SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

Hugin: A Scalable Hybrid Android Malware Detection System

Dominik Teubert, Johannes Krude, Samuel Schiippen, Ulrike Meyer
Department of Computer Science
RWTH Aachen University
Aachen, Germany
Email: {teubert, krude, schueppen, meyer}@itsec.rwth.aachen.de

Abstract—Mobile operating systems are a prime target of today’s
malware authors and cyber criminals. In particular, Google’s
Android suffers from an ever increasing number of malware
attacks in the form of malicious apps. These typically originate
from poorly policed third-party app stores that fail to vet the
apps prior to publication. In this paper, we present Hugin, a
machine learning-based app vetting system that uses features
derived from dynamic, as well as static analysis and thus falls
into the scarcely studied class of hybrid approaches. Hugin is
unique with respect to using IPC/RPC monitoring as source for
dynamically extracted features. Furthermore, Hugin uses a short
(and yet effective) feature vector that leads to a high efficiency
in training as well as classification. Our evaluation shows that
Hugin achieves a detection accuracy of up to 99.74% on an up-to-
date data set consisting of more than 14,000 malware samples and
thus, is easily capable of competing with other current systems.

Keywords—-mobile malware detection; app vetting; machine-
learning.

I. INTRODUCTION

Smartphones are omnipresent in our society. According to
a recent study, 72% of the adults in the U.S. and 60% in
Europe own a smartphone [1]. Google’s Android is particularly
popular with a leading market share of 86.2% [2] at the time
of writing. Similar to its competitors, Android does not only
provide an operating system, but a complete eco-system for
app development and distribution. Unlike platforms, such as
Apples’s i0S, Android does not restrict users to the official
app store. This lead to the emergence of a number of third-
party app stores, gaining popularity especially in world regions
such as Russia and Asia. These alternative markets are not
as tightly regulated as the official Google Play store and are
therefore often used for malware distribution. It is estimated
that up to 3-7% of the available apps in Asian app stores are
malware, compared to only 0.1% malicious apps in Google’s
official Play store [3]. Google recently warned that the chance
of installing a potentially malicious app is ten times larger
outside the official store [4]. In Russia, up to 8.3% of the
apps installed from outside Google’s Play store are potentially
harmful [5].

The operators of the official app stores fight malware with
different approaches. Google introduced the Bouncer [4] [6], a
semi-automated approach that utilizes mainly dynamic analysis
for malware detection. Apple even performs a manual review
of the apps submitted to their app store. Although third-party
app stores have an equally strong interest in keeping their
market places free of malware, the numbers above show that
many of them are poorly policed. Large enterprises that have
a mobile device management (MDM) solution in place create
an additional barrier to keep their devices safe. Mobile devices
under MDM are often restricted to company operated app
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stores that have a particularly high security standard but a
limited amount of apps to choose from. However, there is no
established procedure how to vet apps before they are pub-
lished in such a store for the first time. This demonstrates the
importance of scalable automated mobile malware detection
for third-party app store operators and large companies alike.

This gap is filled by malware detection systems that are
based on machine learning and therefore are able to detect
yet unknown threats. Existing approaches use various types of
features derived from static analysis (e. g., [7]-[10]), dynamic
analysis (e.g., [11] [12]), or even both (e.g., [13]). However,
while inter process communication has previously been used
to analyze the malicious behavior of a specific app [14]-
[16], none of the prior malware detection system uses higher
level Inter Process Communication (IPC)/Remote Procedure
Calls (RPC) (monitoring as source for dynamically extracted
features. In this paper, we introduce Hugin, a novel malware
detection system based on a hybrid of static and dynamic fea-
tures. Hugin is unique with respect to using IPC/RPC as feature
source and has a very good detection capability comparable to
the best already existing mobile malware detection systems. In
particular, Hugin has the following properties:

Hybrid Detection: Hugin uses as feature vector containing
features derived by static as well as features derived by
dynamic analysis. We evaluate the static and the dynamic part
of the feature vector separately and show that Hugin benefits
from the hybrid approach in terms of detection accuracy.

IPC-based Features: Although IPC is heavily used on
Android, to the best of our knowledge, Hugin is the first
approach using higher level IPC/RPC calls as a source for dy-
namic features in the context of an Android malware detection
system.

Reliable Features: Android malware detection that relies
on static features derived from disassembled or decompiled
code often suffers from degraded detection performance due to
obfuscation. In contrast, Hugin relies mainly on static features
derived from parts of the APK that are hard to obfuscate.

Compact Feature Vector: Hugin makes use of a compar-
atively low number of (static and dynamic) features selected
by feature engineering. This short and thus compact feature
vector allows for efficient training (< 32 s) and classification
(< 3 ms).

Strong Detection Performance: Hugin shows an excellent
detection rate of about 99% (with a false-positive rate well
below 1%) on the well established Drebin data set (covering
the time period from 2008-2012) and even better accuracy on
the more recent, newly generated Hugin data set.

The remainder of this paper is structured as follows: The
most closely related work is summarized in Section II. A sys-
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tem overview on Hugin with details on the feature extraction
and the training and classification is given in Section III. We

present the results of our evaluation of Hugin in Section IV.

We conclude in Section V.

II. RELATED WORK

In the following section, we summarize the most relevant
mobile malware detection approaches from related work. We
focus on those approaches that are similar to Hugin in the
sense that they use either static or dynamic analysis to extract
features and machine learning techniques for detection or
classification. Note that a systematic comparison of detection
results between the proposed systems is only possible for
systems that made their data sets publicly available (such as
Drebin [8]) or base their evaluation on such data sets (such as
Droidsieve [10] and DroidScribe [12]).

1) Detection based on static analysis: Many approaches
from the field of machine learning aided mobile malware
detection use features that are derived from static analysis. For
unobfuscated malware, static features are typically easy and
computationally inexpensive to extract from APK files and
therefore allow for fast and scalable solutions. Additionally,
many static features are well established and understood (e. g.,
Android permissions). One of the earlier approaches of static
mobile malware detection was proposed by Peng et al. [7]. The
authors used probabilistic generative models such as Naive
Bayes to rank Android apps according to their asscociated
risk for the user. For training these models, Peng et al. relied
mainly on the requested permissions. With DroidSIFT [9]
Zhang et al. proposed a system that extracts API dependency
graphs to reconstruct Android app semantics. Graph similarity
metrics are then used to obtain a classification decision and
thus to distinguish benign from malicious apps. Following this
procedure DroidSIFT achieves a detection rate of 93% on a
malware set of 2200 samples. Drebin [8] provides a static
detection method that extracts features such as permissions,
filtered intents, API calls, and URLs. For classification Drebin
also uses SVMs, but constructs the vector space in such a
way that the system can present explanations for the detection
decision to the user. Furthermore, its lightweight nature allows
for detection on the end-user device. The authors of Drebin
provide a public data set consisting of 5560 malicious apps,
which is also used to evaluate Hugin. On this data set, Drebin
achieves a detection rate of up to 94% based on 545,000
features. One of the most recent approaches that was proposed
in this area is DroidSieve [10]. DroidSieve aims for classifying
obfuscated as well as unobfuscated Android malware solely
with the help of static features. Obfuscation-invariant features
as well as artifacts indicating obfuscation are used to enable
the system to also classify obfuscated samples correctly. The
elaborated feature engineering results in a promising accuracy
of up to 99.64% on the Drebin data set using 22,584 features.
Using feature selection as an additional step, DroidSieve
reduces the number of features to 859 with a slight drop in
accuracy (99.57%).

2) Detection based on dynamic analysis: The landscape of
related approaches that derive features from dynamic analysis
is smaller. This is mainly due to high demands of dynamic
analysis regarding the setup of the emulation environment
and the hardware requirements when performing analysis
at scale. Note that there are also various systems such as
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Droidscope [14], AppsPlayground [15], and Copperdroid [16]
that assist dynamic analysis of mobile malware, but do not aim
for automated detection. Among the first systems that used
dynamic features is Crowdroid [11]. Burgueara et al. used
system call invocations counts as features and subsequently
performed clustering using the k-means algorithm. The correct
label for each cluster (benign or malicious) is determined
using a crowdsourcing-based approach, assuming that a large
enough user base will reveal the significantly smaller malicious
cluster. Most recently Dash et al. proposed DroidScribe [12],
a system that focuses on classifying Android malware samples
into families. DroidScribe exclusively uses run-time behavior
such as system call traces, file/network access, and Binder
communication to construct dynamic features. Using different
flavors of SVMs the system achieves a classification accuracy
of up to 94%.

3) Detection based on hybrid analysis: Hybrid mobile
malware detection, i.e., the combination of static and dynamic
features for later classification, is even less comprehensively
studied. The only closely related approach to Hugin is Marvin
[13]. Lindorfer et al. extract a pile of 450,000 static and
dynamic features and use SVMs as well as linear classifier to
calculate a malice score for each app. Their best configuration
achieves a convincing detection rate of 98.24% at a low false-
positive rate. Marvin also uses feature selection as additional
step in its training procedure, ending up with 27,808 highest
ranked features (and a strong emphasis on the dynamic fea-
tures). In contrast to the fetch-all feature extraction of Marvin,
Hugin uses feature engineering and ends up with far less
features (about 2,000) at a comparable accuracy. Furthermore,
while Marvin relies on traditional dynamic features such as
file/network operations and data leakage, Hugin incorporates
IPC/RPC-based features for the first time in the field of
Android malware detection.

III. SYSTEM OVERVIEW

Since Hugin is a machine learning-based approach, it
operates in two phases: the training phase and the classification
phase. The training phase takes labeled data sets of benign
and malicious apps as input and results in a trained model.
The classification phase represents the actual operational mode:
apps that are submitted to an app store are processed and a
binary decision on basis of the pre-trained model is made.
Depending on the outcome further actions can be necessary,
e.g. the rejection of the app. To detect Android malware,
Hugin analyzes each app to get a comprehensive representation
of its behavior. While many proposed approaches focus either
on static or dynamic analysis Hugin combines both techniques
to soften the limitations of either of these lines of work.
Figure 1 shows an overview of Hugin’s detection approach
and its different stages. The key aspects are:

Static feature extraction. Our approach uses static analysis
to inspect each Android installation package. Hugin focuses
on features that can be extracted reliably, even for many
obfuscated malware samples.

Dynamic feature extraction. The dynamic analysis part of
Hugin relies on monitoring the inter-process communication
(IPC) of each sample at runtime. IPC is heavily used on
Android and almost all potentially harmful functionality of
apps has to pass this interface. Thus, a detailed profile of the
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Figure 1. Hugin system overview.

runtime behavior of the analyzed apps is created and is used
to derive features from it.

Training & Classification. For training and classification
SVMs with different kernels are used. SVMs showed outstand-
ing classification performance in a variety of application areas.
The utilization of kernels provides a high degree of flexibility.
Due to the comparably short length of our feature vector even
computationally expensive kernels such as the Radial Basis
Function (RBF) kernel can efficiently be used for classification.

A. Static Feature Extraction

Static analysis is frequently used for malware detection
purposes and eases automation and scalability through its
lightweight nature. However, static analysis also has several
downsides. Properties that can be statically extracted can
be differentiated into those which are particularly prone to
obfuscation techniques and those which are reliably extractable
in most cases. The higher the semantic level of information that
is gained through static analysis, the higher the chance that this
analysis can be hindered by malware. In particular, complex
code recovery through disassembling or decompilation is often
affected by obfuscation mechanisms. Detection approaches
that rely solely on features derived from static analysis are
therefore easy to circumvent by sophisticated malware. In
contrast, Hugin confines itself to those static properties that can
reliably be extracted from Android install packages (APK files)
and uses these to derive features. On Android, the Manifest
file is a particularly good source for static analysis, since it
contains essential information about each app such as permis-
sions, activities, services, broadcast receivers, and intent-filters.
Furthermore, the Manifest is mandatory for the installation
of new apps and has a pure declarative character, both usually
preventing it from being obfuscated. Hugin therefore primarily
relies on a comparatively small set of 1326 static features
that originate from the Manifest file. Since the size of the
feature vector is a crucial factor for training and classification
efficiency, our approach supports efficient classification even
with complex algorithms such as RBF-SVMs.

Specifically, we extract the following static features:

Permissions. Android makes use of permissions to separate
apps according to their privileges. Permissions are therefore
app-specific and are actively granted once by the user at
installation time. Access to many sensitive system resources
such as the location- or telephony-subsystem is controlled
via permissions. Malware depends on using such resources
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to suceed and therefore usually requests many security-related
permissions [17] [18].

Hardware components. In the case apps want to use hard-
ware components such as the camera, the microphone, or the
GPS this has to be declared in the Manifest. Many types of
malware, in particular spyware, heavily depend on using such
hardware features. The request of multiple sensitive hardware
components can therefore be indicative for malicious behavior.

Intent-filters. Intents on Android allow apps to listen for dif-
ferent events that are propagated through the system. Malware
often uses intents to trigger certain malicious actions, e.g.,
starting a background service after the BOOT_COMPLETED
intent is received.

Activity count. The primary goal of malware is to execute
its malicious payload. Most malware is therefore kept rather
simple regarding its interface to the user. We represent this
common property with the activity count, being 1 if the app
has > 3 activities and 0 otherwise.

Service count. The service count follows the same logic.
Malware frequently makes use of background services to per-
form malicious actions without the user’s awareness. However,
malware tends to put its malicious code into a single service,
a high number of services is rather indicative for a complex
benign app. We therefore add a 1 to the binary feature vector
if the app has > 2 services and 0 otherwise.

Third-party libraries. The only features that are not di-
rectly derived from the Manifest are the utilized third-
party libraries. For extraction, the androguard framework
is used. Our assumption is that some third-party libraries can
be particularly indicative for adware.

Automating the static analysis of APK files to extract the
1326 features does not pose a major challenge. There exist
well established tools included in the Android SDK and from
the open-source community that were used within Hugin (in
particular aapt and androguard). For each analyzed app, a
binary feature vector indicating the presence or absence of each
feature is created. This static feature vector is later merged with
the dynamic feature vector yielding a comprehensive vector for
training and classification.

B. Dynamic Feature Extraction

Static analysis often does not suffice to detect sophisticated
malware that uses code obfuscation or dynamic code loading.
To reveal such hidden malicious behavior malware analysts
often make use of dynamic analysis. Monitoring the run-
time behavior of apps can provide additional insights that
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TABLE I. EXAMPLES FOR EACH SET OF FEATURES.

Static features

Permissions (518 features)

android.permission.INTERNET
android.permission.READ_SMS
android.permission.REBOOT

Hardware components (104 features)

android.hardware .MICROPHONE
android.hardware.LOCATION
android.hardware.CAMERA

Intent-filters (638 features)

android.intent.action.SERVICE_STATE
android.intent.action.BOOT_COMPLETED
android.intent.action.SCREEN_OFF

Third-party libraries (62 features)

com.google.android.maps
android.software.device_admin
sonymobile.enterprise.api_1

Dynamic features

System services (195 features)

android.os.IServiceManager
android.app.IAlarmManager
android.os.IPowerManager

Remote Procedure Calls (516 features)

sendText
getSubscriberId
startService

Dynamic permissions (58 features)

android.permission.RECEIVE_SMS
android.permission.WAKE_LOCK
android.permission.SEND_SMS

might disclose potentially harmful actions, but does also raise
a number of new challenges. In contrast to static analysis,
dynamic analysis has very high demands regarding the analysis
environment in terms of hardware, performance, and setup. As
described below, Hugin meets these challenges and comple-
ments the static features with dynamic features derived from
monitored IPC/RPC logs.

1) IPC on Android: The architecture of the Android op-
erating system heavily relies on IPC/RPC mechanisms to
provide a variety of functionality to apps. Namely, Android
utilizes Binder for IPC, a reimplementation of a protocol
dating back to OpenBinder [19]. Various important features
of modern smartphones such as sending SMS, accessing the
GPS location, and taking pictures are made accessible to
developers via Binder and its RPC interface [20] [21]. Most
aspects of the implementation details of Binder IPC are hidden
from the Android developers using this RPC interface and
corresponding Java APIs that built on it. However, whenever
the funtionality of a (sensitive) Android system service is
being used, the Binder interface has to be passed. Note that
it is irrelevant if some functionality provided by a system
service is used in the context of a Java-written app or using
native code. The Binder is involved in both cases. Therefore,
monitoring the IPC interface allows to create detailed profiles
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of the behavioral aspects of apps at run-time. For this reason,
IPC monitoring was already used, e.g., in [14], [16] with the
goal of supporting the analysis of the malicious behavior of a
specific app. However, to the best of our knowledge, we are
the first who use IPC/RPC calls on Android to derive features
for an automated malware detection system.

2) Dynamic Analysis Environment: One challenge in dy-
namic malware analysis in general is that malware tries to
detect that it runs in a sandbox. The same holds for malicious
apps: malicious apps try to detect if they are running in an
emulator and change their behavior if they do. Thus there is
a complete line of research on how malware can detect that
it is running in an emulator and how to make a malcious app
believe that it runs on an actual device (e.g. [22] [23]). While
this line of work is orthogonal to our work, we tried to incorpo-
rate some of these findings into the Android Virtual Devices
(AVDs) used during our dynamic analysis. In particular, we
used the list of properties that can be queried via the Android
API to perform sandbox detection published in [22] to modify
the AVDs. We also tried to mimic the actual usage of the
emulated device by installing some common apps (e.g. signed-
in Facebook and Twitter apps) and storing data such as some
contacts in the phone book.

Besides considering sandbox detection, the stimulation
of dynamically tested apps to increase code coverage is a
much discussed topic. In recent years sophisticated stimulation
approaches were proposed [24] [25]. Hugin incorporates some
simpler heuristics to trigger typical malware behavior. In
particular, we reboot the emulator to trigger the commonly
used BOOT_COMPLETED intent-filter, send and receive SMS,
perform a phone call, and modify time and date settings.
Additionally, we make use of the monkey, an application
exerciser included in the Android SDK that allows injecting
random events for a specific duration. Each monkey phase
runs for 180 sec in our test setup, the complete dynamic
analysis of each app takes about 10 mins.

3) IPC Monitoring: To monitor IPC on Android we imple-
mented BTrace (short for Binder Trace). BTrace is a modified
Android Emulator to capture Android Binder inter-process
communication events using virtual machine introspection.
These captured events range from low-level Binder ioctl’s
to high level remote procedure calls, intent broadcasts, content
provider access and the dynamic evaluation of used permis-
sions. BTrace produces both human-readable and machine-
readable output, the former intended for manual inspection,
the latter for automatic analysis. Although we used Droid-
Scope [14] (that publicly provides only very basic hooking
mechanisms) as a starting point, BTrace does not reuse any-
thing from DroidScope with the exception of emulator system
call hooks and emulator memory access routines. Unlike
DroidScope, BTrace derives all monitored binder events from
a kernel system call view. To evaluate binder remote procedure
calls and higher level events, system call arguments and return
values are used. The structures on how to interpret this data
were extracted, in large parts automatically, from the Android
source code. BTrace employs an automata describing the
Android process creating and naming behavior. This automata
is used to determine the point of time at which the name
of an app may securely be read from user-space. Events are
attributed to app-name by remembering the once read app-
name for a process and the transitive hull of its child processes.
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For different kinds of actions, BTrace dynamically analyses
whether permissions are needed to perform these actions.
Unfortunately, the Android permission specification does not
exist in the form of a formal specification but only through
an implementation spread across the Android Java and C++
source code. To evaluate dynamic permission usage, BTrace
employs a permission specification obtained through executing
PScout [26], a tool that performs static program analysis
on the Android source code to generate the corresponding
specification.

Specifically, we extract the following dynamic features:

Used system services. For each analyzed app we monitor
which system services are used via the Binder interface during
run-time. The combination of several sensitive system services
can already be indicative for suspicious behavior.

Remote Procedure Calls. The specific method calls that are
performed on each system service give even deeper insights
into the run-time behavior. Since many system services provide
a broad set of methods the actually used methods allow a better
differentiation between benign and potentially harmful actions.

Dynamically used permissions. Using the permission spec-
ification obtained from PScout we are able to monitor the
permissions that are actually used at run-time. The rationale
behind this is that many benign apps statically request too
many permissions that are not or only very rarely used. In
contrast, aggressive malware will very likely use many of the
statically requested permissions even in the limited timeframe
of analysis.

C. Training & Classification

As described before, the app store vetting scenario
Hugin aims for has exceptionally high demands regarding the
detection capabilities of deployed systems. In particular, detec-
tion engines that guard an app store from unwanted software
should be able to detect previously unknown threats. These
requirements naturally suggest the application of machine
learning and binary classification in particular. To this end,
we utilized Support Vectors Machines (SVMs) [27] [28] for
all evaluated classification tasks. Specifically, we implemented
the classification part of Hugin using the efficient LIBSVM
library [29].

SVMs are non-probabilistic binary classifiers which were
successfully applied in a variety of application areas (e.g. in
computational biology and chemistry [30]). Besides their
strong classification performance [31], SVMs provide further
interesting properties: flexibility through utilization of kernels
[28], strong theoretic guarantees regarding the generalization
performance [32], and the support of one-class classification
through an extension [33]. Kernels are particularly interesting
because they allow efficient non-linear classification. The
“kernel trick” performs an implicit mapping from the input
vector space into a (higher or even infinite-dimensional) feature
vector space. Data points that are not linearly separable in the
input vector space may be separable in this higher-dimensional
vector space. Hugin was evaluated with the standard linear
kernel and the Gaussian Radial Basis Function (RBF) kernel.
In case of the RBF kernel the linear inner product K (z,z') =
x - ' is replaced with K (z,2') = exp(f‘%w) within the
dual representation of the SVM. Note that the RBF kernel is
computationally much more expensive than the linear kernel.
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TABLE II. TOP 10 FAMILIES OF THE EVALUATED DATA SETS.

Drebin data set Hugin data set

Id  Family # samples Id  Family # samples
A Fakelnstaller 925 A Fakelnstaller 5724
B DroidKungFu 667 D Opfake 1078
C Plankton 625 K SmsSpy 735
D Opfake 613 L Dowgin 708
E GingerMaster 339 M  RuSMS 438
F BaseBridge 330 N SmsStealer 274
G Iconosys 152 (0] FakeToken 261
H Kmin 147 P Lotoor 233

I FakeDoc 132 F BaseBridge 185
J Geinimi 92 Q Boxer 123

Here, Hugin profits from its comparatively short feature vector
of over all 2095 binary features allowing efficient classification
even for complex kernels.

IV. EVALUATION

In this section, we present the results of our evaluation of
the performance of Hugin. In particular, we detail the evalu-
ation methodology and data sets used, present the detection
performance of Hugin for the static part, the dynamic part and
the hybrid feature vector, compare the performance to prior
approaches as far as possible, and detail the training and classi-
fication efficiency of Hugin. Note that a systematic and sound
comparison between systems with respect to their detection
capabilities is only possible if the systems are evaluated on the
same data sets. This is only possible for systems that published
the data sets on which they evaluated themselves (such as
Drebin [8]) or systems that in turn based their evaluation
on such public data sets (such as Droidsieve [10] and Droid-
Scribe [12]). We therefore compare the detection performance
of Hugin on the Drebin data set to the performance of these
systems on the same data set only.

A. Data Sets and Methodology

1) Data sets: We evaluate Hugin on two different malicious
data sets, the Drebin dataset [8] containing 5560 malicious
samples and a newly assembled dataset of 14,043 malicious
samples referred to as Hugin dataset throughout the rest of
this paper. To compare our approach to prior work, we used
the Drebin data set [8], which covers the time period between
August 2010 and October 2012. Note that we were able to
extract features from 5317 samples only. The remaining 243
were either corrupted APK files and failed already in the static
analysis or failed in the dynamic analysis because the could
not be installed on the emulated device. Additionally, the more
recent Hugin data set covers the time-period between January
2015 and September 2016. To compose this Hugin data set
we used the VirusTotal intelligence search, querying the men-
tioned time period and requesting at least 35 AV matches to
ensure the sample is indeed malware. Table II shows the top
10 families of the Drebin and the Hugin data set. While some
families such as Fakelnstaller and Opfake are still popular
in the newer Hugin data set, others such as DroidKungFu
and Plankton dropped out of this top-list. Last but not least,
we composed a benign Hugin-b data set. To this end, we
downloaded 14,068 popular apps from the official Google Play
store, assuming that the fraction of potentially harmful apps in
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TABLE III. SVM EVALUATION FOR THE DREBIN DATA SET.

Linear Kernel

RBF Kernel

c=1 v = 0.03125, v = 0.03125
Features TPR FPR ACC Features TPR FPR ACC
hybrid 97.21% 1.03% 98.49% hybrid 97.57% 0.52% 98.95%
static 93.19% 1.39% 97.12% static 95.81% 1.21% 97.97%
dynamic 93.56% 5.69% 94.11% dynamic 88.60% 3.21% 94.54%

TABLE IV. SVM EVALUATION FOR HUGIN DATA SET.
Linear Kernel RBF Kernel

c=1 v = 0.03125, v = 0.0039062
Features TPR FPR ACC Features TPR FPR ACC
hybrid 99.70% 0.54% 99.58% hybrid 99.66% 0.19% 99.74%
static 99.14% 1.02% 99.06% static 99.57% 0.48% 99.55%
dynamic 98.92% 5.14% 96.89% dynamic 95.67% 3.32% 96.18%

TABLE V. DATASETS USED IN THE EVALUATION OF HUGIN.

Data set name Ground truth # samples
Drebin malware 5,317
Hugin malware 14,043
Hugin-b benign 14,068

the most popular apps is particularly low. Note that the Hugin-
b data set was used as the benign training set in all performed
experiments due to the fact that the Drebin-b data set is not
publicly available. Table V summarizes the sizes of all data
sets used for evaluation.

2) Methodology: The detection performance of Hugin was
measured by performing various experiments. In these exper-
iments all relevant performance measures were calculated by
splitting each data set into a training partition (66% of the
samples) and a validation partition (33% of the samples). To
this end, we applied repeated random subsampling and aver-
aged our results over 10 runs. We used standard performance
measures like the true-positive rate (TPR), the false-positive
rate (FPR), and the accuracy (ACC) to assess the performance
of Hugin and to be able to compare our approach to others.
Additionally, we used Receiver Operating Characterstic (ROC)
curves to visualize different parameter combinations [34]. In
our first series of experiments, we evaluated Hugin against
two malicious data sets, the publicly available Drebin data set
and the newly assembled Hugin data set. For classification we
tested SVMs with linear kernel and SVMs with RBF kernel.
In case of the RBF kernel we performed a grid search to
determine the kernel parameter v and v. We also evaluated the
static feature vector, the dynamic feature vector, and the hybrid
feature vector (concatenation of static and dynamic vector)
separately.

B. Overall Detection Performance

Table III shows the results for the Drebin data set for the
best kernel parameter determined through grid search. Overall,
Hugin achieves an accuracy of just below 99% on the Drebin
data set, with the RBF kernel showing superior TPR and FPR
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TABLE VI. COMPARISON OF RELATED APPROACHES EVALUATING
THE DREBIN DATA SET (STATING THE BEST MENTIONED

CONFIGURATION).
Approach Features Best ACC # features
Drebin [8] static ~96.50% ~545,000
DroidSieve [12] static 99.64% ~22,500
Hugin-static static 97.97% 1326
Droidscribe [10] dynamic 94.00% 254
Hugin-dynamic dyanmic 94.54% 769
Hugin hybrid 98.95% 2,095

compared to the linear kernel. Interestingly, in case of the
RBF kernel considering only the static feature vector yields
far better results than considering only the dynamic feature
vector, while the results are more balanced for the linear kernel.
However, in both cases the hybrid feature vector performs
best, underpinning the assumed benefits of hybrid mobile
malware detection. In case of the public Drebin data set we are
able to directly compare Hugin to related approaches. While
there are minor methodical differences between the detection
approaches (e. g., regarding the fraction of the samples that are
used for training and validation), the overall trend should be
unaffected. Section IV-A2 shows Hugin’s excellent accuracy
compared to the most closely related approaches that have
evaluated the Drebin data set. Only the purely static Droid-
Sieve [10] approach that is optimized for obfuscated malware
achieves an even higher accuracy, but requires 16 times more
features to achieve its best performance (see Section IV-A2).
Note that Hugin is on par with the highly feature intensive
Drebin and the Droidscribe approach when considering only
the static or dynamic feature vector, respectively. The overall
superiority of Hugin can therefore be attributed to the combi-
nation of both analysis techniques.

Table IV summarizes the detection results on the more up-
to-date Hugin data set. Overall, the detection performance is
even better than on the Drebin data set. Both the Linear-SVM
and the RBF-SVM achieve an accuracy of over 99.5%, with
the RBF-SVM performing best regarding the FPR. Evaluated
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individually, we again observe that the dynamic feature vector
performs worse than the static feature vector and that this
effect is more pronounced for the RBF-SVM. However, it
also becomes evident on the Hugin data set that the detection
performance profits from the hybrid detection approach.

C. Detection Performance of Malware Families

The considerable better detection performance on the
Hugin data set compared to the Drebin data set is also
illustrated with the ROC curves in Figure 2. For both data
sets the curves for the Linear-SVM and for the RBF-SVM
parameter optimizing the ACC and TPR, respectively, are
plotted. In addition to the better detection performance on
the Hugin data set, the main finding is the consistently better
performance of the RBF-SVM compared to the Linear-SVM
on both data sets. We also assume that the considerably better
performance on the Hugin data set can mainly be attributed to
the benign data set used for training: Since it covers a similar
time span as the malicious Hugin data set, it is easier for the
classifier to distinguish these apps than on the considerably
older Drebin data set (note that the Drebin-b data set is not
publicly available). A lesson learned therefore is, that the
benign and malicious training data set should always stem from
a similar time period.

Figure 3 shows the detection rates of Hugin for the top 10
families of the Drebin and the Hugin data set. Compared to
the Drebin approach, Hugin performs similar or better on the
10 most frequent malware families with an average detection
rate of 99.35%. For the families E and F (GingerMaster
and BaseBridge) that were particularly hard to detect for
Drebin (detection rates of below 93%) our approach achieves
significantly better detection rates of 99.41% and 96.86%,
respectively. The authors of Drebin also reported a particular
bad detection rate for the Gappusin family (not ranked top 10)
and explained this result with the low number of extractable
features. Interestingly, we can replicate this result when con-
sidering solely the static feature vector (51.44% TPR) or the
dynamic feature vector (68.58% TPR). However, the hybrid
feature vector achieves a compelling detection rate of 93.95%.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

This result once again indicates that the combination of static
and dynamic features can help detecting mobile malware that is
otherwise hard to detect. The top 10 families of the Hugin data
set show even higher detection rates with an average of 99.51%.
When considering only the dynamic feature vector we can
observe a significantly higher average detection rate of 99.09%
on the Hugin data set (compared to 96.89% on the Drebin data
set). This phenomenon can easily be explained with age of the
data sets: Since the Drebin data set is much older, the dynamic
analysis can extract less features because, e. g., command and
control server are put offline and therefore less behavior is
shown during the analysis. Consistently, the gap in the average
detection rate is smaller when using only the static feature
vector for classification (99.10% on the Hugin data set, 97.74%
on the Drebin data set). For the families that are included in
both data sets (A, D, and F) the BaseBridge family (Id F) is
particularly interesting. With a detection rate of below 93% in
the original Drebin paper, BaseBridge is among the families
that are most difficult to detect. Hugin achieves a detection rate
of 96.86% for the BaseBridge samples in the Drebin data set
and even 97.51% detection rate for the samples included in the
Hugin data set, while the detection rate for the dynamic feature
vector again increased notably on the newer data set. This
leads us to conclude that the hybrid Hugin approach shows its
strongest performance for most recent malware samples that
emit a considerable amount of dynamic behavior the system
can profit from.

D. Efficiency

The feature extraction part of Hugin consists of a dynamic
as well as a static module. While the dynamic analysis of
each app is quiet costly (8-10 minutes, see Section III), the
actual extraction of the feature vector from the log data is
negligible (52.37 ms per app, averaged over the Drebin data
set). As expected the static feature extraction shows far better
performance, with an average of only 55.39 ms for the entire
analysis of each app.

The advantage of the short feature vector of Hugin (which
is one of its strength) shows best in the training and classifi-
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Figure 3. Detection rates per malware family for the Linear-SVM.

cation performance. To get the most meaningful numbers, we
measured the performance for the experiment with the highest
number of feature vectors (training with the Hugin data set, i.e.
about 28,000 feature vectors) and averaged over 10 runs. Using
the RBF kernel the training of the SVM took 31.56 sec, while
the classification of the 9559 apps in the validation set took
22.05 sec (i.e., 2.31 ms on average per app). The linear kernel
shows even better performance. In this case the training took
24.78 sec and the classification 17.57 sec, i.e., only 1.84 ms

per app.

Note that all numbers were measured on quiet dated desk-
top hardware (Intel i7-2600@3.40GHz) and therefore leave
much room for improvements (either through more powerful
hardware or through persistent use of parallelization).

V. CONCLUSION AND FUTURE WORK

In this paper, we present Hugin, a hybrid and scalable
Android malware detection system. We show how lightweight
static analysis and complex dynamic analysis can be com-
bined to create a comprehensive yet compact feature vector.
Hugin achieves an accuracy of up to 99.74% on an up-to-
date data set with far less features than related approaches.
Our evaluation proves that the system profits significantly
from the hybrid approach, both in terms of overall detection
performance and in terms of detection performance for mal-
ware families that are particularly hard to detect. In particular,
our dynamic feature extraction that relies on monitored inter-
process communication proved to be a meaningful addition.
Each of the individual components of Hugin is subject to
continuous advances of the academic community, which could
also improve Hugin. Static analysis could benefit from more
elaborated feature engineering that allow better detection of
obfuscated malware samples. Dynamic analysis could be en-
hanced by incorporating more complex stimulation techniques
that increase code coverage. Furthermore, the post-processing
of the results which can include report generation for analysts
was not addressed so far and is another direction of future
work.
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