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Abstract—The paper presents a novel approach to semantic Web
service matchmaking, which involves a use of multilinear data
representation and processing. The proposed solution involves
the use of a novel tensor data filtering method based on a set of
covariance matrices derived from a hierarchical tensor structure.
We provide results of experimental evaluation of the proposed
solution conducted with the use of the Semantic Service Selection
(S3) contest dataset. The evaluation has been done using the
standard Information Retrieval methodology that assumes the
methodologically correct partitioning of the dataset on mutually
exclusive subsets: the training set and the testing set. The
experimental evaluation results presented in the paper indicate
superiority of the covariance-based tensor filtering method over
other state-of-the-art tensor processing methods in terms of the
matchmaking quality measured using mean average precision and
Area Under the ROC curve (AUROC) measures.

Keywords–Semantic Service Selection; tensor-based multirela-
tional data modeling.

I. INTRODUCTION

Semantic Web Service (SWS) technologies are aimed at
discovering and matching Web services using their functional
and nonfunctional semantic representations. Due to practical
importance of SWS solutions, in recent years the attention
of scientific community has been paid on the development of
methods which enable to embed the semantics into the dis-
covery, matchmaking, and mediation processes [1]–[5]. In this
paper, we investigate matchmaking of Web services described
using the Semantic Annotations for Web Service Description
Language (SAWSDL) standard which is based on enriching
Web Services Description Language (WSDL) documents with
semantic annotations in the form of references to ontologies.
The presented research uses the widely-referenced [1]–[5] data
collection – SAWSDL-TC [6] – developed for the purposes of
the Semantic Service Selection (S3) contest [7].

A. Research Motivation

The most important part of each service matchmaker is its
matching algorithm, which determines the means of the rele-
vance measurement applied to a pair of Web services. The S3
contest editions have shown that the best results are achieved
by the adaptive hybrid matchmakers, such as [2][4][7], which
use a part of the test collection for optimization purposes.
Hybrid matchmaker systems make use of several types of
similarity algorithms for Web service descriptions (including
logical and lexical similarity algorithms) and subsequently
compute the overall similarity based on the importance weights
of partial results optimized according to the cross-validation

approach. One of the main goals of this paper is to investigate
input data integration as an alternative to the widely-proposed
integration at the level of final results provided by several
hybridized subsystems (systems operating in accordance to
different approaches to the Web service matchmaking task). In
order to enable such a solution, we have used the tensor-based
data representation which is suitable to integrate heterogeneous
data. This approach results in no need for a further aggregation
of all fragmentarily computed similarities.

The tensor-based data representation has been already
recognized as a suitable tool for storing the multidimesional
data in a compact way [8][9] that may be effectively used in
many application areas related to machine learning [8][10]–
[12]. We recognized the application of tensor data represen-
tation to the semantic service selection task as a promising
approach, especially because the S3 task requires the need of
retrieving the information from heterogeneous data sources. As
a consequence, the experimental evaluation presented in this
paper is focused on comparison of the proposed tensor-based
data processing method with state-of-the-art methods.

B. Contribution

The main aim of this paper is to present the novel approach
to the S3 task based on two-step processing consisting of the
heterogeneous data integration step and the processing of the
integrated data using the tensor model.

The important part of the paper contribution is related to
evaluation methodology issues. In contrast to the methodology
used in the S3 contest, the described experimental results are
based on partitioning the dataset into a training and a testing
set in such a way that the data used for testing the performance
are not previously used to learn or tune the model. Alas,
such an approach is not used in the S3 contest. According
to the contest rules the participating matchmakers provide the
recommendation results for the whole set of service requests
described in the dataset. The S3 evaluation tool does not
provide any additional set of reference matchings which may
be used as a training set. For this reason, in this paper, we
propose to consider the semantic service matchmaking task as
a case of semi-supervised learning in which unlabeled data are
used in conjunction with a small amount of labeled data [13].
Due to above-explained evaluation methodology differences,
the provided performance evaluation does not contain a direct
comparison of the proposed method’s operation to the S3
contest results.

The rest of paper contribution includes: (i) the data in-
tegration framework, which enables the transformation of
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SAWSDL and Web Ontology Language (OWL) documents
into the set of n-tuples (or Resource Description Framework
(RDF) statements) and then the aggregation of these data using
the tensor-based data representation, (ii) the first tensor-based
SWS matchmaking engine involving the use of the tensor-
based data processing system based on a filtering method
which applies the covariance data derived from a hierarchical
structure of tensor flattenings, and (iii) the comprehensive
comparison of several matchmaking algorithms including those
based on the state-of-the-art tensor processing techniques (i.e.,
N-way Random Indexing [14] and Higher Order Singular
Value Decomposition (SVD) [15]).

The paper is structured as follows. Section II provides a
discussion on related work, which contains a brief presentation
of state-of-the-art SWS matchmaking solutions, their limita-
tions, as well as tensor-based data processing algorithms. The
proposal of tensor-based semantic service recommendation
system including the semantic data integration framework and
tensor-based recommendation engine is given in Section III.
Next, the tensor-based data representation and filtering method
is provided in Section IV. Section V contains the description
of the evaluation methodology and of the algorithms used for
comparison. Section VI provides the experimental results and
their analysis. Finally, the paper is concluded in Section VII.

II. RELATED WORK

In this section, the advantages and limitations of leading
state-of-the-art matchmaking solutions – in context of semanti-
cally annotated Web services – are discussed. Additionally, the
tensor-based data processing assumptions and state-of-the-art
algorithms are introduced.

A. State-of-the-art Web Service Matchmakers

The state-of-the-art Web service matchmakers make use of
different knowledge representation formalisms and are usually
referred to as hybrid solutions. They are known to achieve
better results then logic-based only or non-logic-based only
approaches in terms of the precision and recall measure [3].
Authors of the articles describing their hybrid matchmakers
drew an attention to the problem of an aggregation of different
matching results. Primarily weights of logical, text similarity
and structural similarity matchings are set manually based on
tests and analysis. It follows that any change of ontologies or
services forces re-testing and re-analysis in order to select new
appropriate weights [1]–[3][5]. Thus, a new adaptive approach
has been proposed, which resolves this issue by letting the
matchmaker learn what is the best adoption of weights. The
main benefit of an adaptive approach is that a matchmaker
settings are not dependent on a particular data collection. In
order to adapt the system for a new dataset, it is sufficient to
recalculate the weights in the off-line relearning process.

It should be stressed, however, that the evaluation pro-
cedure of the S3 contest [7] does not provide a separate
set of reference matchings that may be used as a training
set. Nevertheless, the contest participants’ solutions based on
the adaptive hybrid recommendations [1]–[5] use matchings
from the test set in order to find the optimal set of weights
in the procedure based on the k-fold cross-validation tech-
nique. In particular, the mentioned systems apply different

machine learning techniques when determining the weights
for particular strategies of the hybrid solution, including lo-
gistic regression, simple linear regression and support vector
regression (SAWSDL-iMatcher [1]), ordinary least squares
estimator (LOG4SWS.KOM [5]), and support vector machine
(SAWSDL-MX2 [3]). Such an approach violates principles
of recommendation systems evaluation [16]–[18] because it
allows to learn from the information which is also the subject
of testing. Another adaptive hybrid matchmaking system –
URBE [2] – also assumes the system configuration phase in
order to optimize the hybrid algorithm parameters, but, in this
case, the authors have also conducted an evaluation assuming
the partition of the set of reference matchings into mutually
exclusive training and testing sets. However, this approach was
applied only for the case of tests using dataset OWLS-TC of
the S3 contest [7] track devoted to the OWL-S standard.

In contrast to the S3 contest evaluation methodology,
the performance evaluation described in this paper assumes
the explicit specification of the information about referential
mappings used for training purposes and does not use these
mappings in the testing phase. Such an approach is consti-
tutional for the matchmaking system proposed in Section III,
which assumes the application of input data integration instead
of the integration done at the level of final results of using
different strategies.

B. Tensor-Based Data Representation and Processing

The main goal of the paper is to propose a new approach
to the S3 task involving the processing of the integrated
data using the tensor model. Higher-order tensors are al-
ready used in many areas of research as a model for data
representation [8]–[10][19], including the signal and image
processing, higher-order statistic or scientific computing. At
the same time, it may be observed that the tensor data
model has been widely used for various information retrieval
application, mainly by means of 3-rd order tensors used for
multirelational data analysis, e.g., as presented in [11][12] for
the case of processing RDF statements. It is well known that
many problems in machine learning involve the processing of
information with multiple aspects and high dimensionality. For
such problems, the tensors are regarded as the most natural and
compact representation for multidimensional data, however,
they have to be accompanied by some low-rank approximation
approach [8][9], e.g., based on tensor decomposition [19]–
[21]. The semantic service matchmaking task, as an application
scenario which involves the processing of multirelational and
multidimensional data from heterogeneous sources (OWLs,
SAWSDLs, textual data), seems to be another research area
for which tensor data representation and processing methods
may be efficiently applied.

It has to be admitted that the exponential grow of number
of tensor elements observed with the increase of the number of
tensor dimensions (usually referred to as tensor modes [10])
seems to be the main reason, why a significant part of the
experimental research on tensor models is limited to the case
of 3-rd order multidimensional structures [10][11][14][15][21].

In the context of multilinear data processing, the most
widely known form of per-mode tensor filtering is the pro-
jection of tensor ‘fibres’ laying along the given tensor mode
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into a subspace spanned by the modes’ principal components
– the projection being the main tool of filtering based on
Higher-order Singular Value Decomposition (HOSVD) [15]
and Multilinear Principal Component Analysis [10]. However,
the state-of-the-art solutions do not investigate the theoretical
basis for optimality of the multilinear dimensionality reduction
heuristics, as far as practical prediction quality, rather than
some ‘technical’ criteria such as Frobenius norm preservation,
is concerned [15][22]. Moreover, in order to be effective,
the multilinear data modeling has to follow mathematical
constrains derived from the area of statistics, algebra, or
probability theory, [10][20][21][23]. The issues concerning
the proper data centering necessary to provide the efficient
multilinear principal component analysis are one of the exam-
ples of such a constrains [23]. In this paper, we present and
experimentally evaluate the tensor filtering method involving
the use of covariance matrices derived from different tensor
structures, which addresses the above-mentioned issues.

III. TENSOR-BASED SEMANTIC SERVICE
RECOMMENDATION SYSTEM

The purpose of the proposed system is to provide accurate
Web service recommendations – referred to as offers – for a
given Web service description – referred to as query. Both
offers and queries are assumed to be represented in the form
of SAWSDL documents with references to objects described
in OWL ontologies. The general architecture of the proposed
system includes two main components:

1) The converter selecting essential information from
SAWSDL descriptions, OWL documents, and reference
matchings used to train the model and subsequently
transforming them into a common representation.

2) The recommendation engine, described in Section IV,
aimed at generating the high quality recommendations.

Thus, the quality of tuples, which are chosen as internal data
representation of the system, generated by the converter is
crucial for final recommendations accuracy. It should be also
taken into account that the information from heterogeneous
data is aggregated at the beginning of processing rather than,
as in the case of the state-of-the-art solutions (discussed in
Section II), as the last step.

As shown in Figure 1 an SAWSDL description is a WSDL
document enhanced with semantic annotations linking various
parts of the Web service description to corresponding OWL
ontology classes.

The introduced framework processes every SAWSDL doc-
ument along with other linked XML or OWL files, and
transforms the acquired information into a common represen-
tation. Specifically, for each SAWSDL document the portType
element, constituting the interface of the Web service, is
parsed. The portType consists of a set of operations having
exactly specified input and output, which in turn reference
corresponding messages. Every message has a list of elements
associated with a specific types expressed in the XML Schema
(XSD) language, which in turn may reference to corresponding
OWL ontology classes. As shown in Figure 1, the OWL classes
are subsequently linked with the related instances from the
ontology (super- and sub-classes). All of the human-readable
names – appearing in SAWSDL documents as values of the

definitions
• name

types
• simple type name
• complex type name
• element name
• model reference (ontology class)

message
• name

portType
• name

operation
• name

input

output

SAWSDL document

binding

service
port

address
• location (Web service URI)

OWL document

superclass

rdfs:subClassOf

class

subclass

rdfs:subClassOf

Figure 1. Data retrieved from SAWSDL and OWL documents in order to
build the augmented representations of the matchings.

schema fields pointed out in Figure 1 – are being tokenized
and included into the common data representation.

Finally, every matching used to train the model is aug-
mented with the acquired semantic descriptions. Specifically,
each matching consists of an information whether two cor-
responding Web services, depicted by an Uniform Resource
Identifier (URI), are relevant or not. Subsequently, the aug-
mented descriptions of every Web service used by our system
have been built from the following attributes:

• tokenized Web service name or URI,

• tokenized portType name,

• tokenized operation names,

• XSD simple data type names,

• URIs pointing to corresponding OWL ontology
classes.

The tensor-based recommendation engine operates on data
provided in the form of n-tuples or its RDF equivalent.

A. Tuple-Based Representation of the Input Data

For the purposes of representing the tuple-based SAWSDL
Web services descriptions we use a 3-mode tensor. The first
tensor mode is used to model the information on service
relevance (i.e., relevant/nonrelevant indicator). The second and
the third modes represent the augmented semantic descriptions
of a request and an offer, respectively, related to the matching
specified by the first mode. Such a description is represented
by a vector built as an L1-normalized sum of index vectors
(uniquely assigned random vectors) of related terms (i.e., the
terms from the specific augmented Web service description).
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An index vector is a uniquely assigned random vector for the
object that it represents, as defined in [24].

Listing 1 shows a reduced (for the purpose of presentation)
3-tuple example. Line 1 indicates that the two considered
Web services are relevant. Line 2 and 3 represent the terms
from tokenized Web service request and offer descriptions,
respectively.

1 ( ’ r e l e v a n t ’ ,
2 [ ’ s h o p p i n g mal l ’ , ’ camera ’ , ’ p r i c e ’ , ’Mid−l e v e l−

o n t o l o g y . owl# ShoppingMal l ’ , ex tendedCamera .
owl#Camera ’ ] ,

3 [ ’ s h o p p i n g mal l ’ , ’ p u r c h a s a b l e ’ , ’ i tem ’ , ’Mid−
l e v e l−o n t o l o g y . owl# ShoppingMal l ’ , ’
ex tendedCamera . owl# P u r c h a s e a b l e I t e m ’ ] )

Listing 1. The 3-tuple example.

As specified formally in the next section, the tensor that
represents the whole input data set is simply the sum of
the individual rank-one tensors, while each of these tensors
represents a single tuple form the data set. Thus, the elementary
procedure of the input tensor construction process is the
computation of the rank-one tensor representing a given tuple.
Such a rank-one tensor is obtained as an outer product of the
vectors representing all the consecutive elements of the given
tuple.

Let us refer to the example presented in Listing 1 once
again. As the first element of the tuple corresponds to the single
token of ’relevant’, the first argument of the tensor product
is simply the vector representing this element in the vector
space corresponding to all the first values of the tuples. In
contrast to the simplest case, when the given tuple element
is a set of elements, rather than a single element, the vector
representing such a set of elements is built as a superposition
of the vectors representing the elements. For example, when
the second element of the tuple is a set of the following five
elements the second argument of the tensor product is the
normalized sum of the below-enlisted five vectors:

1 ( ’ s h o p p i n g mal l ’ , ’ p u r c h a s a b l e ’ , ’ i tem ’ , ’Mid−
l e v e l−o n t o l o g y . owl# ShoppingMal l ’ , ’
ex tendedCamera . owl# P u r c h a s e a b l e I t e m ’ )

Listing 2. Elements of the second argument in the example 3-tuple.

It is worth noticing that the proposed approach does not
require the model reference instances of any web service to
be linked to classes from the same ontology. Any element of
any given set (constituting the given tuple element) is treated
simply as a regular token, i.e., exactly the same way as an
‘ordinary’ token (representing a word found in some text) is
treated. Thus, there is no obstacles limiting the use of different
ontologies in order to describe the inputs and the outputs of the
same web service, not to mention the inputs and the outputs
of different web services.

B. RDF-Based Representation of the Input Data

The RDF-based representation of the SAWSDL and OWL
documents is obtained in a similar manner as the tuple-
based representation except that the result is saved into RDF
statements rather than tuples. First of all, the information
whether two Web services are relevant is formed by the triple

which subject is a request URI, object is an offer URI and
predicate is one of the isRelevant or isNonRelevant properties.
The augmented semantic description, derived from SAWSDL
and OWL documents, is stored as triples with the subject being
request or offer URI, predicate indicating the corresponding
attribute property, and object containing associated information
– such as a term or type (both in form of a literal) or an
OWL class reference (in form of an URI). Thus, it should be
also taken into account that, typically, one tuple is represented
by more than one RDF statement. As an example, Listing 3
shows the same tuple as in Listing 1 in an RDF format (Turtle
notation).

1 <s h o p p i n g m a l l c a m e r a p r i c e . wsdl>
2 : i s R e l e v a n t <s h o p p i n g m a l l p u r c h a s e a b l e i t e m p r i c e

. wsdl> ;
3 : t e r m s ” s h o p p i n g ma l l ” , ” camera ” , ” p r i c e ” ;
4 : i n p u t o w l u r i r e f <Mid−l e v e l−o n t o l o g y . owl#

ShoppingMal l> ;
5 : o u t p u t o w l u r i r e f <extendedCamera . owl#Camera>

.
6 <s h o p p i n g m a l l p u r c h a s a b l e i t e m p r i c e . wsdl>
7 : t e r m s ” s h o p p i n g ma l l ” , ” p u r c h a s a b l e ” , ” i t em ” ;
8 : i n p u t o w l u r i r e f <Mid−l e v e l−o n t o l o g y . owl#

ShoppingMal l> ;
9 : o u t p u t o w l u r i r e f <extendedCamera . owl#

P u r c h a s e a b l e I t e m> .

Listing 3. The example tuple in an RDF format (Turtle notation, with
URI prefixes removed).

Note that the statement form of a subject-predicate-object
expression is also known as a triple – or equivalently as a 3-
tuple – in the RDF terminology. Therefore, in this paper, as
not to introduce confusion, RDF data is referred to only as
statements, while the tuple-based representation refers solely
to the representation described in Section III-A.

IV. TENSOR-BASED RECOMMENDATION ENGINE

The semantic Web service matchmaking algorithm pre-
sented in this paper is based on multilinear filtering frame-
work proposed in [25]. In this section, the main features of
this framework are presented. Moreover, all the settings and
assumptions made in order to use this framework for the
semantic service selection task have been provided.

A. Tensor-Based Representation of a Tuple Set

We assume that the heterogeneous data on Web services
is transformed to the integrated set of n-tuples, where n
is a number of attributes defining each event of relevance
(or irrelevance) for a given pair of services. In order to
describe events in a format which enables comparing them
in quantitative way the weighed n-tuples have been chosen,
which may be described as follows:

Γ = (n,V(1), . . . ,V(n),Λ, ψ), (1)

where V(i), (i = 1, . . . , n), is a set of values which may be
used as the i-th element of an n-tuple, Λ is a set of n-tuples
of the form (v(1), . . . , v(n)) where v(i) ∈ V(i), and ψ : V(1)×
· · · × V(n) → R is a function used to assign the weight. To
model the set of n-tuples as a multidimensional array (referred
to as a tensor) one has to define the tensor space T = I(1) ⊗

119Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing



· · · ⊗ I(n) where I(i) is a basis of order |V(i)| = ni used to
index elements of set V(i). Finally, each set of n-tuples may
be modeled as an element of T .

In the presented framework we assume that ψ : V(1) ×
· · · × V(n) → {0, 1} and ψ(v(1), . . . , v(n)) = 1 if and only
if (v(1), . . . , v(n)) ∈ Λ. Then, input data may be modeled as
tensor T = [ti1,...,in ]n1×···×nn

with binary entries. For the
service matchmaking task based on S3 dataset [6], the set of
used tuples contains events describing that a given service offer
is relevant or irrelevant to a given service request.

Finally, it should be noted, that though the introduced
function ψ herein returns binary values only, the model may
be easily extended to use a weighted relevance information.
In particular, ψ′(v(1), . . . , v(n)) = β, where β indicates the
weight assigned to an n-tuple. In such a case, β = 0 if
(v(1), . . . , v(n)) /∈ Λ, and β ∈ R+ otherwise.

B. Tensor-Based Processing

The proposed multilinear filtering framework is based on
tensor data modeling involving the use of so-called tensor-to-
tensor transformations [25]. In general, tensor-to-tensor trans-
formation is made according to the formula [25]:

T̃ = T ×1 U
(1) ×2 · · · ×n U (n), (2)

where T×iU (i) is a tensor by matrix multiplication transform-
ing tensor fibres of i-th mode of tensor T into new fibres in the
corresponding mode of output tensor T̃ in such a way that the
entries of a new fibre are just inner products of the old fibre
and columns of matrix U (i). The entries of the result tensor
of each tensor-to-tensor transformation may be calculated as
follows:

t̃j1,...,jn =
∑

i1∈I(1)
. . .

∑
in∈I(n)

ti1,...,inu
(1)
j1,i1

. . . u
(n)
jn,in

. (3)

1) Transformation of input tensor into a state tensor of
reduced size: Due to its multidimensional nature the input
tensor suffers from its big size and high sparsity. In order
to address these issues the proposed framework assumes the
application of the preliminary dimensionality reduction similar
to N-way Random Indexing (NRI) approach [14]. This step
can be described as the tensor-to-tensor transformation using
ni×mi matrices U (i) (i = 1, . . . n), where ni and mi are the
cardinalities of i-th mode of the tensor before and after trans-
formation, respectively. Each row of the transformation matrix
(i.e., (u

(i)
k,1, · · · , u

(i)
k,mi

)) forms the random vector of specified
length and specified seed [24] – each entry of the vector is
set to be equal to 0 or 1, and then the vector is normalized
using L1 norm. We denote the result of transforming the input
data using the matrices U (i) described above as state tensor
X = [xi1,...,in ]m1×···×mn

.

The proposed model assumes that before being used for
the processing and querying procedures the state tensor needs
to be preprocessed according to two following steps (i) scaling
in order to get the probability distribution done as follows

xi1,i2,...,in :=
xi1,i2,...,in

ω
, (4)

where ω is the number of n-tuples used to build state tensor
X , and (ii) preparing to be used in L2-norm operations done
by taking each entry square root value, i.e.:

xi1,i2,...,in := (xi1,i2,...,in)1/2. (5)

2) Tensor querying: The tensor querying procedure is
aimed at reconstructing the entries of the input tensor. In
general, this procedure may be seen as a tensor-to-tensor trans-
formation (reverse to the state tensor creation step), but due to
practical reasons it is defined as a procedure of reconstructing
the single entry of the input data tensor. For a given n-tuple
γ = (k1, . . . , kn) the query tensor Qγ = [qγi1,...,in ]m1×···×mn

is constructed as a tensor of the same size as the state tensor.
Its entries are calculated according to the formula:

qγi1,...,in = (u
(1)
k1,i1

)1/2 · . . . · (u(n)kn,in
)1/2. (6)

Then, the result of the state tensor querying procedure is
calculated as an inner product of preprocessed state tensor X
(according to (4) and (5)) and query tensor Qγ , as follows:

t̃γ =
∑

1≤i1≤m1

. . .
∑

1≤in≤mn

xi1,...,inq
γ
i1,...,in

. (7)

The same querying procedure is applied to the filtered
state tensor which is constructed according to the procedure
described in the next section.

C. Covariance-Based Multilinear Filtering

The proposed filtering algorithm is based on the application
of the covariance data derived from a hierarchical structure of
tensor flattenings. The proposed framework assumes the con-
struction of filters for each tensor mode which are calculated
as the linear combination of covariance matrices determined
based on input state tensor X . The algorithm consists of steps
described below. More details on the method may be found in
[25].

1) Extracting covariance data from the tensor data: It has
to be stressed, that different relations in data may be seen
depending on the choice of attributes used to model tensor
modes. The construction of different tensors modeling the
dependencies between given mode elements may be done by
building the most detailed tensor, i.e., the tensor involving the
use of a maximum possible number of modes corresponding
to the set of all event attributes provided in the input data,
and then consecutive procedure of so-called tensor flattening
(i.e., aggregating the tensor entries across the mode being flat-
tened/hidden). Such a collection of different tensor structures is
referred to as tensor network [8][9]. We denote the flattenings
of tensor X as Xj , where j corresponds to the flattening code
(0 ≤ j ≤ 2n − 1) defined in a way described in [25]. Each
flattening except the totally flatten tensor (i.e., the tensor flatten
to the scalar), and flattenings to one mode (i.e., to vectors),
takes part in the procedure of filters’ construction.

2) Overall centering: In order to provide the covariance
data about elements of a given mode, each state tensor
flattening has to be centered. The simplest way to provide
the covariance matrix is to center across the tensor slices
corresponding to the elements of this mode. The centering
operation is provided by the subtraction of the mean of values
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in cells of a given tensor slice. However, this operation is not
regarded as a most effective data centering [21][23]. Instead,
so-called overall centering [21] should be used as the operation
which leads to the minimum Frobenius norm of the covariance
matrix. The overall centering may be done by consecutive
centering of tensor fibres in each mode, i.e., for a given mode
all fibres are centered and then this procedure is repeated for
the next mode and so on. We denote the result of centering
procedure applied for flattening Xj as Xc

j .

3) Generation of covariance matrices: Using the data
collected in each centered tensor Xc

j we construct the
matrices describing the relation among elements of the
given mode, as follows: the unfolding matrix X

c,(i)
j ∈

RJi×(J1×···×Ji−1×Ji+1×...Jn) is constructed, which collects i-
th mode fibres of centered state tensor Xc

j as columns, and
then, the symmetric matrix A(i)

j = [a
(i)
j ]mi×mi

such that:

A
(i)
j = X

c,(i)
j

(
X
c,(i)
j

)T
(8)

is obtained as a matrix representing the covariance between
random dimensions used to enumerate the i-th mode. Finally,
A

(i)
j is the covariance matrix for elements of i-th mode

constructed from the j-th flattening of state tensor X .

4) Constructing the filter based on covariance matrices:
For mode i the optimal filter F (i) is constructed as a sum of
an identity transformation and the average of matrices A(i)

j . In
particular, we have:

F (i) = Ii +
1

k

∑
j

A
(i)
j , (9)

where Ii is the identity matrix of size mi, and k is a number
of covariance matrices built for the i-th mode. We assume that
before applying the filters the tensor X is centered according
to overall centering [21] approach. The filters F (i) are used in
order to transform centered tensor Xc into its filtered version
X̃c according to the formula: X̃c = Xc×1F

(1)×2 · · ·×nF (n).
At the next step the prediction tensor X̃ is calculated as
X̃ = X−Xc+X̃c. Finally, the tensor X̃ is used for calculating
the prediction results according to the querying procedure
described by equations (6) and (7).

D. Complexity of the proposed method

Reducing the space and time consumption is a key issue for
the tensor-based approach in which the complexity may grow
exponentially with the number of tensor modes used in the
model. Therefore, it is crucial to provide the dimensionality
reduction step in the earliest phase of computing as possible,
ideally, in the phase of data storing in the tensor structure.
First of all, it has to be stressed that the tensor X̃ used
for prediction may be additionally transformed using the
HOSVD approach [15] that leads to reduction of tensor size
and, as consequence, shortens the time needed for querying.
Furthermore, according to the research on existing state-of-
the-art tensor-based data processing frameworks, including
the incremental tensor analysis approach [26] and ALS-based
tensor solutions [27], the space and time consumption for this
kind of solutions may be efficiently reduced by using the
approximation approach avoiding the diagonalization step, the

fast approximation methods for finding principal components
as well as random sampling techniques.

In particular, in the case of our approach, the space
complexity of the proposed method is directly related to the
size of a state tensor used to accumulate the data. In the case
of the application scenario presented in this paper, we limit
to 3-rd order tensors, so the space complexity is bounded by
O(m1m2m3), where mi is a cardinality of the i-th mode of the
state tensor (as defined in Section IV-B). The computational
cost of the method depends on the cost of state tensor con-
struction based on accumulation of ω tuples (O(ωm1m2m3)),
and the cost of the construction of covariance matrices from
tensor unfoldings (O(m2

1m2m3 + m1m
2
2m3 + m1m2m

3
3) =

O((m1+m2+m3)m1m2m3)). In the case of the applying the
additional dimensionality reduction step based on HOSVD, the
additional cost of O(hm1m2m3) have to be taken into account,
where h is the reduced number of dimensions. Since, in the
application scenario presented in this paper, ω is greater than
mi for each i as well as than h, we have observed the biggest
computational cost in the phase of state tensor construction.
However, it has to be stressed, that the time of the state
tensor accumulation may be efficiently shortened by taking
into account that tensor structures corresponding to tuples are
sparse. Nevertheless, due to the relatively small size of the
state tensor used in the evaluation (see Section V-D), we have
not applied such an optimization step.

V. EVALUATION

It should be noted that a typical comparison of different
matchmaking systems is not the main goal of the experimental
research presented in this paper, as we focus on evaluating of
several tensor processing methods in the experimental scenario
of SWS matchmaking. We assume that each of the compared
tensor processing methods is applied to process the same data
obtained by means of data integration framework being a
part of the system presented in Section III, given using the
tuple-based internal data representation (n-tuples or RDF state-
ments). The application of tensor-based data representation and
processing methods have been already investigated in several
domains for which – similarly as for the S3 task – the input
data is multirelational or multidimensional.

A. SAWSDL-TC3 Dataset Use

The experimental evaluation presented in the paper is based
on the use of the publicly available SAWSDL test collection
– SAWSDL-TC3 [6]. The dataset provides 1080 semantic
Web services written in SAWSDL (for WSDL 1.1) from 9
domains (education, medical care, food, travel, communica-
tion, economy, weapon, geography, simulation) and consists of
both SAWSDL and OWL documents. The S3 SAWSDL-TC is
divided into three main sets. The first and second set contain
SAWSDL documents representing queries and potential query
matches – offers, respectively. The third set consists of related
OWL ontologies.

Additionally, the SAWSDL-TC3 contains the XML file
sawsdl-tc3.xml describing the information on relevance
between 4178 Web service pairs (i.e., query and offer pairs).
The relevance information is provided using two independent
relevance grades — binary and 4-graded. For the purposes
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of the experiments presented herein, the binary relevance has
been chosen. Nonetheless, it should be noted, that experiments
could be easily extended – as briefly discussed in Section IV-A
– to use the 4-graded relevance information. For instance, one
could set β = 1.0 if the grade was ‘relevant’, β = 0.5 if ‘po-
tentially relevant’, and β = 2.0 if ‘highly relevant’. It should
be kept in mind, however, that in order to adjust properly
these weights for a specific dataset, a parameter optimization
technique (such as cross-validation on the available training
data) should be used.

B. Evaluation Scenarios

In order to experimentally evaluate the compared solutions
we have used a part of the test collection, containing infor-
mation about relevant and nonrelevant Web service matches,
in the learning process. Moreover, as in other approaches the
learning process itself is performed off-line (i.e., before the
matchmaking). However, contrarily to the research presented
in the literature, in our experiments we have tested how the
training ratio tr – indicating the percentage of the entire test
collection that is used to train the model – affects the quality
of matchmaking. What is more, following the Information
Retrieval experiment design practices [28][29], we did not use
the full test collection during the evaluation (what is allowed
in the case in S3 contest) but only the remaining part of the
data (that was not used in the learning process) instead. For
instance, for tr = 0.2 the remaining 80% of the test collection
has been used to evaluate the predicted Web service matchings.
Therefore, due to differences in the methodology, the final
results are not directly comparable with the S3 contest results.

Such an evaluation methodology (i.e., based on both data
sources) has been chosen as it does not assume that the textual
and structural similarities between the items (here represented
by semantic Web services) is directly correlated with the
matching relation, and thus it may be considered as more
comprehensive. In other words, the algorithm is expected to
adapt to the specified task – as in a typical semi-supervised
learning task – by inferring the meanings of the relations
contained in the SAWSDL and OWL documents.

Apart from the hybrid scenario involving using both SWS
descriptions and partial information about the relevant or
nonrelevant matches, we additionally investigated a simplified
scenario involving only the information about the Web service
matches. Our motivation for such an approach is an attempt to
show how much an algorithm is able to learn using sample
mappings only, and how much the matching quality may
increase by adding supplementary semantic information.

Finally, the quality of the generated Web service matches
has been evaluated using typical Information Retrieval mea-
sures described in Section V-C. To compensate for the impact
that the randomness of the dataset partitioning has on the
results of the presented methods, all figures in this paper show
series of values that represent the averaged results of 100
individual experiments. As a result, the standard error of each
presented mean is less than 0.005.

C. Recommendation Accuracy Measures

Following other articles in the literature relevant to the
Web service matchmaking, we have used the Mean Average

Precision (MAP) measure:

MAP =

n∑
i=1

api/n (10)

where n is the number of requests tested and api is the average
precision for the i-th request. Particularly, the ap is defined as:

ap =

m∑
k=1

P (k)/min(m, r) (11)

where r is the number of relevant matchings, m is the
recommendation list length, and P (k) denotes the precision
at k-th prediction in the recommendation list. Specifically, the
precision P (k) is the ratio of correct matchings up to the
position k over the k, and is equal to 0 when the k-th prediction
is invalid.

Additionally, we have measured the Area Under the ROC
curve (AUROC) as it directly allows to establish the probability
of making correct or incorrect decisions by a system about
whether a matching is relevant. According to [30], AUROC is
equivalent to the probability of the system being able to choose
properly between two items, one randomly selected from the
set of relevant items, and one randomly selected from the set
of non-relevant items. Hence, it allows one to abstract from
any particular precision-recall proportion. Specifically, for an
ordered list of predicted matchings R, AUROC is defined as:

AUROC =
1

|R|

F∑
i=1

(si − i) , (12)

where the probability score si is indicated by rank of the i-
th true positive in R, and F is the number of false positives
in R. In particular, if all relevant matchings appear before all
nonrelevant matchings in the list, one will have a perfect ROC
curve and AUROC = 1.

D. Recommendation Methods under Evaluation

We have compared the accuracy of our method to the
accuracy of state-of-the-art tensor-based processing methods
presented in the relevant literature. In order to perform such
a comparison, we have developed our implementations of N-
way random indexing (NRI) [14], HOSVD [15], joint feature
mapping via tensor product [31], and a typical SVD-based
matrix factorization [32]. The matrix factorization, herein
referred to as ‘MF (matchings)’, was performed on a matrix
containing information about known Web service matchings,
as it is not possible to unambiguously encode more relations in
such a structure. As a consequence, we used MF (matchings)
as a baseline method allowing to distinguish whether the use
of tensor-based algorithms provides any significant benefit
compared with classical matrix factorization.

We have also evaluated feature mapping via tensor product,
herein referred to as ‘Feature Mapping’, as it has been reported
in [31] and followed in [33] that such a model allows to exploit
not only the direct relations between individual objects but
also the associated textual features. In this paper, in order to
adapt the algorithm to the Web service matching scenario, in
accordance with [33] we represent each pair of Web services
(i.e., a request r and an offer o) as an outer product r ⊗ o of
two corresponding vectors represented in a feature space of
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Web service descriptions. Subsequently, the resultant tensor is
defined as

∑
i

∑
j(ri⊗oj)mi,j , where mi,j indicates whether

the matching between ri and oj is relevant (mi,j = 1),
nonrelevant (mi,j = −1) or unknown (mi,j = 0). Finally,
Principal Component Analysis (PCA) is applied in order to
reduce the noise and extract the most salient features.

The HOSVD algorithm has been performed on RDF data
expressed in a form of a 3-rd order tensor, in which every
predicate is represented as an adjacency matrix – forming the
slice of the tensor – between subjects and objects. This model
has been already used in the relevant literature [11][12] for the
task of multirelational statistical learning. Contrarily, we were
not able to obtain any meaningful results by applying solely
HOSVD on a tensor model build from tuples (as presented in
Section III-A), thus we omitted these results in the presented
evaluation.

Finally, we have evaluated the effectiveness of the proposed
covariance-based multilinear filtering (CMF) regardless of the
underlying data representation model. For that reason we addi-
tionally present MAP and AUROC results of the experiments
performed solely on a NRI-reduced vector space and the
probabilistic state tensor introduced in Section IV-B, herein
referred to as ‘Probabilistic ST’. By that means, the ability
of CMF to process tensor spaces of reduced dimensionality is
verified.

All the above described methods have been evaluated using
the same data (correspondingly in the form of a n-tuple or
RDF) as their input. The combinations of parameters (such
as the k-cut or the core tensor size) that lead to the best
recommendation quality (i.e., the highest AUROC value) were
considered optimal, and used in experiments illustrated in this
paper.

For purposes of evaluated methods we have used the
framework introduced in Section III in order to construct
both tuple-based and RDF-based internal representations of
the input data. In particular, the n-tuple representation of the
dataset is processed into the 3-rd order tensor structure of size
(2 × 110 × 615) in order to store the data concerning 4178
n-tuples. As described in Section III-A, the first tensor mode
contains information about the relevance (i.e., relevant, non-
relevant). Subsequently, the second tensor mode – concerning
the queries – is constructed using vectors of length 110, while
the third mode – concerning the offers – is built using vectors
of length 615.

In the case of data given as RDF statements, the ten-
sor of the size (1084, 7, 1909) is constructed – according
to Section III-B – to store the data on 15537 triples. In
the presented experiments, we also investigate the standard
collaborative filtering approach using the request-offer matrix
of size (42, 1043) containing only the data on service relevance
modeled using 4178 non-zero values from the set {−1, 1}.

VI. EXPERIMENTAL RESULTS

The results of our evaluation performed, using MAP and
AUROC measures, are presented in Figures 2 and 3, respec-
tively. The comparison has been performed with the use of
different training ratios tr, ranging from 0.05 to 0.9. As it
has been confirmed experimentally, the introduced algorithm

– CMF – allows to achieve higher quality matchings, both
in terms of MAP and AUROC and for all training ratios, as
compared to other evaluated methods.
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Figure 2. The MAP results.
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Figure 3. The AUROC results.

As it has been shown, the accuracy of MF (matchings) is
almost linearly dependent on the training ratio. Particularly, for
the smallest tr = 0.05 matrix factorization achieves the lowest
score – similar to a random one, while for the highest tr = 0.9
the obtained results are comparable to other best performing
methods (i.e., in terms of AUROC).

An algorithm generating random recommendations ob-
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tained AUROC = 0.5 for all tr – as expected due to
its probabilistic interpretation, what additionally confirms the
reliability of the AUROC measure. On the other hand, due
to correspondingly smaller test set – more precisely smaller
number of relevant matchings for every offer – for higher tr
the MAP values for a random algorithm are also respectively
higher. Therefore, for comparison, we included the random
method in the presented evaluation.

It may be also observed that the HOSVD algorithm,
performed on a 3-rd order tensor build from RDF statements,
enabled us to obtain slightly higher results – although still
statistically significantly higher – than MF (matchings). Nev-
ertheless, the results of HOSVD, even with optimally adjusted
size of the core tensor, are still heavily dependent on tr.
Particularly, for tr < 0.1 HOSVD performed only slightly
better than the random method despite processing all of the
semantic information extracted from SAWSDL files.

The algorithm based on feature mapping via tensor product,
compared to the baseline MF matchings, clearly enabled to
obtain higher AUROC and MAP values for smaller training
ratios (i.e., tr < 0.4). In opposition, for denser train set the
results are not so apparently conclusive. Specifically, Feature
Mapping achieves higher quality results in terms of MAP than
the baseline method for almost all tested tr. At the same time,
in the case of the AUROC measure its performance is almost
constant (with only relatively small gains for higher tr) and
significantly inferior to a simple matrix factorization. Such a
finding may be caused by the fact that AUROC probabilis-
tically reflects the system’s performance (see Section V-C) –
which is rather independent from the amount of behavioral data
(herein – known matchings) in case of content-based methods.
On the other hand, the MAP measure takes into account the
number of relevant matchings in the test set (as it has been
shown on the case of random matchings).

Although the main purpose of NRI is to reduce the
dimensionality of the input tensor, and not multiple factor
analysis, we included this algorithm in the evaluation as the
introduced CMF method is partially based on the NRI concept.
As shown in Figure 3, the ability of NRI to provide high
quality recommendations is independent of the number of
input training matches – probably due to the fact that it
merely reflects the co-occurrences of the terms in the requests
and in the offers. It should be also noted that although the
addition of scaling and L2-normalization – in Probabilistic ST
method – enabled to significantly improve the performance
of tensor-based processing, such an algorithm still does not
allow one to provide higher quality results than HOSVD or
even MF (matchings) in case of higher tr. Additionally, we
have performed experiments using a 3-rd order tensor build
from RDF statements and processing methods such as NRI,
Probabilistic ST and CMF. However, due to definitively lower
quality of the provided recommendations we have omitted
these results from the final evaluation so as not to obscure
the presented results.

Therefore, it may be stated that in the application scenario
investigated in this paper, the tuple-based probabilistic tensor
modeling combined with covariance-based multilinear filtering
enables to outperform other tensor-based methods, regardless
of the amount of known matchings (herein depicted by tr).

VII. CONCLUSION AND FUTURE WORK

The experimental evaluation results presented in the paper
are expressed in terms of AUROC and MAP results. It is worth
stressing that the evaluation has been done using the standard
Information Retrieval methodology that assumes partitioning
of the dataset on the training and testing sets in such a
way that the data used for testing the performance cannot be
used to learn or tune the model. Quite surprisingly, such a
methodologically correct approach differs from the evaluation
methodology used by the authors that have taken part in the
S3 contest, as they frequently use the same data on matchings
between services for both for the matchmaker system param-
eters tuning (e.g., by means of the cross-validation approach)
and for the final performance evaluation. The results presented
in the paper indicate the superiority of the proposed combina-
tion of the tuple-based probabilistic tensor modeling and the
covariance-based multilinear filtering over other tensor-based
methods, including NRI and HOSVD-based RDF processing –
the superiority that is clearly visible regardless of the amount
of matchings included in the training set.

Finally, it has to be stressed that contrarily to the state-
of-the-art algorithms such as [3]–[5] the proposed Semantic
Service Recommendation System does not rely on any kind
of predefined rules customized for SAWSDL matchmaking.
As introduced in Section IV, the recommendation engine is
virtually unconstrained regarding any data structure, and thus
it may be easily applied in other domains, as already shown
in [25]. For that reason, for future work we plan to extend
our research to address other semantic matchmaking tasks.
Another potential directions of the further research would be
an extended use of the referenced ontologies, and conducting
the experiments involving the 4-graded relevance information,
in addition to the presented herein binary relevance.
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