
111

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FUZZBOMB : Fully-Autonomous Detection and Repair of Cyber Vulnerabilities

David J. Musliner, Scott E. Friedman, Michael Boldt, J. Benton, Max Schuchard, Peter Keller
Smart Information Flow Technologies (SIFT) Minneapolis, USA
{dmusliner,sfriedman,mboldt,jbenton,mschuchard,pkeller}@sift.net

Stephen McCamant
University of Minnesota, Minneapolis, USA

mccamant@cs.umn.edu

Abstract—SIFT and the University of Minnesota teamed up to
create a fully autonomous Cyber Reasoning System to compete
in the DARPA Cyber Grand Challenge. Starting from our prior
work on autonomous cyber defense and symbolic analysis of
binary programs, we developed numerous new components to
create FUZZBOMB. In this paper, we outline several of the major
advances we developed for FUZZBOMB, including a content-
agnostic binary rewriting system called BINSURGEON. We then
review FUZZBOMB’s performance in the first phase of the Cyber
Grand Challenge competition.

Keywords-autonomous cyber defense; symbolic analysis; protocol
learning; binary rewriting.

I. INTRODUCTION

In June 2014, DARPA funded seven teams to build au-
tonomous Cyber Reasoning Systems (CRSs) to compete in
the DARPA Cyber Grand Challenge (CGC). SIFT and the
University of Minnesota together formed the FUZZBOMB
team [1], building on our prior work on the FUZZBUSTER
cyber defense system [2], [3], [4] and the FuzzBALL symbolic
analysis tool [5], [6], [7].

SIFT’s FUZZBUSTER system was built to automatically
find flaws in software using symbolic analysis tools and fuzz
testing, refine its understanding of the flaws using additional
testing, and then synthesize adaptations (e.g., input filters
or source-code patches) to prevent future exploitation of
those flaws, while also preserving functionality. FUZZBUSTER
includes an extensible plug-in architecture for adding new
analysis and adaptation tools, along with a time-aware, utility-
based meta-control system that chooses which tools are used
on which applications during a mission [8]. Before the CGC
began, FUZZBUSTER had already automatically found and
shielded or repaired dozens of flaws in widely-used software
including Linux tools, web browsers, and web servers.

In separate research, Prof. Stephen McCamant at the Uni-
versity of Minnesota had been developing the FuzzBALL tool
to perform symbolic analysis of binary x86 code. FuzzBALL
combines static analysis and symbolic execution to find flaws
and proofs of vulnerability through heuristic-directed search
and constraint solving. On a standard suite of buffer overflow
vulnerabilities, FuzzBALL found inputs triggering all but one,
many with less than five seconds of search [5].

Together, FUZZBUSTER and FuzzBALL provided the seeds
of a strategic reasoning framework and deep binary analysis
methods needed for our FUZZBOMB CRS. However, many

challenges still had to be addressed to form a fully functioning
and competitive CRS. In this paper, we outline several of
the major advances we developed for FUZZBOMB, includ-
ing a new content-agnostic binary rewriting system called
BINSURGEON. We discuss the technical advances that allow
BINSURGEON’s template-based rewriting of stripped binaries
to mitigate vulnerabilities. Finally, we review FUZZBOMB’s
performance in the qualifying round of the CGC competition,
and discuss lessons learned.

II. BACKGROUND

A. DARPA’s Cyber Grand Challenge

Briefly, the CGC is designed to be a simplified form of
Capture the Flag game, in which DARPA supplies Challenge
Binaries (CBs) that nominally perform some server-like func-
tion, responding to client connections and engaging in some
behavioral protocol as the client and server communicate. The
CBs are run on a modified Linux operating system called
Decree, which provides a limited set of system calls. In the
competition, CBs are provided as binaries only (no source
code) and are undocumented, so the CRSs have no idea what
function they are supposed to perform. However, in some cases
a network packet capture (PCAP) file is provided, giving noisy,
incomplete traces of normal non-faulting client/server interac-
tions (“pollers”). Each CB contains one or more vulnerability
that can be accessed by the client sending some inputs, leading
to a program crash. To win the game, a CRS must find the
vulnerability-triggering inputs (called Proofs of Vulnerability
(PoVs)) and also repair the binary so that the PoVs no longer
cause a crash, and all non-PoV poller behavior is preserved.
The complex scoring system rewards finding PoVs, repairing
PoVs, and preserving poller behavior, and penalizes increases
in CB size and decreases in CB speed.

B. FUZZBUSTER

Since 2010, we have been developing FUZZBUSTER [9]
under DARPA’s CRASH program to use software analysis
and adaptation to defeat a wide variety of cyber-threats. By
coordinating the operation of automatic tools for software
analysis, test generation, vulnerability refinement, and adap-
tation generation, FUZZBUSTER provides long-term immunity
against both observed attacks and novel (zero-day) cyber-
attacks.



112

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

	������ 
����������� 
�������������� 

������������
��!!�������� 

����������������
�������� ��
���������� 

����������
���������
��������� 


�������� 

�������� 
�������
���� � 

������� 

��!!
������ 
� ������!��� 
�����
��� 
������� 

�������� 

	����������
�������������������

Figure 1. FUZZBUSTER refines both proactive and reactive fault exemplars into vulnerability profiles, then develops and deploys adaptations that remove
vulnerabilities.

FUZZBUSTER operates both reactively and proactively, as
illustrated in Figure 1. When an attacker deploys an exploit
and triggers a program fault (or other detected misbehavior),
FUZZBUSTER captures the operating environment and recent
program inputs into a reactive exemplar. Similarly, when
FUZZBUSTER’s own software analysis and fuzz-testing tools
proactively create a potential exploit, it is summarized in
a proactive exemplar. These exemplars are essentially tests
that indicate a (possible) vulnerability in the software, which
FUZZBUSTER must characterize and then shield from future
exploitation. For example, an exemplar could hold a particular
long input string that arrived immediately before an observed
program fault. Proactive exemplars based on program analysis
may be more informative: they can represent not just a single
faulting input, but a set of constraints that define vulnerability-
triggering inputs. Reactive exemplars pose a greater threat,
since they almost certainly indicate that an attacker has already
found a software flaw.

Starting from an exemplar, FUZZBUSTER uses its program
analysis tools and fuzz-testing tools to refine its understanding
of the vulnerability, building a vulnerability profile (VP).
For example, FUZZBUSTER can use concolic testing to find
that the long-string reactive exemplar is triggering a buffer
overflow, and the VP would capture this information. Or,
FUZZBUSTER can use delta-debugging and other fuzzing tools
to determine the minimal portion of the string that triggers the
fault. Similarly, constraint relaxation can generalize symbolic
analysis exemplars to find additional paths to a vulnerability.

At the same time, FUZZBUSTER tries to create software
adaptations that shield or repair the underlying vulnerability.
In the simplest case, FUZZBUSTER may choose to create a
filter rule that blocks some or all of the exemplar input (i.e.,
stopping the same or similar attacks from working a second
time). This may not shield the full extent of the vulnerability
(or may be too broad, compromising normal operation), so
FUZZBUSTER will keep working to refine the VP and develop
more effective adaptations. Even symbolic analysis may not
yield a minimal description of the inputs that can trigger
a vulnerability: there may be many vulnerable paths, only
some of which are summarized by a constraint description.

Over time, as FUZZBUSTER refines the VP and gains a better
understanding of the flaw, it may create more sophisticated and
effective adaptations, such as filters that block strings based on
length not exact content, or actual software patches that repair
the buffer overflow flaw. As it creates and applies adaptations,
FUZZBUSTER can choose to re-evaluate previous adaptations,
keeping those that remain effective and replacing those that
have been superceded. FUZZBUSTER already has sophisticated
techniques for creating filters that eliminate vulnerability-
triggering inputs, which can be used as network-layer filters
or application wrappers.

As different adaptations are developed, FUZZBUSTER can
assess their performance against the set of tests it has been
accumulating for a particular application, determining how ef-
fectively each adaptation stops known faulting inputs and pre-
serves the functionality of known non-faulting test cases (ei-
ther observed in the wild or generated by FUZZBUSTER) [10]1.
For example, Figure 2 illustrates FUZZBUSTER’s performance
on two applications, showing how it finds vulnerabilities
(indicated by faulting test cases, the solid red line) and creates
adaptations (patches) that try to fix those faults. The dotted
red line indicates the number of faulting test cases that no
longer cause a fault in the patched application. We refer to
the undesirable area between those red lines, during which
known vulnerabilities are still exploitable, as the exposure.

The blue lines show the performance of the original ap-
plication (solid blue) and patched application (dotted) on
the non-faulting test cases. In the first example, Figure 2a,
FUZZBUSTER’s analysis of the detected flaw is perfect: its
first patch fixes all the known faulting test cases and does
not degrade performance on the reference test cases. In the
second example, Figure 2b, FUZZBUSTER creates a series
of different patches and filters to shield a large number of
different faulting inputs, and in the process, some of those
degrade the application’s performance on the non-faulting test
cases (i.e., a gap appears between the solid and dotted blue
lines). However, eventually FUZZBUSTER replaces the lesser
adaptations with highly refined adaptations that restore all of

1We call this “poor man’s regression testing,” since it does not require any
manually-created regression tests.



113

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120  140  160  180

# 
Fa

ul
tin

g 
Te

st
 C

as
es

Time (s)
PA

TC
H

 1
 (0

, 7
, 2

3)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600  700  800

# 
Fa

ul
tin

g 
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (6
, 0

, 3
0)

PA
TC

H
 2

 (6
, 0

, 3
0)

PA
TC

H
 3

 (6
, 0

, 3
0)

PA
TC

H
 4

 (6
, 1

, 3
0)

PA
TC

H
 5

 (6
, 1

0,
 3

0)

PA
TC

H
 6

 (6
, 1

0,
 3

0)

PA
TC

H
 7

 (6
, 4

0,
 3

0)

PA
TC

H
 8

 (6
, 4

0,
 3

0)

PA
TC

H
 9

 (6
, 4

0,
 3

0)

PA
TC

H
 1

0 
(6

, 6
2,

 3
0)

PA
TC

H
 1

1 
(6

, 6
2,

 3
0) PA

TC
H

 1
2 

(6
, 7

8,
 3

0)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

(a) (b)

Figure 2. FUZZBUSTER works continuously to derive better adaptations, improving an application’s performance on faulting and non-faulting test cases.

the performance and still prevent exploitation of all the known
vulnerabilities.

While FUZZBUSTER already had the coordination infras-
tructure and representation/reasoning to manage exemplars,
VPs, and adaptations, many of the tools we had integrated
could not apply to the CGC because they do not operate
directly on binaries. To fill these gaps and support the full
spectrum of vulnerability detection, exploitation, and repair
needed for CGC, we integrated with UMN’s FuzzBALL and
also developed new components, as described in Section III.

C. FuzzBALL

FuzzBALL is a flexible engine for symbolic execution and
automatic program analysis, targeted specifically at binary
software. In the following paragraphs we briefly describe
the concepts of symbolic execution and explain FuzzBALL’s
architecture, emphasizing its features aimed at binary code.

The basic principle of symbolic execution is to replace
certain concrete values in a program’s state with symbolic
variables. Typically, symbolic variables are used to represent
the inputs to a program or sub-function, and the symbolic
analysis results in an understanding of what inputs can lead
to different parts of a program. An interpreter executes the
program, accumulating symbolic expressions for the results of
computations that involve symbolic variables, and constraints
(in terms of those symbols) that describe which conditional
branches will occur. These symbolic expressions are valuable
because they can summarize the effect of many potential
concrete executions (i.e., many possible inputs). When a
symbolic expression is used in a control-flow instruction, we
call the formula that controls the target a branch condition. On
a complete program run, the conjunction of the conditions for
all the symbolic branches is the path condition. We can use
an SMT solver [11], [12] (such as STP [13] or Z3 [14]) on a
path condition to find a set of concrete input values that would
cause the corresponding path to be executed, or to determine
what other paths might be feasible.

Many symbolic execution tools operate on program source
code (e.g., KLEE, Crest), but FuzzBALL is differentiated
by its focus on symbolic execution of binary code. At its

Figure 3. An overview of our FuzzBALL binary symbolic execution engine.

core, FuzzBALL is an interpreter for machine (e.g., x86)
instructions, but one in which the values in registers and
memory can be symbolic expressions rather than just con-
crete bit patterns. Figure 3 shows a graphical overview of
FuzzBALL’s architecture. As it explores possible executions
of a binary, FuzzBALL builds a decision tree data structure.
The decision tree is a binary tree in which each node represents
the occurrence of a symbolic branch on a particular execution
path, and a node has children labeled “false” and “true”
representing the next symbolic branch that will occur in either
case. FuzzBALL uses the decision tree to ensure that each
path it explores is different, and that exploration stops if no
further paths are possible.

To factor out instruction-set complexity, FuzzBALL builds
on the BitBlaze Vine library [15] for binary code analysis,
which provides a convenient intermediate language (the “Vine
IL”) for representing instruction behavior. Another complexity
that arises at the binary level is that because memory is
untyped, loads may not have the same size and alignment as
stores. For example, a location might be written with a 4-byte
store and then read back with a sequence of 1-byte loads.
FuzzBALL optimizes for the common case by representing
symbolic values in memory at the granularity with which they
were stored, if they are naturally aligned, using a tree structure.
But it will automatically insert bitwise operations to subdivide
or assemble values as needed.

We have used FuzzBALL on several CGC-relevant research
projects, which typically build on the basic FuzzBALL engine
by adding heuristics or other features specialized for a par-
ticular problem domain. Babić et al. [5] combined dynamic



114

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

control-flow analysis, static memory access, and FuzzBALL
to find test cases for buffer overflow vulnerabilities in binaries,
using the results of static analysis to guide FuzzBALL’s search
toward potential vulnerabilities. Martignoni et al. [7] used
FuzzBALL to generate high-coverage test cases for CPU em-
ulators, illustrating how exhaustive exploration is feasible for
small but critical code sequences. Caselden et al. [6] combined
dynamic data-structure analysis and FuzzBALL to produce
proof-of-concept exploits for vulnerabilities that are reached
only after complex transformations of a program’s input, using
novel pruning and choice heuristics to efficiently find inverse
images of transformations such as data compression.

For FUZZBOMB and the CGC, we integrated FuzzBALL
with the FUZZBUSTER reasoning framework and significantly
extended FuzzBALL’s program analysis capabilities.

III. NEW DEVELOPMENTS

A. Hierarchical Architecture

We designed FUZZBOMB to operate on our in-house cluster
of up to 20 Dell Poweredge C6100 blade chassis, each holding
eight Intel XEON Harpertown quad-core CPUs. To allocate
this rack of computers, we designed a hierarchical command-
and-control scheme in which different FUZZBOMB agents play
different roles. At the top of the hierarchy, several agents are
designated as “Optimus”, or leader agents. At any time, one is
the primary leader, known as Optimus Prime (OP). All of the
other Optimi are “hot backups,” in case OP goes down for any
reason (hardware failure, software crash, network isolation).
All messages sent to OP are also sent to all of the other
Optimi, so that their knowledge is kept up to date at all times.
We enhanced our existing fault detection and leader election
protocol methods to ensure that an OP is active in the cluster
with very high reliability. Fault detection methods include
monitoring communication channels (sockets) for failure and
watchdog processes that send periodic messages to ensure
liveness. The Optimi are given unique integer identifiers,
and the next-in-order Optimus becomes Prime if the prior
OP is determined to have failed; handshake messages ensure
that the other Optimi agree on the new OP selection. We
usually configure FUZZBOMB with three Optimi, each run on
a different hardware chassis in the cluster.

Below OP, a set of “FUZZBOMB-Master” agents are des-
ignated, each to manage the reasoning about a single CB.
OP’s main job is allocating CBs to those Master agents and
giving them each additional resources (other FUZZBOMBS,
DVMs) to use to improve their score on a CB. A FUZZBOMB-
Master’s job is improve its score on its designated CB, using
its allocated computing resources in the best way possible
(whether that is analysis, rewriting, or testing/scoring). As
progress is made on each CB, the responsible FUZZBOMB-
Master will report that progress and the best-revised-CB-so-far
back to OP.

OP’s objective is to maximize the system’s overall score,
keeping in mind deadlines and other considerations. By design,
OP should dynamically re-allocate the reasoning assets to the
most challenging problems, to maximize the overall system’s

score. OP is also responsible for uploading FUZZBOMB’s final
best answers to the government-supplied response location.

B. FuzzBALL Improvements

FUZZBOMB uses an improved FuzzBALL symbolic execu-
tion engine in an approach that combines ideas from symbolic
execution and static analysis in order to find vulnerabilities in
binary programs. A static-style analysis identifies parts of the
program that might contain a vulnerability. Then a symbolic
execution search seeks an execution path from the start of the
program to the possible vulnerability point that constitutes a
proof of vulnerability. Symbolic execution generates a number
of input constraint sets, each set representing a family of
related program execution paths. The symbolic execution
engine uses these constraint sets to determine the inputs to the
program that can reach the program vulnerability, offering a
proof-of-concept exploit. While exploring this space, the sym-
bolic execution engine will encounter many decision points
(such as conditional branches). Each of these decision points
branches off a new set of paths, leading to an exponentially
growing number of paths. Exploring this search space of
paths represents a significant computational effort. Scaling
up the search in a way that mitigates this path explosion
poses a key challenge. To overcome this problem, we applied
parallelization techniques and heuristic search improvements,
as well as other algorithmic changes.

1) Heuristic Guidance: Because the space of program
executions is vast, even in the constraint-based representations
of symbolic reasoning, heuristic guidance is essential. For the
CGC, the key objective is to guide the search towards potential
vulnerabilities. FUZZBOMB identifies potentially vulnerable
instruction sequences and uses abstraction heuristics to focus
the search towards those targets. Although a wide variety of
source-level coding mistakes can leave a program vulnerable,
these dangerous constructs are more uniform when viewed in
terms of the binary-level capability they give to an attacker.
For example, many types of source-code vulnerabilities create
binary code in which the destination of an indirect jump
instruction can be influenced by an attacker. The source-code
and compiler details about why such a controllable jump
arises are often irrelevant, and are not our focus. In particular,
FUZZBOMB does not try to decompile a binary back to a
source language, nor will it identify which particular source
code flaw describes a vulnerability. FUZZBOMB’s search guid-
ance strategies target just these end-result capabilities; e.g.,
searching for an indirect jump that can be controlled to lead
to attack code.

FUZZBOMB uses problem relaxation heuristics to reduce
the search space of possible executions, drawing on recent
advances in heuristic search techniques for directed symbolic
execution and Artificial Intelligence (AI) planning. To search
through very large spaces, these techniques use rapid solutions
to relaxed or approximate versions of their real problems to
provide heuristic guidance. Over the last dozen years, research
on relaxation heuristics has produced immense improvements
in the scalability of AI planning and other techniques (e.g.,



115

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16], [17]). For example, Edelkamp et al. [16] report up to four
orders of magnitude reduction in nodes searched in model-
checking. Similarly, AI planning systems have gone from
producing plans with no more than 15 steps to plans with
hundreds of steps (representing many orders of magnitude
improvement in space searched). These techniques are only
now being applied to directed symbolic execution to help find
program paths to vulnerabilities (e.g., Ma et al. [18]).

For FUZZBOMB, the problem is to find a symbolic execu-
tion path through a program that leads to a vulnerability. One
key research challenge is finding the best relaxation method
for symbolic execution domains. We developed an approach
using causal graph heuristics found in AI planning search [19]
to direct symbolic execution, in a manner similar to call-
chain backwards symbolic execution [18]. These heuristics use
factorization to generate a causal model of subproblems, then
“abstract away” interactions between the subproblems to create
a relaxed version of the problem that can be solved quickly
at each decision point during search. In symbolic execution,
solving the relaxed problem determines:

• A reachability analysis to a vulnerability. If the relaxation
of the program indicates a vulnerability is unreachable
from a particular program decision point, then exploring
from that point is fruitless.

• A distance estimate at each decision point, that lets
exploration proceed along an estimated shortest path.

To generate the relaxation heuristic, FUZZBOMB uses the
causal model present within data-flow and control-flow graph
(CFG) structures used in binary program analysis. For in-
stance, in a CFG, nodes represent blocks of code and edges
represent execution order. This provides a subproblem struc-
ture, allowing for bottom-up solving of each subproblem.

The FuzzBALL approach to hybrid symbolic execution and
static analysis needed many other improvements to work on
the CGC CBs. Our major developments have included:

• Porting to Decree— We adapted FuzzBALL to handle
the unique CB format, including emulating the restricted
Decree system calls and handling the specific limitations
of the CB binary format.

• Improving over-approximated CFG methods— Prior to
symbolic analysis, FuzzBALL requires the control flow
graph (CFG) of the target binary. Various existing meth-
ods are all imperfect at recovering CFGs, but some can
be combined. We developed a new CFG-recovery tool
that leverages prior work on recursive disassembly along
with an updated over-approximation method that finds
all of the bit sequences in a binary representing valid
addresses/offsets within the binary and treats those as
possible jump targets. While this overapproximation is
extreme, FUZZBOMB uses heuristics to reduce the size
of the resulting CFGs.

• Detecting input-controllable jumps— As FuzzBALL ex-
tends branch conditions forward through the possible pro-
gram executions, whenever it reaches a jump it formulates
an SMT query asking whether the CB inputs could force

the jump to 42 (i.e., an arbitrary address). If so, a likely
vulnerability has been identified.

• Detecting null pointer dereferences, return address over-
writes, etc.— FuzzBALL now uses similar methods to
detect various other vulnerable behaviors.

• Making incremental solver calls— We have enhanced
FuzzBALL’s SMT solver interface so that it can behave
incrementally. For example, after querying if a jump
target is input-controllable, it can retract that final part
of the SMT query and the SMT solver can retain some
information it derived during the prior solver call. Mi-
crosoft’s Z3 SMT solver is state of the art and supports
this type of incremental behavior.

• Handling SSE floating point (FP)— The original
FuzzBALL implementation used a slow, emulation-based
method to handle floating point calculations, and it
could not handle the modern SSE FP instructions. We
have recently completed major extensions that allow
FuzzBALL to handle SSE FP instructions using Z3. We
have switched over to using Z3 by default, and are
collaborating with both the Z3 and MathSAT5 developers
to fix bugs in their solvers and improve their performance.

• Implementing veritesting— David Brumley’s group
coined this term for a flexible combination of dynamic
symbolic execution (DSE) and static symbolic execution
(SSE) used to reason in bulk about blocks of code that
do not need DSE [20]. We completed our own first
version of this capability, along with associated test cases
and SMT heuristic improvements. However, as noted in
Section VI, this improvement was not used during the
actual competition because its testing and validation was
not complete.

Symbolic execution can be expensive because it is com-
pletely precise; this precision ensures that the approach can
always create proofs of vulnerabilities. At the same time, it is
valuable to know about potentially dangerous constructs even
before we can prove they are exploitable. To that end, we
modified FuzzBALL to run as a hybrid of static analysis and
symbolic execution techniques.

C. Proofs of Vulnerability (PoVs)

We developed two ways of creating PoVs. First, when
FuzzBALL identifies a vulnerability that can be triggered by
client inputs, it will have solved a set of constraints on the
symbolic input variables that describe a class of PoVs for that
vulnerability. Depending on the constraints, the PoV descrip-
tion may be more or less abstract (i.e., it may require very
concrete inputs or describe a broad space of inputs that will
trigger the vulnerability). For the concrete case, FUZZBOMB
has a mechanism to translate FuzzBALL’s constraints into the
XML format required for a PoV.

Second, if a CB is provided with a PCAP file that illustrates
how it interacts with one or more pollers, FUZZBOMB uses
protocol reverse engineering techniques to derive an abstract
description of the acceptable protocols for a CB. FUZZBOMB
then feeds this protocol description into one or more fuzzing



116

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tools, to try to develop input XML files that trigger an
unknown vulnerability.

We initially developed a protocol reverse engineering tool
building on Antunes’ ideas [21]. However, the techniques did
not scale well to the large numbers of pollers present in
the CGC example problems, and they are not robust to the
packet loss present in the provided packet captures. We then
developed a less elaborate protocol analysis tool which, while
not providing a full view of the protocol state machine, allows
FUZZBOMB to generate protocol sessions which are accepted
by the CBs. This tool uses a heuristic approach, based on
observations from prior work in the field [22], [23], [24],
to identify likely protocol command elements, fields required
for data delivery to the CBs (e.g. message lengths and field
offsets), and message delimiters. Additionally, the protocol
inference tool also attempts to identify session cookies and
simple challenge/response exchanges that are required by the
protocol. Significant effort was also required to process the
DARPA-provided PCAP files because they contain unexpected
packet losses and non-TCP-compliant behavior.

IV. BINARY REWRITING

Here we describe background on binary rewriting and
related work to clarify the technical contribution of BINSUR-
GEON, FUZZBOMB’s binary rewriting subsystem.

A. Control flow graphs

BINSURGEON operates on a binary’s Control Flow Graph
(CFG) to modify the binary. For the purposes of BINSUR-
GEON, a CFG is comprised of assembly instructions grouped
into blocks with exactly one entry point and one exit point. At
the exit point of any block, the program either (a) transitions to
the entry point of the adjacent block in memory, (b) transitions
the entry point of another block via a control flow instruction
such as jumps or calls, or (c) terminates. These blocks and the
control flows between them comprises the nodes and edges,
respectively, of a directed— and often cyclic— graph.

The executable’s functions are subgraphs of the CFG, often
bounded by called blocks at the source(s) and return blocks
at the sink(s), but exceptions exist, e.g., due to uncalled (or
indirectly called) functions and functions that conclude with
program termination rather than return instructions. To account
for these exceptions, BINSURGEON infers function subgraphs
by searching forward from called blocks and searching back-
ward from return blocks, merging the intersecting block-sets,
and also using common compiler idioms to identify function
prologues and epilogues.

CFGs are recovered by disassembling the binary, which is
a potentially-unsound process, since it is undecidable whether
bytes in a stripped binary correspond to data or code [25], [26].
This means that a smaller rewrite to the CFG is better, all else
being equal, since it relies on less of the potentially-incorrect
subgraph of the CFG.

Figure 4 shows a small CFG snippet of a single function
“Original Fn” rewritten by BINSURGEON to produce “Padded
Fn” and then “Cookied Fn,” as we describe in more detail

func80484f3/SETJMP

func8048445/TRANSMIT

func8048465/RECEIVE

func80484c5/DEALLOCATE func804850e/LONGJMP
func80484d9/RANDOM

func8048437/_TERMINATE

func8048360

func80484ab/ALLOCATE

func8048080

func80481a0

func8048485/FDWAIT

Blk 81 @ 0x80485c1 [5]

inc %edi

andl %ecx, (%edx)

orb (%eax), %al

Blk 80 @ 0x80485bc [5]

inc %ebp

pushl %edx

andb %al, 0x47(%ebp)

default

Blk 79 @ 0x80485aa [18]

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

andl %ecx, (%edx)

orb (%eax), %al

orb (%edx), %cl

inc %ebp

inc %ecx

pushl %ebx

pushl %esp

default

Blk 78 @ 0x80485a6 [4]

popady

andb %dh, 0x61(%eax)

default

Blk 77 @ 0x80485a4 [2]

jnb 0x80485c6

default

Blk 76 @ 0x804859e [6]

andb %dh, 0x61(%eax,%ebp,2)

jz 0x80485cb

default

Blk 75 @ 0x8048589 [21]

popady

andb %dh, 0x61(%eax)

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

orb (%edx), %cl

addb %cl, (%ecx)

orl %ebx, 0x65(%ecx)

jnb 0x80485ca

default

Blk 74 @ 0x8048585 [4]

outsbb

outsdl

jz 0x80485a9

default

Blk 73 @ 0x8048583 [2]

jnb 0x80485a5

default

Blk 72 @ 0x8048580 [3]

popady

jz 0x80485aa

jz

default

Blk 71 @ 0x804857e [2]

jz 0x80485e8

default

Blk 70 @ 0x804857c [2]

sub $0x20, %al

default

Blk 69 @ 0x8048564 [24]

imull $0x61702065, 0x6c(%edx), %esp

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

cmpb (%eax), %ah

addb %cl, (%ecx)

orl %ecx, 0x6f(%esi)

jo 0x80485e1

default

Blk 68 @ 0x804855e [6]

popady

andb %dh, 0x6f(%eax)

jnb 0x80485d7

default

Blk 67 @ 0x804855c [2]

jb 0x804857e

jb

default

Blk 66 @ 0x8048557 [5]

andb %ah, 0x6e(%ebp)

jz 0x80485c1

jz

default

Blk 65 @ 0x804854e [9]

orb (%eax), %al

orl %edx, 0x6c(%eax)

popady

jnb 0x80485bc

jnb

default

Blk 64 @ 0x8048530 [30]

orb 0x65(%edi), %dl

insbb

arplw %bp, 0x6d(%edi)

andb %dh, %gs:0x20(%edi,%ebp,2)

pushl %eax

popady

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

andb %al, 0x69(%esi)

outsbb

jb 0x8048558

default

Blk 63 @ 0x8048353 [13]

data16 nop

data16 nop

data16 nop

data16 nop

data16 nop

data16 nop

nop

Blk 16 @ 0x8048360 [52]

pushl %ebp

mov %esp, %ebp

pushl %esi

sub $0x34, %esp

movl 0x10(%ebp), %eax

movl 0xc(%ebp), %ecx

movl 0x8(%ebp), %edx

movl %edx, -0xc(%ebp)

movl %ecx, -0x10(%ebp)

movl %eax, -0x14(%ebp)

movl $0x0, -0x18(%ebp)

movl $0x0, -0x1c(%ebp)

cmpl $0x0, -0x10(%ebp)

jnz 0x80483a0

default

Blk 62 @ 0x8048191 [15]

nopw %ax, %cs:(%eax,%eax,1)

Blk 61 @ 0x80481a0 [31]

pushl %ebp

mov %esp, %ebp

pushl %esi

sub $0x84, %esp

movl $0xffffffff, -0xc(%ebp)

movl $0x1, -0x14(%ebp)

movl $0x0, -0x10(%ebp)

default

Blk 37 @ 0x8048431 [6]

pushl %eax

calll 0x8048437

Blk 32 @ 0x8048437 [14]

mov $0x1, %eax

pushl %ebx

movl 0x8(%esp), %ebx

int $0x80

popl %ebx

retl

calll default

Blk 35 @ 0x804842c [5]

calll 0x8048080

default

Blk 48 @ 0x8048080 [59]

pushl %ebp

mov %esp, %ebp

sub $0x48, %esp

mov $0x1, %eax

lea 0x8048530, %ecx

mov $0x1f, %edx

movl $0x0, -0x4(%ebp)

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x1f, 0x8(%esp)

movl %eax, -0xc(%ebp)

movl %edx, -0x10(%ebp)

calll 0x8048360

calll

Blk 56 @ 0x80484f3 [27]

movl 0x4(%esp), %ecx

movl (%esp), %edx

movl %edx, (%ecx)

movl %ebx, 0x4(%ecx)

movl %esp, 0x8(%ecx)

movl %ebp, 0xc(%ecx)

movl %esi, 0x10(%ecx)

movl %edi, 0x14(%ecx)

xor %eax, %eax

retl

Blk 51 @ 0x8048445 [32]

mov $0x2, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

movl 0x14(%esp), %ebx

movl 0x18(%esp), %ecx

movl 0x1c(%esp), %edx

movl 0x20(%esp), %esi

int $0x80

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 1 @ 0x8048465 [32]

mov $0x3, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

movl 0x14(%esp), %ebx

movl 0x18(%esp), %ecx

movl 0x1c(%esp), %edx

movl 0x20(%esp), %esi

int $0x80

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 43 @ 0x80484c5 [20]

mov $0x6, %eax

pushl %ebx

pushl %ecx

movl 0xc(%esp), %ebx

movl 0x10(%esp), %ecx

int $0x80

popl %ecx

popl %ebx

retl

Blk 50 @ 0x804850e [29]

movl 0x4(%esp), %edx

movl 0x8(%esp), %eax

movl (%edx), %ecx

movl 0x4(%edx), %ebx

movl 0x8(%edx), %esp

movl 0xc(%edx), %ebp

movl 0x10(%edx), %esi

movl 0x14(%edx), %edi

test %eax, %eax

jnz 0x804852c

Blk 42 @ 0x804852b [1]

inc %eax

default

Blk 39 @ 0x804852c [4]

movl %ecx, (%esp)

retl

jnz

default

Blk 33 @ 0x80484d9 [26]

mov $0x7, %eax

pushl %ebx

pushl %ecx

pushl %edx

movl 0x10(%esp), %ebx

movl 0x14(%esp), %ecx

movl 0x18(%esp), %edx

int $0x80

popl %edx

popl %ecx

popl %ebx

retl

Blk 21 @ 0x8048394 [12]

movl $0x1, -0x8(%ebp)

jmp 0x8048423

default

Blk 29 @ 0x80483a0 [13]

cmpl $0x0, -0x14(%ebp)

jnz 0x80483b9

jnz

Blk 25 @ 0x8048423 [9]

movl -0x8(%ebp), %eax

add $0x34, %esp

popl %esi

popl %ebp

retl

jmp

Blk 17 @ 0x80483ad [12]

movl $0x2, -0x8(%ebp)

jmp 0x8048423

default

Blk 7 @ 0x80483b9 [5]

jmp 0x80483be

jnz

jmp

Blk 41 @ 0x80483be [12]

movl -0x18(%ebp), %eax

cmpl -0x14(%ebp), %eax

jnb 0x804841c

jmp

Blk 54 @ 0x80483ca [38]

lea -0x1c(%ebp), %eax

movl -0xc(%ebp), %ecx

movl -0x10(%ebp), %edx

addl -0x18(%ebp), %edx

movl -0x14(%ebp), %esi

subl -0x18(%ebp), %esi

movl %ecx, (%esp)

movl %edx, 0x4(%esp)

movl %esi, 0x8(%esp)

movl %eax, 0xc(%esp)

calll 0x8048445

default

Blk 4 @ 0x804841c [7]

movl $0x0, -0x8(%ebp)

jnb

calll

Blk 0 @ 0x80483f0 [16]

movl %eax, -0x20(%ebp)

cmpl $0x0, -0x20(%ebp)

jz 0x804840c

default

Blk 55 @ 0x8048400 [12]

movl $0x3, -0x8(%ebp)

jmp 0x8048423

default

Blk 34 @ 0x804840c [16]

movl -0x1c(%ebp), %eax

movl -0x18(%ebp), %ecx

add %eax, %ecx

movl %ecx, -0x18(%ebp)

jmp 0x80483be

jz

jmp

jmp

default

Blk 31 @ 0x80484ab [26]

mov $0x5, %eax

pushl %ebx

pushl %ecx

pushl %edx

movl 0x10(%esp), %ebx

movl 0x14(%esp), %ecx

movl 0x18(%esp), %edx

int $0x80

popl %edx

popl %ecx

popl %ebx

retl

calll

Blk 52 @ 0x80480bb [3]

movl %eax, -0x14(%ebp)

default

Blk 26 @ 0x80480be [46]

mov $0x1, %eax

lea 0x8048550, %ecx

mov $0x25, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x25, 0x8(%esp)

movl %eax, -0x18(%ebp)

movl %edx, -0x1c(%ebp)

calll 0x8048360

default

calll

Blk 53 @ 0x80480ec [8]

movl %eax, -0x20(%ebp)

calll 0x80481a0

default

Blk 2 @ 0x80480f4 [16]

movl %eax, -0x8(%ebp)

cmpl $0xffffffff, -0x8(%ebp)

jnz 0x8048109

defaultcalll

Blk 40 @ 0x8048104 [5]

jmp 0x8048187

default

Blk 10 @ 0x8048109 [13]

cmpl $0x0, -0x8(%ebp)

jnz 0x804814c

jnz

Blk 30 @ 0x8048187 [10]

mov $0x0, %eax

add $0x48, %esp

popl %ebp

retl

jmp

Blk 18 @ 0x8048116 [46]

mov $0x1, %eax

lea 0x8048576, %ecx

mov $0x21, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x21, 0x8(%esp)

movl %eax, -0x24(%ebp)

movl %edx, -0x28(%ebp)

calll 0x8048360

default

Blk 57 @ 0x804814c [46]

mov $0x1, %eax

lea 0x8048598, %ecx

mov $0x1d, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x1d, 0x8(%esp)

movl %eax, -0x30(%ebp)

movl %edx, -0x34(%ebp)

calll 0x8048360

jnz

calll

Blk 46 @ 0x8048144 [8]

movl %eax, -0x2c(%ebp)

jmp 0x804817d

default

Blk 45 @ 0x804817d [5]

jmp 0x8048182

jmp

calll

Blk 44 @ 0x804817a [3]

movl %eax, -0x38(%ebp)

default

default

Blk 3 @ 0x8048182 [5]

jmp 0x80480be

jmp

jmp

Blk 36 @ 0x80481bf [13]

cmpl $0x40, -0x10(%ebp)

jnb 0x80481e4

default

Blk 27 @ 0x80481cc [24]

movl -0x10(%ebp), %eax

movb $0x0, -0x54(%ebp,%eax,1)

movl -0x10(%ebp), %eax

add $0x1, %eax

movl %eax, -0x10(%ebp)

jmp 0x80481bf

default

Blk 8 @ 0x80481e4 [50]

mov $0x0, %eax

mov $0x80, %ecx

lea -0x58(%ebp), %edx

lea -0x54(%ebp), %esi

movl $0x0, (%esp)

movl %esi, 0x4(%esp)

movl $0x80, 0x8(%esp)

movl %edx, 0xc(%esp)

movl %eax, -0x60(%ebp)

movl %ecx, -0x64(%ebp)

calll 0x8048465

jnb jmp

calll

Blk 20 @ 0x8048216 [11]

cmp $0x0, %eax

jnz 0x804822e

default

Blk 49 @ 0x8048221 [13]

cmpl $0x0, -0x58(%ebp)

jnz 0x804823a

default

Blk 11 @ 0x804822e [12]

movl $0xffffffff, -0x8(%ebp)

jmp 0x8048347

jnz

default

Blk 9 @ 0x804823a [7]

movl $0x0, -0x10(%ebp)

jnz

Blk 15 @ 0x8048347 [12]

movl -0x8(%ebp), %eax

add $0x84, %esp

popl %esi

popl %ebp

retl

jmp

Blk 58 @ 0x8048241 [19]

movl -0x10(%ebp), %eax

movsxb -0x54(%ebp,%eax,1), %eax

cmp $0x0, %eax

jz 0x804826f

default

Blk 13 @ 0x8048254 [27]

movl -0xc(%ebp), %eax

add $0x1, %eax

movl %eax, -0xc(%ebp)

movl -0x10(%ebp), %eax

add $0x1, %eax

movl %eax, -0x10(%ebp)

jmp 0x8048241

default

Blk 5 @ 0x804826f [37]

mov $0x2, %eax

movl -0xc(%ebp), %ecx

movl %ecx, -0x5c(%ebp)

movl -0xc(%ebp), %ecx

movl %eax, -0x68(%ebp)

mov %ecx, %eax

cdq 

movl -0x68(%ebp), %ecx

idiv %ecx

cmp $0x1, %edx

jnz 0x804829f

jzjmp

Blk 22 @ 0x8048294 [11]

movl -0x5c(%ebp), %eax

add $0xffffffff, %eax

movl %eax, -0x5c(%ebp)

default

Blk 19 @ 0x804829f [7]

movl $0x0, -0x10(%ebp)

jnz

default

Blk 47 @ 0x80482a6 [30]

mov $0x2, %eax

movl -0x10(%ebp), %ecx

movl -0x5c(%ebp), %edx

movl %eax, -0x6c(%ebp)

mov %edx, %eax

cdq 

movl -0x6c(%ebp), %esi

idiv %esi

cmp %eax, %ecx

jnle 0x8048301

default

Blk 24 @ 0x80482c4 [33]

movl -0x10(%ebp), %eax

movsxb -0x54(%ebp,%eax,1), %eax

movl -0xc(%ebp), %ecx

sub $0x1, %ecx

subl -0x10(%ebp), %ecx

movsxb -0x54(%ebp,%ecx,1), %ecx

cmp %ecx, %eax

jz 0x80482ec

default

Blk 28 @ 0x8048301 [15]

movsxb -0x54(%ebp), %eax

cmp $0x5e, %eax

jnz 0x8048341

jnle

Blk 23 @ 0x80482e5 [7]

movl $0x0, -0x14(%ebp)

default

Blk 60 @ 0x80482ec [5]

jmp 0x80482f1

jz

default

Blk 59 @ 0x80482f1 [16]

movl -0x10(%ebp), %eax

add $0x1, %eax

movl %eax, -0x10(%ebp)

jmp 0x80482a6

jmp

jmp

Blk 6 @ 0x8048310 [46]

mov $0x1, %eax

lea 0x80485b6, %ecx

mov $0xf, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0xf, 0x8(%esp)

movl %eax, -0x70(%ebp)

movl %edx, -0x74(%ebp)

calll 0x8048360

default

Blk 14 @ 0x8048341 [6]

movl -0x14(%ebp), %eax

movl %eax, -0x8(%ebp)

jnz calll

Blk 38 @ 0x804833e [3]

movl %eax, -0x78(%ebp)

default

default

default

Blk 12 @ 0x8048485 [38]

mov $0x4, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

pushl %edi

movl 0x18(%esp), %ebx

movl 0x1c(%esp), %ecx

movl 0x20(%esp), %edx

movl 0x24(%esp), %esi

movl 0x28(%esp), %edi

int $0x80

popl %edi

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

func80484f3/SETJMP

func8048445/TRANSMIT

func8048465/RECEIVE

func80484c5/DEALLOCATE func804850e/LONGJMP
func80484d9/RANDOM

func8048437/_TERMINATE

func8048360

func80484ab/ALLOCATE

func8048080

func80481a0

func8048485/FDWAIT

Blk 81 @ 0x80485c1 [5]

inc %edi

andl %ecx, (%edx)

orb (%eax), %al

Blk 80 @ 0x80485bc [5]

inc %ebp

pushl %edx

andb %al, 0x47(%ebp)

default

Blk 79 @ 0x80485aa [18]

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

andl %ecx, (%edx)

orb (%eax), %al

orb (%edx), %cl

inc %ebp

inc %ecx

pushl %ebx

pushl %esp

default

Blk 78 @ 0x80485a6 [4]

popady

andb %dh, 0x61(%eax)

default

Blk 77 @ 0x80485a4 [2]

jnb 0x80485c6

default

Blk 76 @ 0x804859e [6]

andb %dh, 0x61(%eax,%ebp,2)

jz 0x80485cb

default

Blk 75 @ 0x8048589 [21]

popady

andb %dh, 0x61(%eax)

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

orb (%edx), %cl

addb %cl, (%ecx)

orl %ebx, 0x65(%ecx)

jnb 0x80485ca

default

Blk 74 @ 0x8048585 [4]

outsbb

outsdl

jz 0x80485a9

default

Blk 73 @ 0x8048583 [2]

jnb 0x80485a5

default

Blk 72 @ 0x8048580 [3]

popady

jz 0x80485aa

jz

default

Blk 71 @ 0x804857e [2]

jz 0x80485e8

default

Blk 70 @ 0x804857c [2]

sub $0x20, %al

default

Blk 69 @ 0x8048564 [24]

imull $0x61702065, 0x6c(%edx), %esp

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

cmpb (%eax), %ah

addb %cl, (%ecx)

orl %ecx, 0x6f(%esi)

jo 0x80485e1

default

Blk 68 @ 0x804855e [6]

popady

andb %dh, 0x6f(%eax)

jnb 0x80485d7

default

Blk 67 @ 0x804855c [2]

jb 0x804857e

jb

default

Blk 66 @ 0x8048557 [5]

andb %ah, 0x6e(%ebp)

jz 0x80485c1

jz

default

Blk 65 @ 0x804854e [9]

orb (%eax), %al

orl %edx, 0x6c(%eax)

popady

jnb 0x80485bc

jnb

default

Blk 64 @ 0x8048530 [30]

orb 0x65(%edi), %dl

insbb

arplw %bp, 0x6d(%edi)

andb %dh, %gs:0x20(%edi,%ebp,2)

pushl %eax

popady

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

andb %al, 0x69(%esi)

outsbb

jb 0x8048558

default

Blk 63 @ 0x8048353 [13]

data16 nop

data16 nop

data16 nop

data16 nop

data16 nop

data16 nop

nop

Blk 16 @ 0x8048360 [52]

pushl %ebp

mov %esp, %ebp

pushl %esi

sub $0x34, %esp

movl 0x10(%ebp), %eax

movl 0xc(%ebp), %ecx

movl 0x8(%ebp), %edx

movl %edx, -0xc(%ebp)

movl %ecx, -0x10(%ebp)

movl %eax, -0x14(%ebp)

movl $0x0, -0x18(%ebp)

movl $0x0, -0x1c(%ebp)

cmpl $0x0, -0x10(%ebp)

jnz 0x80483a0

default

Blk 62 @ 0x8048191 [15]

nopw %ax, %cs:(%eax,%eax,1)

Blk 61 @ 0x80481a0 [31]

pushl %ebp

mov %esp, %ebp

pushl %esi

sub $0x8c, %esp

movl $0xffffffff, -0x14(%ebp)

movl $0x1, -0x1c(%ebp)

movl $0x0, -0x18(%ebp)

default

Blk 37 @ 0x8048431 [6]

pushl %eax

calll 0x8048437

Blk 32 @ 0x8048437 [14]

mov $0x1, %eax

pushl %ebx

movl 0x8(%esp), %ebx

int $0x80

popl %ebx

retl

calll default

Blk 35 @ 0x804842c [5]

calll 0x8048080

default

Blk 48 @ 0x8048080 [59]

pushl %ebp

mov %esp, %ebp

sub $0x48, %esp

mov $0x1, %eax

lea 0x8048530, %ecx

mov $0x1f, %edx

movl $0x0, -0x4(%ebp)

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x1f, 0x8(%esp)

movl %eax, -0xc(%ebp)

movl %edx, -0x10(%ebp)

calll 0x8048360

calll

Blk 56 @ 0x80484f3 [27]

movl 0x4(%esp), %ecx

movl (%esp), %edx

movl %edx, (%ecx)

movl %ebx, 0x4(%ecx)

movl %esp, 0x8(%ecx)

movl %ebp, 0xc(%ecx)

movl %esi, 0x10(%ecx)

movl %edi, 0x14(%ecx)

xor %eax, %eax

retl

Blk 51 @ 0x8048445 [32]

mov $0x2, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

movl 0x14(%esp), %ebx

movl 0x18(%esp), %ecx

movl 0x1c(%esp), %edx

movl 0x20(%esp), %esi

int $0x80

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 1 @ 0x8048465 [32]

mov $0x3, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

movl 0x14(%esp), %ebx

movl 0x18(%esp), %ecx

movl 0x1c(%esp), %edx

movl 0x20(%esp), %esi

int $0x80

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 43 @ 0x80484c5 [20]

mov $0x6, %eax

pushl %ebx

pushl %ecx

movl 0xc(%esp), %ebx

movl 0x10(%esp), %ecx

int $0x80

popl %ecx

popl %ebx

retl

Blk 50 @ 0x804850e [29]

movl 0x4(%esp), %edx

movl 0x8(%esp), %eax

movl (%edx), %ecx

movl 0x4(%edx), %ebx

movl 0x8(%edx), %esp

movl 0xc(%edx), %ebp

movl 0x10(%edx), %esi

movl 0x14(%edx), %edi

test %eax, %eax

jnz 0x804852c

Blk 42 @ 0x804852b [1]

inc %eax

default

Blk 39 @ 0x804852c [4]

movl %ecx, (%esp)

retl

jnz

default

Blk 33 @ 0x80484d9 [26]

mov $0x7, %eax

pushl %ebx

pushl %ecx

pushl %edx

movl 0x10(%esp), %ebx

movl 0x14(%esp), %ecx

movl 0x18(%esp), %edx

int $0x80

popl %edx

popl %ecx

popl %ebx

retl

Blk 21 @ 0x8048394 [12]

movl $0x1, -0x8(%ebp)

jmp 0x8048423

default

Blk 29 @ 0x80483a0 [13]

cmpl $0x0, -0x14(%ebp)

jnz 0x80483b9

jnz

Blk 25 @ 0x8048423 [9]

movl -0x8(%ebp), %eax

add $0x34, %esp

popl %esi

popl %ebp

retl

jmp

Blk 17 @ 0x80483ad [12]

movl $0x2, -0x8(%ebp)

jmp 0x8048423

default

Blk 7 @ 0x80483b9 [5]

jmp 0x80483be

jnz

jmp

Blk 41 @ 0x80483be [12]

movl -0x18(%ebp), %eax

cmpl -0x14(%ebp), %eax

jnb 0x804841c

jmp

Blk 54 @ 0x80483ca [38]

lea -0x1c(%ebp), %eax

movl -0xc(%ebp), %ecx

movl -0x10(%ebp), %edx

addl -0x18(%ebp), %edx

movl -0x14(%ebp), %esi

subl -0x18(%ebp), %esi

movl %ecx, (%esp)

movl %edx, 0x4(%esp)

movl %esi, 0x8(%esp)

movl %eax, 0xc(%esp)

calll 0x8048445

default

Blk 4 @ 0x804841c [7]

movl $0x0, -0x8(%ebp)

jnb

calll

Blk 0 @ 0x80483f0 [16]

movl %eax, -0x20(%ebp)

cmpl $0x0, -0x20(%ebp)

jz 0x804840c

default

Blk 55 @ 0x8048400 [12]

movl $0x3, -0x8(%ebp)

jmp 0x8048423

default

Blk 34 @ 0x804840c [16]

movl -0x1c(%ebp), %eax

movl -0x18(%ebp), %ecx

add %eax, %ecx

movl %ecx, -0x18(%ebp)

jmp 0x80483be

jz

jmp

jmp

default

Blk 31 @ 0x80484ab [26]

mov $0x5, %eax

pushl %ebx

pushl %ecx

pushl %edx

movl 0x10(%esp), %ebx

movl 0x14(%esp), %ecx

movl 0x18(%esp), %edx

int $0x80

popl %edx

popl %ecx

popl %ebx

retl

calll

Blk 52 @ 0x80480bb [3]

movl %eax, -0x14(%ebp)

default

Blk 26 @ 0x80480be [46]

mov $0x1, %eax

lea 0x8048550, %ecx

mov $0x25, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x25, 0x8(%esp)

movl %eax, -0x18(%ebp)

movl %edx, -0x1c(%ebp)

calll 0x8048360

default

calll

Blk 53 @ 0x80480ec [8]

movl %eax, -0x20(%ebp)

calll 0x80481a0

default

Blk 2 @ 0x80480f4 [16]

movl %eax, -0x8(%ebp)

cmpl $0xffffffff, -0x8(%ebp)

jnz 0x8048109

defaultcalll

Blk 40 @ 0x8048104 [5]

jmp 0x8048187

default

Blk 10 @ 0x8048109 [13]

cmpl $0x0, -0x8(%ebp)

jnz 0x804814c

jnz

Blk 30 @ 0x8048187 [10]

mov $0x0, %eax

add $0x48, %esp

popl %ebp

retl

jmp

Blk 18 @ 0x8048116 [46]

mov $0x1, %eax

lea 0x8048576, %ecx

mov $0x21, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x21, 0x8(%esp)

movl %eax, -0x24(%ebp)

movl %edx, -0x28(%ebp)

calll 0x8048360

default

Blk 57 @ 0x804814c [46]

mov $0x1, %eax

lea 0x8048598, %ecx

mov $0x1d, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x1d, 0x8(%esp)

movl %eax, -0x30(%ebp)

movl %edx, -0x34(%ebp)

calll 0x8048360

jnz

calll

Blk 46 @ 0x8048144 [8]

movl %eax, -0x2c(%ebp)

jmp 0x804817d

default

Blk 45 @ 0x804817d [5]

jmp 0x8048182

jmp

calll

Blk 44 @ 0x804817a [3]

movl %eax, -0x38(%ebp)

default

default

Blk 3 @ 0x8048182 [5]

jmp 0x80480be

jmp

jmp

Blk 36 @ 0x80481bf [13]

cmpl $0x40, -0x18(%ebp)

nop 

nop 

nop 

jnb 0x80481e4

default

Blk 27 @ 0x80481cc [24]

movl -0x18(%ebp), %eax

movb $0x0, -0x5c(%ebp,%eax,1)

movl -0x18(%ebp), %eax

add $0x1, %eax

movl %eax, -0x18(%ebp)

jmp 0x80481bf

default

Blk 8 @ 0x80481e4 [50]

mov $0x0, %eax

mov $0x80, %ecx

lea -0x60(%ebp), %edx

lea -0x5c(%ebp), %esi

movl $0x0, (%esp)

movl %esi, 0x4(%esp)

movl $0x80, 0x8(%esp)

movl %edx, 0xc(%esp)

movl %eax, -0x68(%ebp)

movl %ecx, -0x6c(%ebp)

calll 0x8048465

jnb jmp

calll

Blk 20 @ 0x8048216 [11]

cmp $0x0, %eax

jnz 0x804822e

default

Blk 49 @ 0x8048221 [13]

cmpl $0x0, -0x60(%ebp)

nop 

nop 

nop 

jnz 0x804823a

default

Blk 11 @ 0x804822e [12]

movl $0xffffffff, -0x10(%ebp)

jmp 0x8048347

jnz

default

Blk 9 @ 0x804823a [7]

movl $0x0, -0x18(%ebp)

jnz

Blk 15 @ 0x8048347 [12]

movl -0x10(%ebp), %eax

add $0x8c, %esp

popl %esi

popl %ebp

retl

jmp

Blk 58 @ 0x8048241 [19]

movl -0x18(%ebp), %eax

movsxb -0x5c(%ebp,%eax,1), %eax

cmp $0x0, %eax

jz 0x804826f

default

Blk 13 @ 0x8048254 [27]

movl -0x14(%ebp), %eax

add $0x1, %eax

movl %eax, -0x14(%ebp)

movl -0x18(%ebp), %eax

add $0x1, %eax

movl %eax, -0x18(%ebp)

jmp 0x8048241

default

Blk 5 @ 0x804826f [37]

mov $0x2, %eax

movl -0x14(%ebp), %ecx

movl %ecx, -0x64(%ebp)

movl -0x14(%ebp), %ecx

movl %eax, -0x70(%ebp)

mov %ecx, %eax

cdq 

movl -0x70(%ebp), %ecx

idiv %ecx

cmp $0x1, %edx

jnz 0x804829f

jzjmp

Blk 22 @ 0x8048294 [11]

movl -0x64(%ebp), %eax

add $0xffffffff, %eax

movl %eax, -0x64(%ebp)

default

Blk 19 @ 0x804829f [7]

movl $0x0, -0x18(%ebp)

jnz

default

Blk 47 @ 0x80482a6 [30]

mov $0x2, %eax

movl -0x18(%ebp), %ecx

movl -0x64(%ebp), %edx

movl %eax, -0x74(%ebp)

mov %edx, %eax

cdq 

movl -0x74(%ebp), %esi

idiv %esi

cmp %eax, %ecx

jnle 0x8048301

default

Blk 24 @ 0x80482c4 [33]

movl -0x18(%ebp), %eax

movsxb -0x5c(%ebp,%eax,1), %eax

movl -0x14(%ebp), %ecx

sub $0x1, %ecx

subl -0x18(%ebp), %ecx

movsxb -0x5c(%ebp,%ecx,1), %ecx

cmp %ecx, %eax

jz 0x80482ec

default

Blk 28 @ 0x8048301 [15]

movsxb -0x5c(%ebp), %eax

cmp $0x5e, %eax

jnz 0x8048341

jnle

Blk 23 @ 0x80482e5 [7]

movl $0x0, -0x1c(%ebp)

default

Blk 60 @ 0x80482ec [5]

jmp 0x80482f1

jz

default

Blk 59 @ 0x80482f1 [16]

movl -0x18(%ebp), %eax

add $0x1, %eax

movl %eax, -0x18(%ebp)

jmp 0x80482a6

jmp

jmp

Blk 6 @ 0x8048310 [46]

mov $0x1, %eax

lea 0x80485b6, %ecx

mov $0xf, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0xf, 0x8(%esp)

movl %eax, -0x78(%ebp)

movl %edx, -0x7c(%ebp)

calll 0x8048360

default

Blk 14 @ 0x8048341 [6]

movl -0x1c(%ebp), %eax

movl %eax, -0x10(%ebp)

jnz calll

Blk 38 @ 0x804833e [3]

movl %eax, -0x80(%ebp)

default

default

default

Blk 12 @ 0x8048485 [38]

mov $0x4, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

pushl %edi

movl 0x18(%esp), %ebx

movl 0x1c(%esp), %ecx

movl 0x20(%esp), %edx

movl 0x24(%esp), %esi

movl 0x28(%esp), %edi

int $0x80

popl %edi

popl %esi

popl %edx

popl %ecx

popl %ebx

retl
func80484f3/SETJMP

func80484d9/RANDOM

func8048445/TRANSMIT

func8048080

func8048437/_TERMINATE

func8048465/RECEIVE

func8048360

func804611e

func8048485/FDWAIT

func80484c5/DEALLOCATE func804850e/LONGJMP
func80484ab/ALLOCATE

Blk 98 @ 0x80485c1 [5]

inc %edi

andl %ecx, (%edx)

orb (%eax), %al

Blk 97 @ 0x80485bc [5]

inc %ebp

pushl %edx

andb %al, 0x47(%ebp)

default

Blk 96 @ 0x80485aa [18]

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

andl %ecx, (%edx)

orb (%eax), %al

orb (%edx), %cl

inc %ebp

inc %ecx

pushl %ebx

pushl %esp

default

Blk 95 @ 0x80485a6 [4]

popady

andb %dh, 0x61(%eax)

default

Blk 94 @ 0x80485a4 [2]

jnb 0x80485c6

default

Blk 93 @ 0x804859e [6]

andb %dh, 0x61(%eax,%ebp,2)

jz 0x80485cb

default

Blk 92 @ 0x8048589 [21]

popady

andb %dh, 0x61(%eax)

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

orb (%edx), %cl

addb %cl, (%ecx)

orl %ebx, 0x65(%ecx)

jnb 0x80485ca

default

Blk 91 @ 0x8048585 [4]

outsbb

outsdl

jz 0x80485a9

default

Blk 90 @ 0x8048583 [2]

jnb 0x80485a5

default

Blk 89 @ 0x8048580 [3]

popady

jz 0x80485aa

jz

default

Blk 88 @ 0x804857e [2]

jz 0x80485e8

default

Blk 87 @ 0x804857c [2]

sub $0x20, %al

default

Blk 86 @ 0x8048564 [24]

imull $0x61702065, 0x6c(%edx), %esp

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

cmpb (%eax), %ah

addb %cl, (%ecx)

orl %ecx, 0x6f(%esi)

jo 0x80485e1

default

Blk 85 @ 0x804855e [6]

popady

andb %dh, 0x6f(%eax)

jnb 0x80485d7

default

Blk 84 @ 0x804855c [2]

jb 0x804857e

jb

default

Blk 83 @ 0x8048557 [5]

andb %ah, 0x6e(%ebp)

jz 0x80485c1

jz

default

Blk 82 @ 0x804854e [9]

orb (%eax), %al

orl %edx, 0x6c(%eax)

popady

jnb 0x80485bc

jnb

default

Blk 81 @ 0x8048530 [30]

orb 0x65(%edi), %dl

insbb

arplw %bp, 0x6d(%edi)

andb %dh, %gs:0x20(%edi,%ebp,2)

pushl %eax

popady

insbb

imull $0x656d6f72, 0x64(%esi), %ebp

andb %al, 0x69(%esi)

outsbb

jb 0x8048558

default

Blk 80 @ 0x8048352 [14]

nop

data16 nop

data16 nop

data16 nop

data16 nop

data16 nop

data16 nop

nop

Blk 51 @ 0x8048360 [52]

pushl %ebp

mov %esp, %ebp

pushl %esi

sub $0x34, %esp

movl 0x10(%ebp), %eax

movl 0xc(%ebp), %ecx

movl 0x8(%ebp), %edx

movl %edx, -0xc(%ebp)

movl %ecx, -0x10(%ebp)

movl %eax, -0x14(%ebp)

movl $0x0, -0x18(%ebp)

movl $0x0, -0x1c(%ebp)

cmpl $0x0, -0x10(%ebp)

jnz 0x80483a0

default

Blk 77 @ 0x8048191 [15]

nopw %ax, %cs:(%eax,%eax,1)

Blk 43 @ 0x80481a0 [5]

jmp 0x80481a5

default

Blk 48 @ 0x804842c [5]

calll 0x8048080

Blk 37 @ 0x8048431 [6]

pushl %eax

calll 0x8048437

default

Blk 3 @ 0x8048080 [59]

pushl %ebp

mov %esp, %ebp

sub $0x48, %esp

mov $0x1, %eax

lea 0x8048530, %ecx

mov $0x1f, %edx

movl $0x0, -0x4(%ebp)

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x1f, 0x8(%esp)

movl %eax, -0xc(%ebp)

movl %edx, -0x10(%ebp)

calll 0x8048360

calll

Blk 59 @ 0x8048437 [14]

mov $0x1, %eax

pushl %ebx

movl 0x8(%esp), %ebx

int $0x80

popl %ebx

retl

calll default

Blk 68 @ 0x80484f3 [27]

movl 0x4(%esp), %ecx

movl (%esp), %edx

movl %edx, (%ecx)

movl %ebx, 0x4(%ecx)

movl %esp, 0x8(%ecx)

movl %ebp, 0xc(%ecx)

movl %esi, 0x10(%ecx)

movl %edi, 0x14(%ecx)

xor %eax, %eax

retl

Blk 66 @ 0x80484d9 [26]

mov $0x7, %eax

pushl %ebx

pushl %ecx

pushl %edx

movl 0x10(%esp), %ebx

movl 0x14(%esp), %ecx

movl 0x18(%esp), %edx

int $0x80

popl %edx

popl %ecx

popl %ebx

retl

Blk 63 @ 0x8048445 [32]

mov $0x2, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

movl 0x14(%esp), %ebx

movl 0x18(%esp), %ecx

movl 0x1c(%esp), %edx

movl 0x20(%esp), %esi

int $0x80

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 60 @ 0x80480bb [3]

movl %eax, -0x14(%ebp)

default

calll

Blk 73 @ 0x80480be [46]

mov $0x1, %eax

lea 0x8048550, %ecx

mov $0x25, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x25, 0x8(%esp)

movl %eax, -0x18(%ebp)

movl %edx, -0x1c(%ebp)

calll 0x8048360

default

Blk 25 @ 0x80480ec [8]

movl %eax, -0x20(%ebp)

calll 0x80481a0

default

calll

Blk 38 @ 0x80480f4 [16]

movl %eax, -0x8(%ebp)

cmpl $0xffffffff, -0x8(%ebp)

jnz 0x8048109

defaultcalll

Blk 57 @ 0x8048104 [5]

jmp 0x8048187

default

Blk 23 @ 0x8048109 [13]

cmpl $0x0, -0x8(%ebp)

jnz 0x804814c

jnz

Blk 29 @ 0x8048187 [10]

mov $0x0, %eax

add $0x48, %esp

popl %ebp

retl

jmp

Blk 41 @ 0x8048116 [46]

mov $0x1, %eax

lea 0x8048576, %ecx

mov $0x21, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x21, 0x8(%esp)

movl %eax, -0x24(%ebp)

movl %edx, -0x28(%ebp)

calll 0x8048360

default

Blk 54 @ 0x804814c [46]

mov $0x1, %eax

lea 0x8048598, %ecx

mov $0x1d, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0x1d, 0x8(%esp)

movl %eax, -0x30(%ebp)

movl %edx, -0x34(%ebp)

calll 0x8048360

jnz

Blk 75 @ 0x8048144 [8]

movl %eax, -0x2c(%ebp)

jmp 0x804817d

default

calll

Blk 21 @ 0x804817d [5]

jmp 0x8048182

jmp

Blk 61 @ 0x804817a [3]

movl %eax, -0x38(%ebp)

default

calll

default

Blk 22 @ 0x8048182 [5]

jmp 0x80480be

jmp

jmp

Blk 17 @ 0x8048465 [32]

mov $0x3, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

movl 0x14(%esp), %ebx

movl 0x18(%esp), %ecx

movl 0x1c(%esp), %edx

movl 0x20(%esp), %esi

int $0x80

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 11 @ 0x8048394 [12]

movl $0x1, -0x8(%ebp)

jmp 0x8048423

default

Blk 24 @ 0x80483a0 [13]

cmpl $0x0, -0x14(%ebp)

jnz 0x80483b9

jnz

Blk 55 @ 0x8048423 [9]

movl -0x8(%ebp), %eax

add $0x34, %esp

popl %esi

popl %ebp

retl

jmp

Blk 14 @ 0x80483ad [12]

movl $0x2, -0x8(%ebp)

jmp 0x8048423

default

Blk 39 @ 0x80483b9 [5]

jmp 0x80483be

jnz

jmp

Blk 74 @ 0x80483be [12]

movl -0x18(%ebp), %eax

cmpl -0x14(%ebp), %eax

jnb 0x804841c

jmp

Blk 62 @ 0x80483ca [38]

lea -0x1c(%ebp), %eax

movl -0xc(%ebp), %ecx

movl -0x10(%ebp), %edx

addl -0x18(%ebp), %edx

movl -0x14(%ebp), %esi

subl -0x18(%ebp), %esi

movl %ecx, (%esp)

movl %edx, 0x4(%esp)

movl %esi, 0x8(%esp)

movl %eax, 0xc(%esp)

calll 0x8048445

default

Blk 44 @ 0x804841c [7]

movl $0x0, -0x8(%ebp)

jnb

calll

Blk 12 @ 0x80483f0 [16]

movl %eax, -0x20(%ebp)

cmpl $0x0, -0x20(%ebp)

jz 0x804840c

default

Blk 46 @ 0x8048400 [12]

movl $0x3, -0x8(%ebp)

jmp 0x8048423

default

Blk 45 @ 0x804840c [16]

movl -0x1c(%ebp), %eax

movl -0x18(%ebp), %ecx

add %eax, %ecx

movl %ecx, -0x18(%ebp)

jmp 0x80483be

jz

jmp

jmp

default

Blk 58 @ 0x804611e [5]

calll 0x8048437

calll

Blk 76 @ 0x8046123 [10]

popl %eax

cmp $0x0, %eax

jnz 0x804822e

default

Blk 53 @ 0x804612d [5]

jmp 0x8048221

default

Blk 28 @ 0x804822e [12]

movl $0xffffffff, -0x10(%ebp)

jmp 0x8048347

jnz

Blk 19 @ 0x8048221 [13]

cmpl $0x0, -0x60(%ebp)

nop 

nop 

nop 

jnz 0x804823a

jmp

Blk 70 @ 0x8046132 [46]

mov $0x1, %eax

lea 0x80485b6, %ecx

mov $0xf, %edx

movl $0x1, (%esp)

movl %ecx, 0x4(%esp)

movl $0xf, 0x8(%esp)

movl %eax, -0x78(%ebp)

movl %edx, -0x7c(%ebp)

calll 0x8048360

calll

Blk 64 @ 0x8046160 [2]

jmp 0x8046162

default

Blk 71 @ 0x8046162 [9]

pushl %eax

movl -0x8(%ebp), %eax

xor $0x16, %eax

jz 0x8046171

jmp

Blk 9 @ 0x804616b [6]

popl %eax

calll 0x8048437

default

Blk 65 @ 0x8046171 [9]

popl %eax

movl %eax, -0x80(%ebp)

jmp 0x8048341

jz

calll

default

Blk 8 @ 0x8048341 [6]

movl -0x1c(%ebp), %eax

movl %eax, -0x10(%ebp)

jmp

Blk 30 @ 0x804617a [19]

movl -0x10(%ebp), %eax

add $0x8c, %esp

popl %esi

pushl %eax

movl -0x8(%ebp), %eax

xor $0x16, %eax

jz 0x8046193

Blk 47 @ 0x804618d [6]

popl %eax

calll 0x8048437

default

Blk 18 @ 0x8046193 [3]

popl %eax

popl %ebp

retl

jz

callldefault

Blk 40 @ 0x80481a5 [22]

pushl %ebp

mov %esp, %ebp

movl $0x16, -0x8(%ebp)

pushl %esi

sub $0x8c, %esp

jmp 0x8048315

jmp

Blk 7 @ 0x8048315 [26]

movl $0xffffffff, -0x14(%ebp)

movl $0x1, -0x1c(%ebp)

movl $0x0, -0x18(%ebp)

jmp 0x80481bf

jmp

Blk 78 @ 0x80481bb [4]

nop

nop

nop

nop

Blk 35 @ 0x80481bf [13]

cmpl $0x40, -0x18(%ebp)

nop 

nop 

nop 

jnb 0x80481e4

default

Blk 56 @ 0x80481cc [24]

movl -0x18(%ebp), %eax

movb $0x0, -0x5c(%ebp,%eax,1)

movl -0x18(%ebp), %eax

add $0x1, %eax

movl %eax, -0x18(%ebp)

jmp 0x80481bf

default

Blk 16 @ 0x80481e4 [50]

mov $0x0, %eax

mov $0x80, %ecx

lea -0x60(%ebp), %edx

lea -0x5c(%ebp), %esi

movl $0x0, (%esp)

movl %esi, 0x4(%esp)

movl $0x80, 0x8(%esp)

movl %edx, 0xc(%esp)

movl %eax, -0x68(%ebp)

movl %ecx, -0x6c(%ebp)

calll 0x8048465

jnb jmp

calll

Blk 52 @ 0x8048216 [5]

jmp 0x804832f

default

Blk 72 @ 0x804832f [13]

pushl %eax

movl -0x8(%ebp), %eax

xor $0x16, %eax

jz 0x8046123

jmp

Blk 79 @ 0x804821b [6]

nop

nop

nop

nop

nop

nop

default

default

Blk 2 @ 0x804823a [7]

movl $0x0, -0x18(%ebp)

jnz

Blk 69 @ 0x8048347 [5]

jmp 0x804617a

jmp

Blk 42 @ 0x8048241 [19]

movl -0x18(%ebp), %eax

movsxb -0x5c(%ebp,%eax,1), %eax

cmp $0x0, %eax

jz 0x804826f

default

Blk 5 @ 0x8048254 [27]

movl -0x14(%ebp), %eax

add $0x1, %eax

movl %eax, -0x14(%ebp)

movl -0x18(%ebp), %eax

add $0x1, %eax

movl %eax, -0x18(%ebp)

jmp 0x8048241

default

Blk 4 @ 0x804826f [37]

mov $0x2, %eax

movl -0x14(%ebp), %ecx

movl %ecx, -0x64(%ebp)

movl -0x14(%ebp), %ecx

movl %eax, -0x70(%ebp)

mov %ecx, %eax

cdq 

movl -0x70(%ebp), %ecx

idiv %ecx

cmp $0x1, %edx

jnz 0x804829f

jzjmp

Blk 27 @ 0x8048294 [11]

movl -0x64(%ebp), %eax

add $0xffffffff, %eax

movl %eax, -0x64(%ebp)

default

Blk 67 @ 0x804829f [7]

movl $0x0, -0x18(%ebp)

jnz

default

Blk 6 @ 0x80482a6 [30]

mov $0x2, %eax

movl -0x18(%ebp), %ecx

movl -0x64(%ebp), %edx

movl %eax, -0x74(%ebp)

mov %edx, %eax

cdq 

movl -0x74(%ebp), %esi

idiv %esi

cmp %eax, %ecx

jnle 0x8048301

default

Blk 36 @ 0x80482c4 [33]

movl -0x18(%ebp), %eax

movsxb -0x5c(%ebp,%eax,1), %eax

movl -0x14(%ebp), %ecx

sub $0x1, %ecx

subl -0x18(%ebp), %ecx

movsxb -0x5c(%ebp,%ecx,1), %ecx

cmp %ecx, %eax

jz 0x80482ec

default

Blk 13 @ 0x8048301 [15]

movsxb -0x5c(%ebp), %eax

cmp $0x5e, %eax

jnz 0x8048341

jnle

Blk 1 @ 0x80482e5 [7]

movl $0x0, -0x1c(%ebp)

default

Blk 31 @ 0x80482ec [5]

jmp 0x80482f1

jz

default

Blk 26 @ 0x80482f1 [16]

movl -0x18(%ebp), %eax

add $0x1, %eax

movl %eax, -0x18(%ebp)

jmp 0x80482a6

jmp

jmpBlk 33 @ 0x8048310 [5]

jmp 0x8046132

default

jnz

jmp

jmp

jz

Blk 34 @ 0x804833c [5]

jmp 0x804834c

default

Blk 0 @ 0x804834c [6]

popl %eax

jmp 0x804611e

jmp

default

jmp

jmp

Blk 49 @ 0x8048485 [38]

mov $0x4, %eax

pushl %ebx

pushl %ecx

pushl %edx

pushl %esi

pushl %edi

movl 0x18(%esp), %ebx

movl 0x1c(%esp), %ecx

movl 0x20(%esp), %edx

movl 0x24(%esp), %esi

movl 0x28(%esp), %edi

int $0x80

popl %edi

popl %esi

popl %edx

popl %ecx

popl %ebx

retl

Blk 32 @ 0x80484c5 [20]

mov $0x6, %eax

pushl %ebx

pushl %ecx

movl 0xc(%esp), %ebx

movl 0x10(%esp), %ecx

int $0x80

popl %ecx

popl %ebx

retl

Blk 50 @ 0x804850e [29]

movl 0x4(%esp), %edx

movl 0x8(%esp), %eax

movl (%edx), %ecx

movl 0x4(%edx), %ebx

movl 0x8(%edx), %esp

movl 0xc(%edx), %ebp

movl 0x10(%edx), %esi

movl 0x14(%edx), %edi

test %eax, %eax

jnz 0x804852c

Blk 15 @ 0x804852b [1]

inc %eax

default

Blk 20 @ 0x804852c [4]

movl %ecx, (%esp)

retl

jnz

default

Blk 10 @ 0x80484ab [26]

mov $0x5, %eax

pushl %ebx

pushl %ecx

pushl %edx

movl 0x10(%esp), %ebx

movl 0x14(%esp), %ecx

movl 0x18(%esp), %edx

int $0x80

popl %edx

popl %ecx

popl %ebx

retl

Original Fn Padded Fn Cookied Fn

d

e

e

f
c

Legend:

hook/trampoline

remedy content

a sub ESP bump

b

a

b
c
d
e
f

EBP offset bump

add ESP bump

cookie injection
post-call cookie check

ret-block cookie check

Figure 4. BINSURGEON rewrites a function to (1) add stack padding
with space-preserving rewrites and (2) add a stack cookie with non-space-
preserving rewrites.



117

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the next section. Instruction blocks are rendered as lists
of instructions, with edges to subsequent blocks in the CFG.
The shaded graphs are CFG subgraphs showing different
revisions of the same function (original, padded, and cookied).
Each directed edge from a version to the next indicates a
single rewrite over the outlined blocks. The letter on each
edge indicates the type of rewrite. For instance, there is one
cookie injection (labeled “d”) and two post-call cookie checks
(labeled “e”) written into the cookied function.

B. Revising CFGs

We distinguish between two types of revisions to a CFG,
both of which are supported by BINSURGEON:

1) Space-conserving rewrites replace or remove instruc-
tions from the CFG without requiring additional space,
e.g., by reordering instructions or substituting an instruc-
tion for an instruction of equal byte-size.

2) Space-consuming rewrites modify the CFG in a way that
requires additional space, e.g., by adding instructions
to existing functions/blocks or addition new functions
altogether.

These rewrites have an important practical difference: space-
conserving rewrites will preserve the integrity of the un-
changed CFG; but space-consuming rewrites require instruc-
tions to be shifted or relocated entirely, which potentially
changes the size and byte representation of instructions (in-
cluding relative control flow instructions). Space-consuming
rewrites may thereby cause arbitrarily-large ripples in the
CFG, so they require special attention.

One technique for implementing space-consuming rewrites
is to write a trampoline, where a jmp instruction is
written over the existing instructions, and the overwritten
instructions— and others to be injected— are written to a
blank space in the binary, which is targeted by the first jmp
and terminates in a jmp back to the existing control flow.

In Figure 4, solid outlines around rewritten blocks indicate
a space-conserving rewrite, and dashed outlines around rewrit-
ten blocks indicate space-consuming rewrites that required a
trampoline.

C. Related work in binary rewriting

Previous work has explored specialized binary rewriting
to harden or diversify binaries. For instance, some rewriters
perform targeted rewriting to inject single, specialized defenses
such as stack cookies in return blocks [27] or control flow
checks in return blocks or before indirect calls [28].

Many recent systems perform binary rewriting to increase
diversity. In-place code randomization (IPCR) performs space-
conserving rewrites to substitute and reorder instructions to
help prevent code reuse attacks [29]. Similarly, chronomor-
phic programs perform space-conserving rewrites— including
IPCR and block relocation— during their execution [30] to
diversify themselves against code reuse attacks and cyber-
reconnaissance (e.g., [31]). Other systems perform load-
time binary rewriting to diversify binaries with a modified
loader [26], [32]. These specialized rewriters locate blocks at

TABLE I
OUTLINE OF BINSURGEON’S BINARY REWRITING PROCEDURE.

GIVEN: Set of insertions/deletions to the CFG.
Compute the scope of the rewrite:

• SET affected blocks B = blocks that will change content.
• SET frontier blocks F = B.
• WHILE any block f ∈ F is too small to hold a jmp instruction,

add f ’s source block(s) to F and B; remove f from F .
Label the graph and rewrite it:

• CLAIM all space presently occupied by B as freespace.
• LABEL every block in B and every internal control flow

instruction accordingly.
• HOOK control flow at the previous start addresses of all F by

writing labeled jmp instructions to their new labels.
• REWRITE the labled graph in memory with the insertions and

deletions.
Inject the rewritten, labeled subgraph back into the binary:

• ASSEMBLE instructions to estimate their size in the binary.
• PACK instructions into freespaces.
• TEST the packing job by assembling a custom linker script.

– IF we overflowed a freespace:
∗ IF other freespaces are above jmp size, update instruc-

tion size(s) accordingly and GOTO: PACK.
∗ ELSE return not-enough-space.

Repair BINSURGEON’s CFG model in memory:
• REMOVE nodes corresponding to former blocks B and all

edges from those nodes.
• ADD nodes and incident edges for newly-assembled blocks

BSIFT .
• SPLIT blocks as necessary if new outward edges from BSIFT

fall between a block’s entry and exit points.

randomized locations in memory and then ensure the CFG is
intact.

Other methods exist for translating binaries into an interme-
diate representation (IR) (e.g., [33], [34]), and then rewriting
them back into machine code, e.g., for diversity or safety pur-
poses. In contrast to IR approaches, BINSURGEON rewrites the
CFG and assembly instructions directly, which avoids potential
IR translation errors and potential performance degradation
by making local, targeted changes. As we demonstrate in the
next section, the CFG and assembly instructions themselves
are expressive enough to write diverse templates for program
repair and defense.

Other tools such as DynInst2 automatically instrument the
binary, but they consume substantially higher disk space,
memory footprint, or performance overhead. For example,
DynInst’s instrumentation has been shown to increase runtime
overhead by 96% [35]; that performance penalty would have
led to zero scores in the CGC.

BINSURGEON’s rewrites are far less invasive and costly:
BINSURGEON adds no universal function call hooks or virtu-
alization, so the overhead of its modifications is only propor-
tional to the specific installed defenses/repairs.

2http://www.dyninst.org/



118

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. REPAIR AND DEFENSE WITH BINSURGEON

Here we overview BINSURGEON’s procedure for rewriting
stripped, third-party binaries to add or remove arbitrary con-
tent [36]. We then describe some binary rewriting templates
that BINSURGEON uses for program defense and repair as part
of FUZZBOMB.

FUZZBOMB’s binary rewriting algorithm is summarized in
Table I. The procedure is given a CFG and a set of insertions
and/or deletions to the CFG. The insertions and deletions are
specified relative to existing instructions in the CFG (e.g.,
insert instructions X before instruction y or delete instructions
Z). BINSURGEON does not use absolute addresses (e.g., insert
instructions X at address y) for insertions and deletions, since
making space-consuming changes could shift the addresses
of subsequent instructions, thereby invalidating other absolute
addresses.

BINSURGEON’s rewriting procedure first identifies affected
blocks that must be rewritten and relocated, as well as
frontier blocks that will connect the affected blocks to the
rest of the CFG. The affected blocks will be rewritten, and
if BINSURGEON overflows these blocks, it will utilize (or
append) remote freespace (i.e., available executable memory)
within the binary. BINSURGEON identifies frontier blocks
iteratively, since not all blocks are large enough to support jmp
instructions (i.e., for a trampoline, described in Section IV-B).
The frontier blocks serve as trampoline jmp sites for the
affected blocks, which is the trampoline content.

After identifying affected and frontier blocks, BINSUR-
GEON labels these blocks from their absolute addresses by
injecting assembly labels before each block, and then it
rewrites all internal control flow edges (i.e., conditional or
unconditional jumps between affected blocks b1 ∈ B and
b2 ∈ B) to use these labels. BINSURGEON writes jmp
instructions at the former entry point of each frontier block to
build a compound trampoline into the labled affected blocks.
BINSURGEON does not explicitly write jmp instructions back
to the unmodified CFG; rather, it uses the existing control flow
instructions of the labled blocks, which will be reassembled
later in its procedure. It then rewrites the labeled, labled graph
with the given insertions and deletions.

BINSURGEON next injects the rewritten, labled graph
back into the binary, using the affected blocks’ previous
locations— and other claimed/extended executable memory—
as freespace. This is a greedy, iterative process of instruction-
packing: BINSURGEON finds the next freespace proximal to
the last freespace (since near jmp instructions require fewer
bytes) and writes as many instructions as possible, insofar as
it can also write a jmp instruction to the next freespace.

After packing its freespaces, BINSURGEON writes out a
custom linker script to assemble all of the desired instructions
at the desired addresses. This converts every instruction of the
labled CFG subgraph into the machine-executable, location-
specific opcodes. If the assembling and linking succeeds, BIN-
SURGEON writes the corresponding instruction bytes directly
into the binary and reports success.

TABLE II
REMEDIES IMPLEMENTED BY BINSURGEON FOR FUZZBOMB

Support remedies add utilites for defense & repair:
• cleanup: substitutes instructions in the CFG with instructions

guaranteed to re-assemble.
• add-text-section: appends a new executable section to

the binary by extending or adding a program header.
• fn-inject: adds new function(s) to the binary.
• fn-intercept: intercepts existing functions by rerouting

direct calls to new or existing functions.
• add-data-space: adds space in the binary for static data

storage.

Repair remedies address known PoVs:
• terminate: injects instruction(s) to terminate the program at

the PoV location.
• o/w-terminate: overwrite existing instructions to terminate

the program at the PoV location.
• null-ptr-check: test a register or memory address, and

terminate if zero.
• stack-top-cookie: write a cookie value to the top of

the program stack. Check it at the PoV location; terminate if
overwritten.

• heap-cookie: intercept malloc, write a cookie value after
each allocation. Check it at the PoV location; terminate if
overwritten.

• bss-cookie: write cookie value(s) into the binary’s static data
segment. Check it at the PoV location; terminate if overwritten.

Repair & Defense addresses known/unknown vulns:
• stack-pad: increase stack frame size; decrement all base

pointer offsets below a given threshold.
• stack-cookie: write a constant to frame pointer between

local variables or before the return address. Check the cookie
upon return or after function calls; terminate if overwritten.

• range-check: if a memory address (e.g., pointer or function
pointer) is not within a given range (e.g., text section), terminate.

• receive-check: intercept input functions and terminate if
they will write to illegal memory ranges.

• cfi: range-based control flow integrity on return addresses and
indirect call and jmp addresses.

In some cases, the assembled instructions may overflow
a freespace. This occurs when BINSURGEON underestimates
instruction sizes and thereby over-packs a freespace. In these
cases, BINSURGEON updates its size estimates and attempts
to re-pack in the remaining freespaces. Otherwise, if it has
no more freespace, BINSURGEON reports that it needs more
space.

Finally, BINSURGEON repairs its in-memory model of the
program CFG, since the insertions and deletions may well have
changed existing functions and blocks connectivity or added
new functions and blocks altogether.

BINSURGEON’s rewriting procedure is content agnostic,
which means its rewriting capability is decoupled from the
rewritten content. As a practical consideration, this allowed
us to develop BINSURGEON independently of the repair and
defense templates it deployed for FUZZBOMB.

A. Repairing & Defending Binaries

BINSURGEON uses rewriting templates— which we call
remedies— to harden and repair binaries. Figure 5 shows a



119

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Stack Cookie 

Stack Pad 

Terminate 

O/W-Terminate 

Range-Check 

Add-Text-Section 

Cleanup 

Fn-Inject 

Heap Cookie 

Null-Ptr-Check 

Fn-Intercept Add-Data-Space 

Stack-Top Cookie 

BSS Cookie CFI Receive-Check 

Support functionality 

Repair 

Repair & Defense 

Supports 

Figure 5. Remedies for templated binary rewriting, including support functionality, targeted repair templates, and defensive templates.

dependence graph of remedies, since some remedies depend
on others’ functionality, and Table II lists a brief description of
each remedy. Each remedy takes one or more parameters (e.g.,
a vulnerable function or instruction) and produces a set of in-
struction insertions and deletions to use with BINSURGEON’s
rewriting procedure.

These specific remedies are designed to avoid compromised
states or terminate the program when a compromised state
exists. Intuitively, when the program is in a compromised
state— or in program states where compromise is imminent
and unavoidable— terminating the program safely is prefer-
able to relinquishing control to a cyberattack.

These remedies do not fix the underlying problems, such
as overflows or off-by-one errors; rather, they mitigate the
adverse, exploitable manifestations. Templated repair of the
underlying problems are the focus of some source-code repair
systems (e.g., [37]), which is evidence that we can also develop
BINSURGEON templates to fix underlying problems if they are
adequately described. Next, we describe some novel and/or
counter-intuitive remedies in additional depth.

The simplest remedies are terminate and
o/w-terminate, which terminate the program at a
specified location in the CFG. The o/w-terminate
(overwrite) remedy does this without first allocating
freespace, in case the binary cannot be properly extended.

The stack-pad and stack-cookie remedies are used
in succession to protect a function’s stack frame by (1) adding
padding to a stack frame before or between the local variables,
and (2) writing a cookie value within that padding, to flag an
overflow if it is overwritten. Figure 4 illustrates the injections
and deletions specified by these remedies as performed by
BINSURGEON: stack-pad (Figure 4, middle) revises the
setup and reset of the stack frame (Figure 4 [a] and [b],
respectively) and revises all references to the stack via the base
pointer (Figure 4[c]); and stack-cookie (Figure 4, right)
injects a cookie at the head of the function (Figure 4[d]), and

adds cookie checks after each function call (Figure 4[e]) and
at the return block (Figure 4[f]).

One of the most complex remedies used within FUZZBOMB
is the heap-cookie. This remedy template is comprised of
the following modifications:

1) Injecting functions that intercept memory management
functions, e.g., malloc and free, that allocate and
free an extra byte, respectively, and write a specific value
to the extra byte, and store the location of the byte within
an injected array.

2) Overwriting call instructions to malloc and free
to instead invoke the injected functions.

3) Inject a cookie-checking function that iteratively checks
the cookie array, and terminates if any have changed
value.

4) Inject a call to the cookie-checking function at the
location of the PoV.

In conjunction, these modifications to the CFG cause the
program to add an extra cookie-byte to each heap allocation
and then check these cookie-bytes where specified, terminating
if it senses an overwrite.

VI. RESULTS AND CONCLUSIONS

The first year of CGC involved three opportunities to
assess FUZZBOMB’s performance: two practice Scored Events
(SE1 and SE2) and the CGC Qualifying Event (CQE), which
determined which competitors would continue to the second
year of competition. In SE1, DARPA released fifteen challenge
binaries, some of which had multiple vulnerabilities. At the
time, FUZZBOMB had only recently become operational on
our computing cluster, and it did not solve many of the prob-
lems. However, with access to the source of the SE1 examples
and many bug fixes, some months later we had improved
FUZZBOMB enough that it was able to find vulnerabilities
in four of the problems, including at least one undocumented



120

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

flaw. For each of those vulnerabilities, FUZZBOMB had a re-
pair that was able to stop the vulnerability from being attacked
while also preserving all of the functionality tested by up to
1000 provided test cases. FUZZBOMB also create defensive
rewrites for all of the other binaries. In SE2, DARPA provided
nine new challenge binaries in addition to the prior fifteen,
giving a total of twenty-four. Each problem was supplied
with either no PCAPs or a PCAP file containing up to 1000
client/server interactions. At the time of SE2, FUZZBOMB
was only able to find two of the new vulnerabilities, but that
performance was enough to earn fourth place, when the SE1
problems were included in the ranking.

Our progress in improving the system was slowed by
major problems with the government-provided testing sys-
tem: running parallel tests interfered with each other, and
running batches of serialized tests could cause false nega-
tives, hiding vulnerabilities. This meant we had to run tests
one at a time, incurring major overhead and making test-
running a major bottleneck (especially when given 1000 tests
from PCAPs, or when FUZZBOMB created many tests itself).
We finally resolved these issues by discarding the provided
testing tool and writing our own. Our tool supported safe
parallel testing and increased testing speeds by at least two
orders of magnitude. However, it took many weeks to come
to that conclusion. Several key analysis functions were not
completed, including handling challenge problems that had
multiple communicating binary programs, complete support
for SSE floating point instructions, and veritesting. We also
were not able to build the ability to have the system re-allocate
compute nodes to different CBs or to different functions (DVM
vs. running FuzzBALL). By the time of the CQE, in June
2015, FUZZBOMB was only able to fully solve seven of the
twenty-four SE2 problems. If given the PoVs for the twenty-
four problems, the repair system was able to fix twelve CBs
perfectly, and the defense system earned additional points on
the remaining CBs.

For CQE, DARPA provided 131 all-new problems to the
twenty-eight teams who participated (out of 104 originally reg-
istered). Each problem was supplied with either no PCAPs or
a single client/server interaction. Unfortunately, this singleton
PCAP triggered an unanticipated corner case in FUZZBOMB’s
logic: the protocol analysis concluded that every element of the
single client/server interaction was a constant, so the extracted
protocol had no variables to fuzz. And the default fuzz-testing
patterns were not used because there was a protocol extracted.
Thus FUZZBOMB’s fuzzing was completely disabled for all
of the challenge problems. Also, because the re-allocation
functionality was not available, we had to pre-allocate the
number of DVMs vs. FuzzBALL symbolic search engines.
We chose to use 325 DVMs and only 156 FUZZBOMBS,
because testing had been such a bottleneck. However, since
there were almost no test cases provided in the PCAP files and
fuzzing was disabled, FUZZBOMB had very few tests to run,
and the DVMs were largely idle. With most CBs having only a
single FuzzBALL search engine, there was little parallel search
activity, and FUZZBOMB only found vulnerabilities in 12 CBs

(some using prior SE2 PoVs). Of those, with the limited testing
available, repair was only able to perfectly fix six (as far as
our system could tell). Defense rewrote all of the remaining
problems.

When the final CQE scores were revealed, FUZZBOMB
came in tenth place and did not qualify to continue in the
competition (only the top seven teams qualified). In addition
to the singleton PCAP files and other issues, we learned of
another “curveball” when the scores were released: among
the 131 test cases, there were 590 known vulnerabilities,
an average of more than 4.5 flaws per binary. In hindsight,
FUZZBOMB’s defensive system should have been much more
aggressive in adding blind checks, to try to capture some
points from all of those flaws. Our conservative rationale had
been that retaining performance was more important, but with
that many flaws per CB, the balance is changed. Even so,
defensive rewriting earned FUZZBOMB more points than its
active analysis and repair capability. This result supports our
notion that CGC-relevant flaws boil down to a small number of
patterns in binary, and can be addressed with a small number
of repair/defense strategies.

Fortunately, the story is not over for FUZZBOMB; we have
other customers who are interested in the technology, and we
are actively pursuing transition opportunities to more real-
world cyber defense applications.

ACKNOWLEDGMENTS

This work was supported by DARPA and Air Force Research
Laboratory under contract FA8750-14-C-0093. The views expressed
are those of the author(s) and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

REFERENCES

[1] D. J. Musliner, S. E. Friedman, M. Boldt, J. Benton, M. Schuchard et al.,
“Fuzzbomb: Autonomous cyber vulnerability detection and repair,” in
Proceedings INNOV 2015: The Fourth International Conference on
Communications, Computation, Networks and Technologies, 2015.

[2] D. J. Musliner, J. M. Rye, D. Thomsen, D. D. McDonald, M. H. Burstein
et al., “Fuzzbuster: Towards adaptive immunity from cyber threats,” in
Proc. SASO-11 Awareness Workshop, October 2011.

[3] ——, “Fuzzbuster: A system for self-adaptive immunity from cyber
threats,” in Proc. Eighth Int’l Conf. on Autonomic and Autonomous
Systems, March 2012.

[4] D. J. Musliner, J. M. Rye, and T. Marble, “Using concolic testing to
refine vulnerability profiles in fuzzbuster.” in SASO-12: Adaptive Host
and Network Security Workshop at the Sixth IEEE Int’l Conf. on Self-
Adaptive and Self-Organizing Systems, September 2012.

[5] D. Babić, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” in Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), Toronto, ON, Canada, July 2011.

[6] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D. Song,
“HI-CFG: Construction by binary analysis, and application to attack
polymorphism,” in ESORICS’13: European Symposium on Research in
Computer Security, London, UK, Sep. 2013.

[7] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis,
“Path-exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings
of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), London,
UK, Mar. 2012.

[8] D. J. Musliner, S. E. Friedman, J. M. Rye, and T. Marble, “Meta-control
for adaptive cybersecurity in FUZZBUSTER,” in Proc. IEEE Int’l Conf.
on Self-Adaptive and Self-Organizing Systems, September 2013.



121

International Journal on Advances in Security, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] S. E. Friedman, D. J. Musliner, and J. M. Rye, “Improving automated
cybersecurity by generalizing faults and quantifying patch performance,”
International Journal on Advances in Security, vol. 7, no. 3-4, 2014, pp.
121–130.

[10] D. J. Musliner, S. E. Friedman, T. Marble, J. M. Rye, M. W. Boldt et al.,
“Self-adaptation metrics for active cybersecurity,” in Proc. Adaptive
Host and Network Security Workshop at the IEEE Int’l Conf. on Self-
Adaptive and Self-Organizing Systems, September 2013.

[11] S. Ranise and C. Tinelli, “The SMT-LIB format: An initial proposal,” in
Pragmatics of Decision Procedures in Automated Reasoning (PDPAR),
Miami, FL, USA, Jun. 2003.

[12] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract davis–putnam–logemann–loveland
procedure to DPLL(t),” J. ACM, vol. 53, no. 6, 2006, pp. 937–977.

[13] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification (CAV), Berlin, Germany, Jul.
2007.

[14] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
ser. LNCS, vol. 4963. Springer, Apr. 2008, pp. 337–340.

[15] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager et al., “BitBlaze: A
new approach to computer security via binary analysis,” in Proceedings
of the 4th International Conference on Information Systems Security.
Keynote invited paper., Hyderabad, India, Dec. 2008.

[16] S. Edelkamp, V. Schuppan, D. Bosnacki, A. Wijs, A. Fehnker et al.,
“Survey on directed model checking,” in Model Checking and Artificial
Intelligence, 2008, pp. 65–89.

[17] J. Benton, A. J. Coles, and A. Coles, “Temporal planning with prefer-
ences and time-dependent continuous costs,” in International Conference
on Automated Planning and Scheduling, 2012.

[18] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Static Analysis Symposium (SAS), Venice, Italy, Sep.
2011, pp. 95–111.

[19] M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, no. 1, 2006, pp. 191–246.

[20] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 1083–
1094. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568293

[21] J. Antunes, N. Neves, and P. Verssimo, “Reverse engineering of pro-
tocols from network traces,” in Proc. 18th Working Conf. on Reverse
Engineering (WCRE), 2011.

[22] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent
adaptive replay of application dialog.” in NDSS, 2006.

[23] W. Cui, J. Kannan, and H. Wang, “Discoverer: Automatic protocol re-
verse engineering from network traces,” in Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium. USENIX
Association, 2007, pp. 1–14.

[24] G. Wondracek, P. Comparetti, C. Kruegel, and E. Kirda, “Automatic net-
work protocol analysis,” in 15th Symposium on Network and Distributed
System Security (NDSS), 2008.

[25] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thurais-
ingham, “Differentiating code from data in x86 binaries,” in Machine
Learning and Knowledge Discovery in Databases. Springer, 2011, pp.
522–536.

[26] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[27] A. Baratloo, N. Singh, T. K. Tsai et al., “Transparent run-time defense
against stack-smashing attacks.” in USENIX Annual Technical Confer-
ence, General Track, 2000, pp. 251–262.

[28] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
USENIX Security, 2013, pp. 337–352.

[29] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 601–615.

[30] S. E. Friedman, D. J. Musliner, and P. K. Keller, “Chronomorphic
programs: Runtime diversity prevents exploits and reconnaissance,”
International Journal on Advances in Security, vol. 8, no. 3-4, 2015,
pp. 120–129.

[31] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,

“Hacking blind,” in Proceedings of the 35th IEEE Symposium on
Security and Privacy, 2014.

[32] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino, “Marlin: A
fine grained randomization approach to defend against rop attacks,” in
Network and System Security. Springer, 2013, pp. 293–306.

[33] P. Anderson and M. Zarins, “The codesurfer software understanding
platform,” in Program Comprehension, 2005. IWPC 2005. Proceedings.
13th International Workshop on. IEEE, 2005, pp. 147–148.

[34] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: a binary
analysis platform,” in Computer aided verification. Springer, 2011, pp.
463–469.

[35] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL:
Efficient static binary instrumentation for linux,” in Proc. IEEE Int’l
Symp. on Performance Analysis of Systems and Software, 2010.

[36] S. E. Friedman and D. J. Musliner, “Automatically repairing stripped
executables with CFG microsurgery,” in Submitted to Adaptive Host and
Network Security Workshop at the IEEE Int’l Conf. on Self-Adaptive
and Self-Organizing Systems, 2015.

[37] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013,
pp. 802–811.


