVS decrypts the message and checks the 

authenticity of the SDI_ID (this step was simulated 

with 1 sec delay during simulation).  

e) IVS sends to the sensor the appropriate response 

(valid/invalid). 

f) On valid response sensors turns from locked to 

verifying status, initiates the hashing and RAM-

dumbing procedure (during the simulation we have 

used the SHA-1 algorithm (~13ms/hash) [24]. For the 

calculation of the hash – value the algorithm utilizes 

512 bytes from the memory and produces a 160 bit 

hash.    

g) The sensor encrypts the 160-bit hash values, producing 

a 208-bit message. The sensor transmits the 208bit 

message to the IVS for validation.  

h) IVS verifies the validity of the sensor's hash value.  

(This step was simulated with 1 sec delay during 

simulation).  

i) IVS validates or the sensor. 

j) Sensor turns status into ACTIVATED or LOCKED in 

accordance with IVS message. 

F. Energy Analysis 

In order to measure protocol‘s energy consumption we 

have implemented it and simulate its performance in Avrora 

Simulator. Avrora [22] is a set of simulation and analysis 

tools for programs written for the AVR microcontroller 

produced by Atmel and the Mica2 sensor nodes. Avrora 

contains a flexible framework for simulating and analyzing 

assembly programs, providing a clean Java API and 

infrastructure for experimentation, profiling, and analysis. 

Avrora uses the AOEN (Accurate Prediction of Power 

Consumption)[21] energy consumer model. AOEN uses 

empirical current consumption measurements (of hardware 

such as the radio transceiver, microcontroller and sensors) to 

calculate the overall power consumption.  AOEN is based 

on the execution of real application and OS code and 

measurements of node current draw, this model enables 

accurate prediction of the actual energy consumption of 

nodes. Thus, it prevents erroneous assumptions on device 

and network lifetime.  Such a detailed prediction allows the 

comparison of different low power and energy aware 

approaches in terms of energy efficiency and the estimation 

of the overall lifetime of a sensor network.  

1) Energy cost of cryptography operations. 

Table 1 compares the energy consumed by the different 

versions of TEA cryptography algorithm. The values 

represent the energy consumed by a node in order to execute 

the following procedure: 

 Encryption and sending of a 64-bit packet 

 Receiving and decryption of the 64-bit packet. 

The SIMPLE algorithm represents the procedure of sending 

and receiving the raw packet, without the execution of any 

cryptographic command. 

We do not present the cost of key generation. We assume 

that the key is created during the pre-deployment phase, as 

described on section IV. 

TABLE 1. ENERGY COST OF TEA CRYPTOGRAPHY ALGORITHMS IN ORDER 

TO ENCRYPT-SEND/DECRYPT-RECEIVE 64BIT DATA.(ΜJOULE) 

Algorithm 
Energy Cost 

Encryption – Send Receive - Decryption 

SIMPLE 6041.81μJoule 6002.94 μJoule 

TEA 6067.82 μJoule 6030.77 μJoule 

XTEA 6071.98 μJoule 6033.19 μJoule 

XXTEA 6087.23 μJoule 6042.30 μJoule 

Sensor Code 
on boot: 
 state = LOCKED; 

encrypt(UserHashMsg); 
 send( broadcastAddr , UserHashMsg ); 
 
on receive VerifyMsg: 
 receive( idAddr , VerifyMsg ); 

decrypt(VerifyMsg); 
 if( VerifyMsg==Valid && state==LOCKED){ 
  state = VERYFING; 
  HashMsg = computeHashValue(); 

 encrypt(HashMsg); 
  send( broadcastAddr , HashMsg  ); 
 } 
 else if( VerifyMsg==Valid && state==VERYFING){ 
  state = ACTIVATED; 
  start_data_process(); 
 } 
 else{ 
  state = LOCKED; 
 } 
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Figure 9: Energy cost of TEA cryptography algorithms. (μJoule) 

 

2) Energy Cost of Attestation Protocol. 

We analyze the energy usage of the Attestation‘s protocol 

handshake procedure. Table 2 compares the energy 

consumed by the 2 different version of the protocol. The 

main difference between these versions is the encrypted 

message transactions that are implemented in the second 

protocol. As described above, in the Encrypted Attestation 

Algorithm we the TEA cryptographic algorithm in order to 

provide an end-to-end secure data delivery protocol. For our 

analysis we chose to focus on XTEA version of TEA‘s 

family cryptographic algorithms.  

TABLE 2. ATTESTATION‘S PROTOCOL ENERGY COST (JOULE). 

Protocol 
Energy Cost 

CPU 

Energy 
Radio Energy Total Energy 

Attestation 

0.02286 
Joule 

0.06034 Joule 0.08321 Joule 

Encrypted 

Attestation 

0.02311 

Joule 
0.06094 Joule 0.08406 Joule 

 

 
Figure 10: Energy cost of Attestation‘s protocol handshake procedure. 

(Joule) 

V. SECURITY ANALYSIS 

Examples of our proposed framework efficiency against 

different types on attacks will be displayed in this paragraph 

along with real life scenarios that prove its robustness. 

A. Physical Attacks 

Physical attacks that can impact the coverage of the 

WSN and in many cases make the WSN inoperable. 

Because of the widespread placement of the individual 

nodes in an often non-secure and unmonitored area, 

individual nodes are subject to capture. Physical hardening 

of the sensors against reverse-engineering on chips, 

microprobing, glitch and power analysis, and cipher 

instruction search attacks on the first layer of security of the 

proposed framework can lead to the needed results. 

B. Replay Attacks 

Replay attacks (i.e., intercepting a message and 

replacing it with an old message) cannot succeed as the 

proposed hash computation and verification are keyed 

operations that can be defeated as following: First, reporting 

a different SDI_ID will be detected by IVS when its 

uniqueness is checked and, moreover, the malicious sensor 

will not be able to pass the hash of RAM dump test unless it 

has the matching program which must be free of malicious 

codes and created an exact fingerprint. Second, modifying 

the Hash algorithm will cause inconsistency between two 

hash outputs and, hence, the verification will fail. 

Encryption of the communication channel makes it more 

difficult for an attacker to forge messages, as the messages 

have to be encrypted with the appropriate secret key.  

C. Forgery Attacks 

We will now show that it is impossible for the adversary 

to forge the hash value without the knowledge of all the 

specific parameters previously described, for each WDI. 

Consider the situation where the adversary reprograms the 

sensor with a malicious program and attempts to fake the 

verification process by nullifying the effect of the output of 

the Hash algorithm. This is impossible because the Hash 

algorithm is inherently a nonlinear function of program 

blocks. Thus it is impossible to create a malicious WDI that 

has the same RHF as the original. Encryption of the 

communication channel makes it impossible for an attacker 

to forge the communication between two nodes as unique 

keys are distributed to every node. 

So, what can prevent an attacker from capturing and 

reverse-engineering a sensor, and using the same sand-

boxing technique to keep a good copy of the sensor running 

in order to feed good answers to the challenge-response 

protocol initiated by the verifier?  

The attacker will not be able to manipulate the sending 

data of the captured sensor by internal means as changes 

will be detected by the present SDI. Any attempt to copy 

only the WDIs will fail as no authenticated messages are 

going to be sent to the authentication authority leading to 

rendering the sensor useless. Any attempt to copy both 

images SDI and WDI in a different sensor or a more 

resource efficient device will lead in creating different Ram 

dumps, both in size and structure leading to non verification 

of the WDI and locking the sensor out of the network. The 

only way you can copy both SDI and WDI in a different 

device and get valid results is by copying them in the exact 
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sensor model (hardware and software) thus leading to 

forensically sound proof results. 

D. Hardware Tampering Attacks 

If the malicious sensor has enough memory to maintain 

the original program blocks some of the previously stated 

attacks can succeed. However, as it has been previously 

defined upon initiation of our Framework a specific 

fingerprint of both the hash value of the WDIs and RAM 

dump has been stored. 

Therefore, there is no room left in the sensor for the 

adversary to save and execute arbitrary code. The adversary 

may attach more memory to each sensor, but it will incur a 

considerable amount of hardware modification while the 

Ram dump check will identify the attack. Moving/Copying 

the isolates in different sensors, as far as hardware specs is 

concerned, or a personal computer will lead to rendering the 

sensor useless because of the RAM dump check 

inconsistencies. 

E. Encryption Algorithms 

TEA operates on 64-bit blocks and uses a 128-bit key. It 

has a Feistel structure with a suggested 64 rounds, typically 

implemented in pairs termed cycles. It has an extremely 

simple key schedule, mixing all of the key material in 

exactly the same way for each cycle. 

TEA has a few weaknesses. Most notably, it suffers from 

equivalent keys—each key is equivalent to three others, 

which means that the effective key size is only 126 bits. 

TEA is also susceptible to a related-key attack which 

requires 223 chosen plaintexts under a related-key pair, with 

232 time complexity. 

Because of these weaknesses, we chose to focus on 

XTEA version of TEA‘s family cryptographic algorithms. 

XTEA is a 64-bit block Feistel network with a 128-bit key 

and a suggested 64 rounds. Several differences from TEA 

are apparent, including a somewhat more complex key-

schedule and a rearrangement of the shifts, XORs, and 

additions. 

Also, a third version Corrected Block TEA (often 

referred to as XXTEA) was designed, in order to correct 

weaknesses of the other previous two versions. 

Our implementation is based on XTEA cryptographic 

algorithm, because it is more secure than the TEA and is 

less energy–harvesting than the XXTEA version, as 

described on table 1. 

VI. CONCLUSION 

In this paper, we have proposed a complete tamper-

proofing framework based on physical security schemes, 

encryption, digital forensics and sand-boxing techniques 

which offer 1) prevention of manipulation, reverse-

engineering, and reprogramming of sensors; 2) purely 

software based protection with/without tamper-resistant 

hardware; and 3) infrequent triggering of the verification. 

Through securely executed isolates a verification of the 

Integrity of the program of each sensor device is performed 

successfully. For verification, it remotely calculates, 1) hash 

value of every WDI being executed, 2) RAM dumps and 

checks if the values match with those stored on IVDB 

depending on the SDI_ID. All communication is through 

encrypted channels.  

Our security analysis has proven that the proposed 

framework effectively defeats different types of attacks 

while improving the state of the art in software based 

protection mechanisms, furthermore from the simulations 

conducted the protocol has proven to be low 
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