
Detecting Hidden Relations in Geographic Data

Ngoc-Thanh Le
Faculty of Information Technology

University of Science
Ho Chi Minh City, Vietnam
lnthanh@fit.hcmus.edu.vn

Ryutaro Ichise
Principles of Informatics Research Division

National Institute of Informatics
Tokyo, Japan

ichise@nii.ac.jp

Hoai-Bac Le
Faculty of Information Technology

University of Science
Ho Chi Minh City, Vietnam

lhbac@fit.hcmus.edu.vn

Abstract—The amount of linked data is growing rapidly,
and so finding suitable entities to link together requires
greater effort. For small data sets, it is easy enough to find
entities in the data sources and link these together manually;
however, doing so for large data sets is impractical. For large
sets, a way is needed to discover entities and connect them
automatically. In this paper, we present an algorithm to detect
hidden owl:sameAs links or hidden relations in data sets. Since
geographic names are often highly ambiguous, we used data
sets comprising geographic names to implement and evaluate
our algorithm. We experimentally compare our algorithm with
a naı̈ve algorithm that only uses a URI’s name feature. We
found that it is more accurate than the naı̈ve algorithm in most
cases, especially for resources in which there is little matching
information about features.

Keywords-Linked Data; Knowledge Discovery; Link Predic-
tion;

I. INTRODUCTION

Linked data refers to data published on the Web in such a
way that it is machine-readable. It is linked to other external
data sets and can in turn be linked to from external data sets
[1]. Linked data uses the Resource Description Framework
(RDF) to make typed statements that link arbitrary things
in the world, and things are named by Uniform Resource
Identifiers (URIs) and linked together by predicates.

In this paper, we mainly focus on owl:sameAs links. These
links indicate that two URIs refer to the same thing, implying
that the subject and object must be the same resource. When
users create an entity to describe a thing using their own
information features, if they know of other data sources on
the Web that also provide information about this thing, then
they can link these sources together. In this manner, the
information about the thing becomes richer.

We should recognize that a linked data structure is very
similar to a graph in which URIs are nodes and links are
edges. Various graph algorithms exist, and the literature on
them is well developed; in fact, many approaches for analyz-
ing graphs have been extended to linked data structures [2],
[3], [4]. On the basis of these observations, we decided to
turn linked data into a graph upon which we can use graph
mining techniques to solve the following problems.

As of 19 January 2010, the Linked Data Community
estimates that the number of triples on Linking Open Data

[5] is about 13 billion and the number of links is about
143 million. The amount of linked data has been growing
steadily. Therefore, it may soon be difficult to find suitable
entities to connect with owl:sameAs links. In some cases,
mistakes may be made, such as linking entities that refer
to different things. This means that owl:sameAs may be
inappropriately used. In addition, a single data source may
have redundant descriptions, creating confusion as to which
items should be linked. Moreover, even if one manages
to make an appropriate choice in some way, there is no
guarantee that others will make the same choice. Finally,
incorrect data affect new data in many ways. The overall
effect of these problems is that information on the Web will
become more and more ambiguous.

Certain data are often ambiguous; in particular, geo-
graphic names, e.g., the name of rivers, mountains, and place
names of population concentrations, tend to be very ambigu-
ous. For example, the name “Isosaai” refers to 491 places
in Finland [6]. Also, there are 1724 different coordinates
sharing the name “San Jose” [7] in the GeoNet and GNIS
geographic name databases. Raphael Volz et al. list three
types of ambiguity [7]:

1) Different geographic locations share the same name
2) One location has different names
3) A location name also stands for some other word
In our work, we are interested in geographic information

and its problems. Our data set has over 2.5 million geo-
graphic names. If the above problems affect it, this would
be very difficult for us to detect or resolve.

For small data sets, it is easy enough to find entities
referring to the same thing in data sources and link them
together manually; however, doing so for large data sets
is impractical. For large sets, a way is needed to discover
entities and connect them with owl:sameAs links automat-
ically. The task of discovering entities can be viewed as
detecting hidden relations in linked data. In other words,
hidden relations are possible links that have not yet been
created. The main idea behind our solution is to extract
useful features by applying supervised learning on frequent
graphs. We then use these extracted features to discover
entities in data sources.

In brief, the contribution of this study is developing an

61

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

algorithm to detect hidden relations in geographic data. The
remainder of the paper is organized as follows. Section
2 briefly describes related work. The problem of detect-
ing hidden relations and related concepts are introduced
in Section 3. Section 4 describes our approach to detect
hidden relations. Section 5 presents our evaluation corpus
and comparatively discusses our approach’s performance.
We present conclusions and directions for further work in
Section 6.

II. RELATED WORK

LinkedMDB [8] demonstrates a novel way of link dis-
covery and publishing linkage metadata to facilitate high
volume and dense interlinking of RDF data sets. Because
the data sources in LinkedMDB are about movies, it chooses
movie titles as the feature to discover owl:sameAs links.
Furthermore, users of LinkedMDB can give feedback on the
quality of links. Because its stored attributes are information
about titles and feedbacks, LinkedMDB can achieve high
accuracy. However, it is not easy to apply the ideas behind
LinkedMDB to other Web data sources that often mix terms
of different attributes.

Silk [9] discovers owl:sameAs links that are used by
DBpedia and by GeoNames to identify cities. Silk uses a
declarative language for specifying which types of RDF
links between data sources should be discovered as well
as which conditions entities must fulfill in order to be
linked. Depending on which data sources are linked, Silk
has different thresholds (“accept” and “verify”) for iden-
tifying similarity heuristics and qualifying the amounts of
discovered links. This approach, however, only focuses on
links of pairs of data sources: there is no guarantee that the
information extracted from two data sources will enough
to find suitable entities in remain data sources. In contrast
to this approach, the solution we are advocating allows us
to gather more information (by using data as keywords) in
order to discover links.

III. PROBLEM OF HIDDEN RELATIONS

What happens if data is published on the Web without
owl:sameAs links? In such cases, each thing exists as a
unique entity in a specific domain in which no two entities
mention the same thing. This prevents people from con-
tributing their own views and opinions about a thing. For
example, someone talking about Mt. Fuji might describe its
geographic location and climate at its peak whereas someone
else might describe it as a scenic attraction. If entities such
as these were not connected by an owl:sameAs link, a search
might not return results on both of them. As a result, when
users add more information about this thing, data might
be duplicated. On the other hand, connecting these two
descriptions by using an owl:sameAs link would help users
to track down different information about the same resource.

This means that the more owl:sameAs links there are, the
richer the information will be.

Let us consider another scenario. When users create a new
entity and want to link it to other entities with an owl:sameAs
link, they have to find entities referring to the same resource
from a mass of linked data. We call this task hidden entity
detection or hidden relation detection, where the relations are
owl:sameAs links. Hidden relations are possible links which
have not yet been created. A possible link between by and
cy of the instance graph y in Figure 1 is an example of a
hidden relation whereby cy is found in data set C such that
can be appropriately linked to by with owl:sameAs. Because
there is a huge amount of linked data on the Web and it
is steadily growing, it is not simple to detect such relations
manually even if the entity’s domain1 is known.

Hidden entities can be linked to others, so we would have
more sufficiently linked data after connecting these entities
together. The problem is that an entity does not always
link to all other entities in each domain, and the task of
finding links among all domains would be extremely time
consuming. Moreover, the URI identity often depends on the
context in which it is used [10]; this means it is important to
think about trustworthiness when creating relations among
resources. That is, we need to check information describing
resources in order to determine whether they are things we
want to link together.

IV. DETECTING HIDDEN RELATIONS

A. Frequent Linked Data Graph

Linked data entities are either URIs or literals, and these
are connected together by links. We can model such data as a
graph. Many graph-related algorithms have been developed,
and they have proven advantageous for solving a variety of
problems in chemical informatics, computer vision, video
indexing, and text retrieval [11]. We can consider URIs as
the nodes of a graph and that all of them refer to the same
resource through an owl:sameAs link. Because each URI is
used only once per graph, URIs are represented abstractly
by their domain name. For example, www.geonames.org is
an abstraction of the URI www.geonames.org/964596. As
a result, URIs having the same domain form a data set.
Another reason for using domain name to represent URIs
abstractly is that a resource in linked data often describes a
type of information. The number of fields and their meaning
for describing entities are treated similarly. Links among
URIs are also represented as abstract entities. Abstract URIs
and their links are made into an abstract graph.

Furthermore, each node represents a unique entity, and an
edge describes a relationship between entities. For example,
GeoNames store many name-feature relations as relational
graphs. Particularly interesting among relational graphs are
patterns that appear with high frequency [12] called frequent

1URIs have the same domain name

62

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Algorithm 1 DHR cSpan(g, D, local sups, S)

Input: An abstract graph g, an instant graph dataset D, a set of
support thresholds between any two domains local sups.
Output: The closed frequent graph set S.

1) if ∃g′ ∈ S, g ⊂ g′ and support(g) = support(g′) then
2) return;
3) extend g to g′ as much as possible s.t. support(g) =

support(g′);
4) if ∃g′ then add g′ to S;
5) scan D, find every edge e such that:
6) support(g′ ∪ {e}) ≥

minimum{local sups of domains in graph g′ ∪ {e}}.
7) for each satisfied g′ ∪ {e} do
8) DHR cSpan(g′ ∪ {e}, D, local sups, S);
9) return;

patterns or graphs. Frequent graphs tend to have common
relations among entities. We can extract features from the
entities of such graphs and use them to identify hidden
entities.

In linked data, however, the number of relation graphs
is large and links are diverse. Often, there are too many
frequent graphs. Because of this, it is better to mine only
closed frequent graphs [12]. A frequent graph is closed if
and only if there does not exist an extended graph that has
the same support. The field of closed frequent graph mining
has developed many algorithms, including cSpan [12], A-
Close [13], CLOSET [14], CloSpan [15], and CHARM
[16]. For our research, we chose to use cSpan [12] for
its simplicity and efficiency in finding frequent graphs in
real data. The cSpan algorithm requires choosing a support
threshold for the frequency. However, we faced a problem
in choosing a fixed threshold for data sets having different
numbers of links. When huge data sets are connected to
small data sets, it can lead to the following situation: With
a fix threshold, graphs created from huge data sets tend to
be very frequent because there are likely to be many links
among the data. Graphs created from small data sets become
relatively infrequent in comparison and hence may get
dropped. For that reason, we had to modify cSpan slightly
so that it could support variable thresholds. This means
that, depending on which data sets are to be connected, the
threshold is determined by the percentage of links between
the two smallest data sets. Setting the threshold in this way
enabled us to mine frequent graphs better. From here on,
we shall use frequent graphs as a framework to solve our
problems. Algorithm 1 (DHR cSpan) specifies the process
by which the frequent graphs are extracted. Line 6 shows
the modification from algorithm cSpan of including variable
thresholds.

Figure 1 illustrates a frequent graph X that has
been extracted from a geographic data set on the ba-
sis of owl:sameAs links. There are many instances of
this frequent graph (1, . . . , k). In each instance the fre-

Instance 1

b1

a1

c1

B

A

C

Frequent Graph Pattern X

bk

ak

ck

….

Instance k

?

by

ay

Cy?

Instance y?

c4

c5

c6

Data set C

w1, w2

w1

w1

w1

w2

w2

w3

w3
w4

w5

att1
att2

att7

att10

att8

att3
att5

att4
att6

att9

Figure 1. A hidden entity of an instance graph

quent graph represents specific things. For example, sup-
posing that the frequent graph X ′ includes two enti-
ties, such as Census and GeoNames, and Census links
to GeoNames with an owl:sameAs link. Then a link
from http://www.rdfabout.com/rdf/usgov/geo/us/sd/counties/
perkins county to http://sws.geonames.org/5763584/ is an
instance of the frequent graph X ′. Another instance
is the link from http://www.rdfabout.com/rdf/usgov/geo/
us/ma/counties/middlesex county/framingham to http://sws.
geonames.org/4937230/. Besides the instances of complete
frequent graphs, there are graphs that lack one or more
entities, such as instance y in the figure. Instance y is missing
a node cy from data set C. The reason is that cy does not
exist in this data set or there is no link to it. The way to
find such missing entities is a problem that we address.

B. Attributes of the Entity

In the process of forming linked data, an RDF triple,
consisting of a subject, predicate, and object, is used to
represent information about resources. The subject is the
URI of the described resource. The object is a literal value
describing the properties of the resource or the URI of
other resources. The predicate refers to links between the
subject and object. Because relations in our frequent linked
data graph are owl:sameAs links, we will consider all links
except owl:sameAs to be attributes of the entity and the
objects that are linked to as attributes’ content. For example,
in Figure 2, links such as name (link to literal value),
alternateName (link to literal value), inCountry (link to
URI) and even its URI name are attributes of the entity
http://sws.geonames.org/283862/, whereas the owl:sameAs
link connecting to http://dbpedia.org/resource/Gilo is not an
attribute of the entity.

For the frequent graph X in Figure 1, there are three
sets of attributes corresponding to three abstracted entities.
The attributes’ content not only describes the entity but
also provides some information about the surrounding enti-
ties. Accordingly, using attributes and their content to find
hidden entities is feasible. We can use useful data from

63

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

http://sws.geonames.org/283862/name
Gillo

alternateName

Gilo

inCountry

http://www.geonames.org/countries/#PS

owl:sameAs

http://dbpedia.org/resource/Gilo

rdfs:label

Gilo

Figure 2. Attributes of an instance entity

the attributes’ content as keywords for discovering entities
that can be linked to it. However, the attributes of each
entity in different domains vary in quantity and quality;
even entities in the same domain will have such differences.
Moreover, not all attributes are useful for finding hidden
entities. Therefore, choosing only the most useful attributes
is a prerequisite for creating a hidden relations detection
algorithm.

C. Choosing Useful Attributes

The data set has information related to geographic names.
As a result, we chose the feature “word” (lexical) for
identifying useful attributes. The feature “word” in our paper
is a sequence of characters separated by spaces. Our assump-
tion is that entities are linked when the contents of their
respective attributes have at least one word in common. This
means that they mention the same concept. In Figure 2, for
example, the entities http://sws.geonames.org/283862/ and
http://dbpedia.org/resource/Gilo have common word “Gilo”
in the attributes alternateName, URI name of the DBpedia
entity and rdfs:label. Hence, word “Gilo” seems to be useful
information for identifying the described resource. By col-
lecting such words, we should be able to find related entities
more easily. The question is, into which attributes are these
words often distributed? If this question can be answered,
it means that we have useful attributes. To achieve this, we
should collect the words and the attributes containing those
words in each instance graph. Words that do not appear in
all of the entities of a graph will be removed from further
consideration.

Table I shows the words extracted from attributes of the
first instance graph in Figure 1, where atti for i = {1, 2,
. . .} are attributes of the entities of the graph, and wj for j
= {1, 2, . . .} are words extracted from the attributes. Since
each entity belongs to a specific domain, we consider its
attributes to be domain attributes. Words w3, w4, and w5 do
not appear in all entities of the graph. Therefore, they are
removed from further consideration. Other instance graphs
are similarly processed. The result is a large table of words
and attributes. Our goal is to seek feature attributes that can
be used to extract content for predicting hidden relations.
Accordingly, we rank attributes by increasing their weight
one unit whenever they appear on the word table of the
instance graphs. For example, in Table I, the first attribute

Table I
WORD IN ATTRIBUTES OF AN INSTANCE GRAPHS

Instance
Graph Words Store Attribute (in domain)

w1 att1(A)
att2(A)
att3(B)
att4(C)

w2 att1(A)
1 att5(B)

att6(C)
w3 att7(A)

att9(C)
w4 att8(B)
w5 att10(A)

appear two times, so its rank is 2. If the first attribute appears
three times in the second instance graph, its rank becomes
5, and so on. Attributes that exist in many instance graphs
will certainly have higher ranks than ones that only exist in
a few instance graphs. Such high ranking attributes play a
major role in detecting hidden relations. However, we need
to consider that some attributes might be useful in some
graphs but useless in other graphs. In some cases, attributes
can even cause noise. Therefore, we use a threshold to
reduce the number of bad attributes. Attribute rank can not
go lower than the threshold. Such threshold is selected to
maximize the accuracy of our approach.

Since the number of instances in each frequent graph
is not the same, rank values might be quite different for
different frequent graphs. In order to compare the correlation
of attributes among frequent graphs as well as reduce
calculating cost in later calculations, we use attribute weight
instead of rank. Attribute weight is calculated from rank as
follows:

weighti =
ranki

N(X)
, (1)

where ranki is the rank of the ith attribute, and N(X) is
the number of instance graphs of frequent graph X . In the
next section, we use the above feature attributes and their
weights for finding hidden relations.

D. Distance Estimation

Here, a graph lacking an entity is a graph that is missing
one entity compared with some frequent graph. A graph
missing more than one entity can be dealt with recursively.
That is, after we find the first entity, we look for the second
entity, and so on. In Figure 1, the instance graph y consists
of two entities ay and by , and a missing entity cy . Our task
is to find cy in data set C, where C is the set of entities
having the same domain as cy . In fact, entity cy may not
exist in C.

Words in the feature attributes of entities are extracted.
Entities such as ay and by existed in the instance graph

64

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

by

ay

Instance y

Data set C

w1, w2, w3, w4, w5

att1

att2

w6, w7, w8

att3w1, w2, w7, w8, w9

c1

c2

ck

...

?

att4
w1, w6, w7

att4
w1, w2, w7,

w10, w14, w15

att5 w1, w8, w12

att5 w7, w14, w16

att4 w16, w18, w20

att5 w18

Figure 3. Words appearing in feature attributes of entities

y in Figure 1, and so the words in these entities are
fewer and easier to extract. However, cy has not yet been
identified, and so we have to list all the words in each
feature attribute belonging to data set C(c1, c2, . . . , ck). This
process consumes much time and computing resources. To
reduce the burden, we index words in C and only extract
words that appear in both ay and by. After extracting words
from the feature attributes, we remove words that do not
exist in all entities. This means that we only keep words
that appear in all entities of the instance graph. Note that
we propose another solution for the case in which no such
word exists (see the end of this section). Figure 3 illustrates
words extracted from the feature attributes, {att1 (domain
A), att2 (domain A), att3 (domain B), att4 (domain C),
att5 (domain C)}, in the instance graph y and entities in
data set C.

Entity ay and entity by share the word set {w1, w2, w7,
w8}. Thus, entity cy that will be detected must store the
word subset {w1, w2, w7, w8} in the content of its feature
attributes. Let St be the set of words appearing in all entities
of the graph after entity t has been inserted. In Figure 3, we
have S1 = {w1, w7, w8}; S2 = {w1, w2, w7}; . . . ; Sk =
{∅}. The distance is estimated using the attribute weights
and the number of words stored in S t after St is projected
in turn onto these attributes. For example, the set S1 after
being projected onto att4 becomes the set {w1, w7}, and
so the number of words in the projected S1 is 2. For each
entity ct in data set C, the distance from it to the graph is
defined as

l(ct) =
1

n∑
i=1

[weighti × N(πatti(St))]
, (2)

where n is the number of feature attributes in the discovered
domain, weighti is the weight of the ith feature attribute,
πatti(St) is the projection of the set St onto attribute atti,
and N() is a function to count the number of words in
the projected St. Because St contains words extracted from
many different attributes, the projection πatti(St) is a way
to pick out words only from attribute att i. Accordingly, the

by

ay

Instance y

w1

w7

w16

w2w8
w6 w14

w10

w15

S1
S2

c1 c2

d1 d2

w12

Figure 4. Two entities having the same distance to a graph

shorter the distance l of the entity is, the more suitable the
entity will be to link to the graph. However, there are likely
entities in C that have equal shortest distances. Therefore,
we have to decide which among them should be linked to the
graph next. Figure 4 shows an example of this problem. The
entities c1 and c2 have equal distances l (i.e., l(c1) = l(c2)).
Thus, we need to determine which, c1 or c2, is more suitable
for connecting to the graph.

Words appearing in a set of feature attributes are
not involved in the calculation if they do not occur in
all entities of the graph. In Figure 4, these words are
w6, w10, w12, w14, w15, and w16. These words can cause
entities to become irrelevant. This means that the entity
containing more words not in St will have a larger distance.
The above considerations motivated us to use the following
function:

d(ct) = l(ct) − ε
1

N(St)
, (3)

where ε is a small positive number such that this measure
does not affect the main distance l(ct). The resulting set
from using distance d does not add any entities beyond those
added using distance l. St is the complement of St (i.e.,
words in the content of the feature attributes of c t do not
appear in the whole graph). From this definition, we can
see that the shorter the distance d of the entity is, the more
suitable the entity will be for linking to the graph. Note
that after this procedure, if there are still many entities with
the same shortest distance d, then we must choose among
them randomly or manually. Our experiment showed that
this approach improved accuracy in comparison with simply
using the distance l in Equation 2.

Next, we resolve the problem of entities in the graph that
do not share words in different domains because of irrelevant
feature attributes. In this case, the distance d from each entity

65

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Algorithm 2 DHR-DE(g,C, P, pWeight, g′)

Input: a graph g, a dataset C for finding entity, and
a set of feature attributes P and their weight pWeight.
Output: a graph g′ which added found entity in C to g.

1) Set current shortest distance min d = −1;
2) for each ct ∈ C do
3) Extend g to g′ by adding ct in graph g;
4) S1 = extract words stored in feature attributes of g′

that appear in all entity of g′;
5) S2 = extract words stored in feature attributes of g′

that do not appear in all entity of g′;
6) if S1 �= {∅} then
7) Calculate distance d using S1 and S2.
8) if min d = −1 or min d > d then
9) r = {∅}; min d = d;

10) Insert ct into r;
11) if min d = d then
12) Insert ct into r;
13) else
14) if (graph g contains one node) then return;
15) else
16) Split graph g into subgraphs and execute

lines 4 to 7 for each distance from a subgraph;
17) Calculate distance d′ from each subgraph distance;
18) Insert ct into r if distance d′ is less than or

equal to min d;
19) if (r contains more than one entity) then
20) Choose and entity randomly;
21) Extend g to g′ by adding such entity in graph g;
22) return;

in data set C to the graph is zero. One idea is to consider
each entity in a graph as a separate subgraph and the distance
from an entity in data set C to the graph equals the sum of
distances from it to the subgraphs:

d′(ct) =
m∑

j=1

dj(ct), (4)

where m is the number of entities in the graph, and d j is
the distance from ct to a subgraph that stores only one jth
entity. Suppose that entity ay and entity by in Figure 3 do not
share any word, and so S is always empty. To estimate the
distance, we view instance graph y from a different angle: y
includes two subgraphs, one storing entity ay and one storing
entity by. Consequently, the distance from ct to the graph is
the sum of distances d from ct to the subgraph storing ay and
from ct to the subgraph storing by . Algorithm 2 illustrates
the process used to find the most suitable entity in dataset
C using distance functions from Equation 2 and 4.

V. EVALUATION

We evaluated the proposed algorithm on real data sets.
The data sets were derived from four publicly available
geographic information sources:

The U.S. Census data is provided by the Census Bureau.
The Census data comprises population statistics at various

geographic levels, from the United States as a whole, to
state, county, sub-county (roughly, cities and incorporated
towns), so-called “census data places”, ZIP Code Tabulation
Areas (ZCTAs, which approximate ZIP codes), and even
deeper levels of granularity. The data set contains around
3,200 counties, 36,000 towns, 16,000 villages, and 33,000
ZCTAs [17].

GeoNames gathers geographical data, such as names of
places in various languages, elevations, and populations,
from various sources. All lat/long coordinates are in WGS84
(World Geodetic System 1984). It contains over 8 million
geographical names and consists of 7 million unique features
including 2.6 million populated places and 2.8 million
alternate names [18].

The DBpedia data set is a large multi-domain ontology
which has been derived from Wikipedia. The DBpedia
data set contains geo-coordinates for 392,000 geographic
locations [19].

The World Factbook provides information about the his-
tory, people, government, economy, geography, communica-
tions, transportation, military, and transnational conflicts of
266 world entities [20].

The above data sources were linked together with
owl:sameAs links, creating about 100,000 connected graphs.
Note that not every entity had owl:sameAs links; these
formed empty graphs, and we did not include them in
our graph set. We applied our modified cSpan to find
frequent graphs in the graph set. A 20% link threshold
between datasets was used. With these settings, we derived
13 frequent graphs patterns. These frequent graphs were
used in the following evaluations.

To test the quality and validity of our distance measure
based on feature attributes, we compared our algorithm for
detecting hidden relations with a naı̈ve algorithm. The naı̈ve
algorithm used only information about the URI name to
make a prediction. We used a k-fold cross-validation method
with k = 10 [21] to construct the training and test sets.
That is, the dataset was split into 10 equal groups. In turn,
each group was used for testing and the remaining groups
were used for training. The final result is an average over
choices. For each instance of a frequent graph , we evaluated
the accuracy by removing one entity and attempting to
find it again. Note that not all frequent graphs included all
four domains (i.e., US Census, GeoNames, DBpedia, and
World Factbook), so the choice of entity to be removed
depended on whether it existed in the graph. Also note that
the frequent graphs were directed graphs and did not have
any ambiguities. Figure 5 lists the frequent graphs with the
number of instances.

Figure 6 compares the accuracies of our algorithm and
the naı̈ve algorithm. Accuracy is the precision of prediction,
i.e., the percentage of found entities that were correct. In
the case in which we removed an entity belonging to the
US Census, GeoNames, or DBpedia domain, our method

66

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Figure 5. Closed frequent graphs

gave a better result than the naı̈ve method. For the World
Factbook, however, our method gave worse results because
the names in the URIs were too well matched. For example,
http://dbpedia.org/resource/Nauru and http://www4.wiwiss.
fu-berlin.de/factbook/resource/Nauru match “Nauru”. In our
algorithm, information extracted from other feature attributes
caused significant noise. However, we are only interested in
the general case wherein the attributes of entities do not
yield very similar information. In addition, the results for
the first and third frequent graphs patterns were quite low.
The reason is that if one of the entities is missing, then the
information gained from the feature attributes of the other
entities is not enough to detect the missing one.

Finally, we considered graphs of data sets that really
were missing entities in the data and tried to predict new
entities that could be linked to them. Our algorithm was
able to find new entities even though the number of such
graphs was very small. This task was difficult because
the entities may not exist in the data set. For example,
in the case of http://sws.geonames.org/5879092/ and http:
//www.rdfabout.com/rdf/usgov/geo/us/ak in the linked data,
the two entities are linked by owl:sameAs and do not link
to any other entity. They both refer to Alaska. Our method
found a new entity in DBpedia which can link to them:
http://dbpedia.org/resource/Alaska

Looking at the results, we can see that our method
generally increased the completeness of the linked data.
Although it was far from perfect, it easily incorporated new
knowledge with few mistakes.

VI. CONCLUSION

We presented an approach to detecting hidden owl:sameAs
relations in geographical data sets, such as those of the U.S.
Census, GeoNames, DBpedia, and World Factbook. Since
feature attributes play an important role in describing a
resource, we can carry over relationships between resources.
Our approach uses supervised learning to train a feature
attribute set and uses the set for detecting relations. We
compared the outcomes of ours and a naı̈ve approach using
only URI name data for discovering hidden relations and
found that our approach has higher accuracy in most cases,
especially for resources in which there are not too many
matching feature attributes.

There are still many interesting aspectss to be studied in
detecting relations. One of them is noise. Besides useful
information, there is also superfluous information, or noise.
Such noise does not describe resources, and so it makes the
distance estimation worse. For example, articles, preposi-
tions, and auxiliary verbs occur frequently, but they do not
help in detecting hidden relations.

VII. ACKNOWLEDGMENT

We would like to thank members in NII for discussing
our research and giving us valuable recommendations. We
also thank the reviewers for their comments.

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the
story so far,” International Journal on Semantic Web and
Information Systems, vol. 5, pp. 1–22, 2009.

[2] J. Mi, H. Chen, B. Lu, T. Yu, and G. Pan, “Deriving
similarity graphs from open linked data on semantic web,”
in Proceedings of the 10th IEEE International Conference on
Information Reuse and Integration, 2009, pp. 157–162.

[3] P. Cudre-Mauroux, P. Haghani, M. Jost, and K. A. H.
de Meer, “idMesh: Graph-based disambiguation of linked
data,” in Proceedings of the 18th International World Wide
Web Conference, 2009, pp. 591–600.

[4] L. Getoor, “Link mining: A new data mining challenge,” ACM
SIGKDD Explorations Newsletter, vol. 5, pp. 84–89, 2003.

[5] Linked Data Community, “Statistics on data sets of LOD,”
http://esw.w3.org/topic/TaskForces/CommunityProjects/
LinkingOpenData/DataSets/Statistics.

[6] E. Hyvonen, R. Lindroos, T. Kauppinen, and R. Henriksson,
“An ontology service for geographical content,” in Proceed-
ings of the 6th International and 2nd Asian Semantic Web
Conference, 2007, pp. 33–34.

67

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Figure 6. Accuracies of our algorithm and naı̈ve algorithm

[7] R. Volz, J. Kleb, and W. Mueller, “Towards ontology-based
disambiguation of geographical identifiers,” in Proceedings of
the WWW2007 Workshop i3: Identity, Identifiers, Identifica-
tion, 2007.

[8] O. Hassanzadeh and M. Consens, “Linked movie data base,”
in Proceedings of the WWW2009 Workshop on Linked Data
on the Web, 2009.

[9] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, “Silk - a link
discovery framework for the web of data,” in Proceedings of
WWW2009 Workshop on Linked Data on the Web, 2009.

[10] A. Jaffri, H. Glaser, and I. Millard, “URI disambiguation in
the context of linked data,” in Proceedings of the WWW2008
Workshop on Linked Data on the Web, 2008.

[11] D. J. Cook and L. B. Holder, Mining Graph Data. John
Wiley and Sons, 2007.

[12] X. Yan, X. J. Zhou, and J. Han, “Mining closed relational
graphs with connectivity constraints,” in Proceedings of the
11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, 2005, pp. 324–333.

[13] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Dis-
covering frequent closed itemsets for association rules,” in
Proceedings of the 7th International Conference on Database
Theory, 1999, pp. 398–416.

[14] J. Pei, J. Han, and R. Mao, “Closet: An efficient algorithm
for mining frequent closed itemsets,” in Proceedings of 2000
ACM-SIGMOD International Workshop Data Mining and
Knowledge Discovery, 2000, pp. 11–20.

[15] X. Yan, J. Han, and R. Afshar, “Clospan:mining closed
sequential patterns in large datasets,” in Proceedings of 3rd
SIAM International Conference on Data Mining, 2003, pp.
166–177.

[16] M. J. Zaki and C.-J. Hsiao, “Charm: An efficient algorithm
for closed itemset mining,” in Proceedings of 2nd SIAM
International Conference on Data Mining, 2002, pp. 457–
473.

[17] J. Tauberer, “The U.S. census data,” http://www.rdfabout.com/
demo/census/, 2007.

[18] M. Wick, “The GeoNames geographical database,” http://
www.geonames.org/.

[19] DBpedia Team, “The DBpedia database,” http://wiki.dbpedia.
org/, 2009.

[20] CIA Factbook D2R Server, “The World Factbook database,”
http://www4.wiwiss.fu-berlin.de/factbook/.

[21] G. J. McLachlan, K.-A. Do, and C. Ambroise, Analyzing
microarray gene expression data. John Wiley and Sons,
2005.

68

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

