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Abstract—Network covert channels enable a policy-breaking
network communication (e.g., within botnets). Within the last
years, new covert channel techniques arose which are based on
the capability of protocol switching. Such protocol switching
covert channels operate within overlay networks and can (as
a special case) contain their own internal control protocols.
We present the first approach to effectively limit the bitrate
of such covert channels by introducing a new active warden.
We present a calculation method for the maximum usable
bitrate of these channels in case the active warden is used.
We discuss implementation details of the active warden and
discuss results from experiments that indicate the usability
in practice. Additionally, we present means to enhance the
practical application of our active warden by applying a formal
grammar-based whitelisting and by proposing the combination
of a previously developed detection technique in combination
with our presented approach.

Keywords-Protocol Switching Covert Channel; Protocol Chan-
nel; Active Warden; Covert Channel Detection; Network Security

I. INTRODUCTION

This work is an extended version of [1] in which we
introduced the design and implementation of an active
warden countering protocol switching covert channels in a
basic version with a constant delay.

The term covert channel refers to a type of channel
defined as not intended for information transfer by Lampson
in 1973 [2]. The goal of using covert channels is to trans-
fer information without raising attention while breaking a
security policy [3]. Covert channels have been a focus of
research for decades. In addition to Lampson’s work, the
topic was described in [4] and [5]. While covert channels
can also occur on local systems, we focus on covert channels
within computer networks.

Covert channels are basically divided into two classes:
covert storage channels and covert timing channels [4]. To
transfer hidden information, a covert storage channel alters
storage attributes (e.g., values of a network packet’s header)
and a timing channel alters timing behavior (e.g., the timing
of network packets) [6].

A well-known technology to counter covert channels is
the active warden, i.e., a system counteracting a covert
channel communication. While passive wardens monitor and
report events (e.g., for intrusion detection), active wardens
(e.g., traffic normalizers [7]) are capable of modifying

network traffic [8] to prevent steganographic information
transfer.

Recently, the capability to keep a low profile resulted in
a raising importance of network covert channels because
of their use cases. For instance, covert channels can be
used to control botnets in a hidden way [9]. Covert channel
techniques can also be used by journalists to transfer illicit
information, i.e., they can generally contribute to the free
expression of opinions [6].

A first covert channel able to switch a network protocol
based on a user’s command called LOKI2 was presented
in 1997 [10]. Within the last decade, different new covert
channel techniques occurred and not all of them were
already addressed by protection means. These new tech-
niques enable covert channels to switch their communication
protocol automatically and transparently. They are enabled
to cooperate in overlay networks by using internal control
protocols as presented in [11]. Since covert channels are a
dual-use good, these novel techniques do also enrich the
security of botnets.

We focus on two new covert channel techniques, protocol
hopping covert channels (PHCC) as well as called protocol
channels (PCs). Both channels build the family of protocol
switching covert channels since they rely on the capability
to switch their utilized network protocols.

PHCC were presented in [12] and were improved in [11].
These channels transfer hidden information using several
network protocols to raise as little attention as possible
due to peculiar protocol behavior, i.e., they combine sev-
eral single-protocol network storage covert channels. For
instance, a simple PHCC could use the “User-Agent” field
in HTTP as well as the message number in POP3 “RETR”
(retrieve) requests to transfer hidden information. Protocol
switches in a PHCC are transparent for the covert channel’s
user and the user utilizes the channel as a black-box that
handles the splitting of the payload in data chunks sent using
the different protocols. To work properly, the PHCC must
be able to preserve the order of network packets across the
different protocols.

PCs were introduced in [13] and signal information solely
by transferring network protocols of a pre-defined set in
an order that represents hidden information. Protocols are
therefore linked to secret values, e.g., a HTTP packet could
represent the value “1” and a POP3 packet could represent
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Figure 1. Comparison of a PC and a PHCC.

the value “0”. To transfer the message “110” via this PC,
the sender is required to send two HTTP packets followed
by a POP3 packet. The bitrate of a PC is usually limited
to a few hundred bit/s. However, for an attacker this is fast
enough to transfer passwords, selected records or tweets.

Figure 1 compares both, the PC and the PHCC concept.
The difference between both channels is, that PCs signal
their hidden information solely by the use of a selected net-
work protocol in a network packet, while PHCCs combine
multiple covert storage channels simultaneously and place
hidden information in arbitrary storage locations of these
channels.

We present the first concept as well as an implementation
of an active warden able to significantly reduce the bitrate
of both, PHCC and PC. While we do not present a universal
solution countering all covert channels, this is the first work
discussing means against PHCC and PC. The limitation
of these advanced covert channels is more challenging in
comparison to single-protocol covert channels. We evaluate
our results via realistic experiments and we demonstrate
that our approach is useful for the practical operation in
organizations. Due to these achievements, our active war-
den decreases the attractiveness of both channel types for
attackers.

The remainder of this paper is structured as follows.
Section II provides an overview of related work in the
area of covert channels. Section III introduces the idea and
theory of our active warden, while Section IV discusses

our implementation and our experimental results, and Sec-
tion V focuses on the practical aspects of the presented
approach and discusses improvements for covert channels
to bypass the active warden. We propose improvements for
the practical use of our approach by applying a formal
grammar in Section VI and by combining our active warden
with a previously developed detection capability for PCs in
Section VII. We conclude in Section VIII.

II. RELATED WORK

Various techniques for embedding covert channels in
network packet data and its timing were developed within
the last decades. For instance, Girling and Wolf were the
first authors to create network covert channels by modifying
LAN frames [14], [15] and Rowland initially presented
covert channels for IP and TCP [16]. Rutkowska discovered
the idea of a passive covert channel that does not actively
generate own traffic but piggibacks regular traffic of a sys-
tem’s users by modifying the TCP Initial Sequence Number
(ISN) [17]. Therefore, Rutkowska introduced a translation
layer for ISN values into the Linux kernel. Cabuk et al.
developed a technique to embedd hidden information in the
timing of network packets [18], while Ahsan modified the
order of network packets to achieve the same goal [19].
Besides, covert channel presence was discussed in the DHCP
protocol [20], in IPv6 [21], in additional areas of TCP (e.g.,
in TCP timestamps [22]) and IPv4 (e.g., by alternations of
fragment sizes [23]), and in business processes [24].

Means were developed to deal with the problem of covert
channels, like the pump [25], which is a device that limits the
number of acknowledgement messages from a higher to a
lower security level and thus affects covert timing channels
based on ACKs; a concept extended in [26]. Other well-
known techniques are, for instance, covert flow trees [27],
which can be used to detect direct and indirect covert chan-
nels in source code, as well as the shared resource matrix
(SRM) methodology [28] and the extended SRM [29], which
can also be applied to source code but can additionally be
used in other steps of the software development lifecycle. A
newer apprach is program transformation to remove timing
leaks and covert timing channels [30], and steganalysis of
covert channels in VoIP traffic [31]. Hu introduced fuzzy
time to limit the capacity of timing channels between virtual
machines on the VAX security kernel [32], and Zander et
al. as well as Berk et al. applied different means based
on machine learning and statistics to detect covert timing
channels in network transmissions [6], [33].

A concept similar to PCs is the idea of a port knocking
covert channel as presented by deGraaf et al. [34]. Since
port knocking alters information specifying the encapsulated
protocol (using the UDP destination port), a port knocking
covert channel can be considered as variant of a PC. A first
detection algorithm for PC (but not for PHCC) was presented
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Figure 2. Location of the Anti-PC/PHCC active warden

in [35], but we are not aware of any research to limit the
bitrate of PC and PHCC or to prevent them.

PHCCs were also used by Yarochkin et al. to create
adaptable network covert channels with the goal to change
the utilized network protocols, if required [36]. For instance,
a covert channel could use HTTP and ICMP. Due to a
change in the firewall configuration between covert channel
sender and covert channel receiver, the ICMP protocol get
might blocked. The idea of Yarochkin et al. is to filter out
such blocked protocols and afterwards switch to another
protocol to overcome the firewall. Li and He presented a
similar approach based on the concept of natural selection
in which survival values are calculated for each network
protocol to evaluate its usefulness [37]. The authors only
utilize protocols with the currently highest survival values
to overcome firewalls.

III. AN ACTIVE WARDEN COUNTERING PROTOCOL
SWITCHING COVERT CHANNELS

The idea of an active warden addressing PHCC and PC
focuses on one aspect both covert channel types share: the
protocol switches. For both channel types, it is a necessity
to ensure that network packets using different network
protocols reach their destination in the same order as they
were sent. Our approach of an active warden for countering
PHCC and PC monitors the protocol switching behavior of
network hosts and introduces delays in network packets if a
protocol switch occurs.

Like the network pump (a device that only allows ac-
knowledgement messages from a high to a low system in
a regulated manner [25]), we have no explicit detection
capabilities in our active warden but aim on limiting the
channel’s bitrate nevertheless. In comparison to the pump,
we do not limit acknowledgement messages but alter pro-
tocol occurrences. Using the presented technique, we can
prevent performance decreases for downloads and uploads
and minimize practical implications (cf. Section V-A) by
installing the active warden on a company’s uplink or
between (autonomous) systems. The warden only affects
those network packets that change the last occurring network
protocol.

The active warden must be located between a covert
channel sender and a covert channel receiver (Figure 2).
To prevent PC/PHCC-based data leakage for enterprises,
a suitable location would be the company’s uplink to the

Internet. The active warden’s delay is configurable and
thus makes our approach adjustable, i.e., an administrator
can choose the individual optimum between maximized
protection and maximized throughput. Formally, this creates
a multi-criterion optimization problem. For a given delay
d, data leakage can occur at a maximum rate R(d), that is
decreasing with increasing d. On the other hand, the side-
effects for legitimate users will increase with increasing d,
i.e., can be modeled by a function S(d). Ideally, one would
like to minimize both, R and S, which is however not
possible. One can combine the two in a target function

penalty(d) = ε ·R(d) + (1− ε) · S(d) ,

which is then to be minimized, i.e., after fixing a suitable ε ∈
[0; 1] the minimization results in an optimal d that represents
the administrator’s priorities. As both R and S are assumed
to be monotonous, a Pareto optimum can be found in the
sense that a further reduction of R by increasing d cannot be
achieved without increasing S. Typically, instead of using R
and S directly, they are normalized to a certain range such
as interval [0; 1], and they might be adapted by linear or
non-linear functions that reflect e.g., the severeness of an
increased leakage.

Imagine a PC using ICMP (1 bit) and UDP (0 bit) and
the goal to transfer the message “0110001”. In this case, the
sender would need to send UDP, ICMP, ICMP, UDP, UDP,
UDP, ICMP. If our active warden is located on a gateway
between both hosts and can delay packets, which probably
belong to a PC or PHCC, the successful information transfer
will be corrupted. At the beginning, the sender sends an UDP
packet, which is forwarded by the active warden. Afterwards,
the sender sends the ICMP packet, which is delayed for
a time d because a protocol switch happened. The next
packet is an ICMP packet again and therefore not delayed
but forwarded. Afterwards an UDP packet occurs, which is
delayed for a time d, too. The next two UDP packets do
not change the last protocol and are therefore forwarded.
The last ICMP packet results in an additional packet switch
and is therefore delayed for time d again. If d is 1 second,
then all delayed packets will arrive after the non-delayed
packets if the sender did not introduce synthetic delays itself.
The resulting packet order at the receiver’s side will be
UDP, ICMP, UDP, UDP, ICMP, UDP, ICMP, or “0100101”
(containing two incorrect bit values).

The situation is similar for PHCC where the hidden
information is not represented through the protocol itself but
through alternations of a protocol’s attributes (such as the
IPv4 TTL or the HTTP “User-Agent”). If the active warden
modifies PHCC transmissions sent via different protocols,
the reassembled payload will be jumbled.

In order to prevent the covert channel users to take
advantage of learning about the value of d, it might also
be randomized, cf. Sections III-B and IV-B.
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A. Bitrate Calculation

Tsai and Gligor introduced the formula B = b · (TR +
TS + 2 · TCS)−1 for calculating the bandwidth of covert
channels using the values TR (time to receive a covert
message), TS (time to send a covert message), TCS (time
required for the context switch between processes), and
b (amount of transferred information per message) [38].
While the formula addresses local covert storage channels,
all parameters are adaptable to a network covert channel as
well.

We use a modification of this formula (cf. formula 1) to
calculate the max. possible error-free bitrate of a PC in case
our active warden is located between sender and receiver.
We introduce the active warden’s delay d multiplied with
the probability p of a protocol switch per packet. Instead of
TR, TS and TCS , we use T to represent the transmission or
gap time:

We call T the gap time to represent the minimal time
difference between two packets of the covert channel. If
T is too small, packets can overrun each other or the
receiver cannot process them fast enough, thus, T is limited
due to the technical environment of the channel: For high
performance computers connected via gigabit links, T is
small, while it will be bigger for systems connected via DSL
over the Internet.

On the other hand, T can be understood as transmission
time if the channel is designed to only transfer packets in a
sequential manner, i.e., one packet has to be received before
another packet can be sent. In that case, the gap time is
equal to the transmission time. The transmission time is the
time required for receiving and sending a packet including
the processing time required by the active warden.

In the remainder, we call T the gap time, but as explained,
T can also be the transmission time between packets since
T depends on the implementation of the covert channel (if
the channel is not capable of sending a successing packet
before an earlier packet was received).

The amount of transferred data per packet (b) is 1
bit/packet in case two protocols are used for a PC since
b = log2 n, where n is the number of protocols used. Thus,
p as well as n will increase if more than two protocols are
used (more information can be transferred per packet but
the switching rate will also increase). In case of a PHCC, b
depends on the amount of storage data per packet and not
on the number of protocols used. Therefore, p will increase
if more protocols are used but since the number of protocols
is not linked to the amount of information transferred per
packet, b will not increase if more protocols are used.

B = b · (p · d+ T )−1 (1)

Theoretically, p is 0.5 if randomized input, a uniform
coding and a set of two protocols is used since the next
packet is either using the same protocol as the last (no

Figure 3. A PC’s bitrate (B) using a set of two protocols depending on
the delay d and the transmission time T .

protocol switch) or the other protocol (a protocol switch
is taking place). In our experiments, the average protocol
switching value for a typical protocol switching covert
channel using only two protocols was p = 0.4738806. Thus,
to transfer information without risking a corruption through
a delay, a PC/PHCC user is forced to send packets with
protocol switches in a way that the delay d cannot corrupt
the packet order.

As mentioned earlier, the value p depends on the amount
of protocols used as well as on the channel’s coding. If
a uniform coding was used (as with optimized channels)
and if two protocols are used p is approx. 0.5. In case
four protocols are used, p is approx. 0.75. In general, for
n protocols used p is (1 − 1/n). Thus, formula 1 can be
modified to the following version:

B = b · ((1− 1/n) · d+ T )−1 (2)

Protocol Channel: As also already discussed, b = log2 n
in case of a PC. Thus, B = log2 n · ((1− 1/n) · d+ T )−1.
Taking d as well as T into account using formula 1, we cal-
culated the maximum useful bitrates for an uncorrupted PC
transfer using a set of two protocols (Figure 3). According
to our calculations, a PC’s bitrate can be reduced to less than
1 bit/s if the active warden introduces a delay of 2.0 sec for
protocol switches. For T , we used a time range obtained
from measurements of the original “pct” program.

Protocol Hopping Covert Channel: For a PHCC, the
parameter b varies more than parameter T (is, as in the case
of a PC, usually very low). Therefore, we created a different
plot where we set T to the static value 0.005, which we
measured in experiments. Figure 4 shows the bitrate of a
PHCC dependent on the delay d as well as the number b
of transferred bits per packet. Obviously, the result of the
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Figure 4. A PHCC’s bitrate using two protocols, T = 0.005 and delays
between 0.5 and 2s as well as the capability to transfer between 1 and 10
bits per packet.

Figure 5. A PHCC’s bitrate using four protocols, T = 0.005 and delays
between 0.5 and 2 as well as the capability to transfer between 1 and 10
bits per packet.

PHCC is equal to the result of a PC if b = 1. However,
PHCCs can carry more information and are therefore harder
to limit, i.e., they require higher delays.

As shown in Figure 5, the bitrate of a PHCC decreases if
the number of protocols used increases, since more protocol
switches (p = 1 − 1/4) occur, i.e., the active warden’s
efficiency for PHCCs is positively correlated with p.

Before we experimentally validate the estimated bitrate
of the protocol switching covert channel, we will discuss
details of our implementation.

B. Improved Coding

The presented approach addresses PC and PHCC without
special coding but with a coding as available in their respec-
tive proof-of-concept codes. We highlight the advances of a
better coding for both, PC and PHCC, as a means to counter
the active warden.

PC with improved coding: If a PC uses a coding that
requires to send new packets only if a value unequal to the
current value is required to be transferred, it can overcome
the active warden, if sender and receiver are synchronized.
This is possible if the sender only transfers a network
packet if a protocol switch occurs, i.e., two packets of the
same protocol are never transferred after another. The timing
intervals between the protocol switches represent the amount
of bits to transfer. Thus, such a covert channel would be a
hybrid version of a timing channel and a PC.
Example: The sender sends a packet of protocol P1. The
active warden delays it for time d and forwards it. Three
more bits as represented by P1 shall be transferred. There-
fore, the sender waits for three time slots. Afterwards, a
bit represented by P2 shall be transferred and the sender
sends one such a packet. The active warden delays the packet
for d and forwards it. If the sender sends P1 again, it will
also be delayed for d. The receiver will receive P1, three
waiting slots, P2, P1, i.e., the same input as was sent by
the sender. The only disadvantage introduced by the active
warden is the delay of d for all packets but this is a minor
consequence for the covert channel since even if the message
is delayed, it still reaches its receiver without comprising
errors. Thus, such a coding would primarily result in side-
effets on legitimate traffic due to d but would have no direct
affect on the covert channel traffic.

To overcome this problem, an improved version of the
active warden was developed. In our previous experiments,
we focused on an active warden with a constant delay d.
If d varies from packet to packet, or in other words, d is
randomized (e.g., d ∈ [0.1; 2] sec), previous packets are
likely to overrun newer ones if the timing interval of the
sender is too small. Thus, the sender is forced to use big
waiting times and thus, will be forced to decrease its bitrate.

Besides the previously mentioned coding, a PC could also
use other codings to improve the amount of bits transferred
per protocol switch (b/p). For the default PC coding and
two protocols, p = 0.5, but when a run length limited (RLL)
coding (as used for hard disks [39]) is implemented, p can
be decreased.

In case of geometrically distributed symbols, an optimized
coding (Huffman coding) can help the covert channel’s user
to minimize the amount of packets to transfer, but – as usual
for covert channel research – we focus on an optimized
coding using a uniform distribution (e.g., the covert channel
is used to transfer encrypted input).

Another variant of a PC might use unary encoding of
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symbols with n = 2 protocols. In order to send a value
i ∈ {0, . . . , k − 1}, i + 1 packets of the first protocol and
k − i packets of the second protocol are sent. Assuming
that k is a power of two, then b = log2(k)/(k + 1) bits
are transferred per packet, as k different symbols could be
encoded in log2(k) bits, and k + 1 packets are used to
transmit one symbol. Note that b < 1, for example with
k = 16, we have b < 0.25. The sender then waits for
some time before sending the packets for another symbol.
The receiver can decode a symbol if the packets for one
symbol arrive before any packets for the next symbol arrive.
The sender might also use the two protocols alternately to
code symbols. In both cases, the gap between two symbols
must be rather large to overcome an active warden with
a randomized delay d. Because the delay is unknown to
the sender, it can neither rely on a maximum delay nor a
minimum delay of any packet. Hence, to clearly separate
the packets for successive symbols on the receiver side, the
sender’s waiting time between symbols must be high, at least
larger than the maximum value of d. Thus, the bitrate of such
a channel is restricted to b/d, which is less than 1 bit/s if
d ≥ 1 s as b < 1 bit/packet.

Receiver-side re-calculation attack for PCs: In case
a constant delay is used, it is possible for the attacker
to recalculate the original sequence of received packets of
a PC. However, due to the jitter, it is possible that the
attacker is forced to use error-correcting codes. The active
warden can implement the previously mentioned randomized
d to overcome this problem. Also, the overhead for error
correction additionally reduces the available PC bitrate.

PHCC with internal control protocols A drawback of
our approach is linked to a feature only available for PHCCs
but not for PCs. PHCCs provide usually enough covert space
to contain a covert channel-internal control protocol (called
a micro protocol) [11]. Such micro protocols can be used to
embed sequence numbers in covert channel packets as done
in [12], [40], [41].

Using these sequence numbers, the receiver can reassem-
ble network packets even if their ordering was disturbed
[12]. While the active warden is not able to completely
solve this problem, it forces a PHCC user to use a sequence
number. Such a storage channel-internal sequence number
usually consists of only 2-3 bits and thus, the active warden
can break the receiver-side sorting nevertheless, if d is large
enough.

Additionally, since these channels do only provide a few
bits per packet, the active warden decreases the available
space per packet by forcing the presence of a sequence
number or of a larger presence value. Thus, a user is forced
to send more packets to transfer the same amount of data
than in the case where no active warden would be located
on the path between PHCC sender and PHCC receiver.

However, it is important that the size of the micro protocol
header is as tiny as possible since the few available bits of

space provided within a PHCC should be used to transfer
payload. If less space is available per packet due to a larger
micro protocol header, more packets are required to be
transferred to send a given payload to the receiver.

IV. EXPERIMENTAL VALIDATION

In the following, we discuss our implementation and
the results of our validation. We set up an experimental
environment in form of a virtual network to represent a
realistic scenario for a data leakage in an enterprise network.
The content used in the experiment was generated by two
available proof of concept tools that could be used by any
attacker and thus, also represent realistic user generated
traffic.

A. Implementation

For our test implementation, we set up a virtual network
between two virtualized Linux 3.0 systems (a covert channel
sender as well as a receiver with a local active warden
instance) using VirtualBox (www.virtualbox.org). Both hosts
were connected using a virtual Ethernet interface and IPv4.
Our proof of concept code focused on layer 4 protocols
identifiable by the IPv4 “protocol” field only. Therefore, we
modified the protocol channel tool (pct) [42] that used ARP
and ICMP to use UDP and ICMP instead. Additionally, we
implemented the functionality to generate randomized input
and to adjust the channel’s bitrate.

To implement the network delays on the receiver system
that is acting as both the active warden gateway and the
protocol switching covert channel receiver at the same time,
we made use of the firewall system netfilter/iptables. Netfil-
ter/iptables provides a “queue” feature, which can be used
to redirect data packets to a userspace program. Berrange
implemented the Perl-based program delay-net [43] that
enforces configurable network delays using the IPQueue
module [44], which is based on the iptables queue feature.
We modified delay-net in a way that it only delays packets
after a protocol switch happened. We also implemented a
third program to evaluate the correct transmission at the
receiver’s side, to test our prediction from formula 1 (cf.
Section III-A).

Since this test focuses on the protocol switching capability
of both, the PC and the PHCC, at the same time, the testing
method is valid for both covert channel types. However,
we additionally used the protocol hopping covert channel
tool (phcct) [45] to verify the results for PHCC with and
without micro protocols and high data rates since PCs cannot
comprise such internal control protocols.

B. Results

In our test configuration, the value T is quite small (we
measured 0.005 in average) in comparison to the delay time
d. As mentioned in the previous Section, we were able to
determine p = 0.4738806 through observing the behavior
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Figure 6. Measured maximal bitrate of the modified pct dependent on the
active warden’s delay in case a constant or a randomized delay is applied.
In comparison, we show formula 1 using the estimated protocol switching
value.

of the modified pct in our virtual test network. However,
p turned out to be slightly higher (0.53) in a real network
environment, where protocols occur, which do not belong
to the PC, and therefore result in few additional protocol
switches.

In our test setting we sent PC data using different bitrates
and monitored the correctness of the received packet order at
the receiver’s side. Using this method, we were able to find
out the maximum bitrate able to work error-free dependent
on the delay introduced by the active warden. Figure 6 shows
the results in comparison to our calculation of B (formula
1). The differences between B and our recorded values are
small. We evaluated both, an active warden with a constant
delay d as well as an active warden with a randomized delay
in the range [0, d[.

An active warden with a constant delay value d = 2.1 s
(T = 0.005) reduces the bitrate limit required for a success-
ful transmission of data to 1 bit/s. If d = 1.0 s, the bitrate
limit is reduced to a maximum of 2.088 bit/s.

If we apply a randomized delay, the results are better than
in case of a constant delay. To reduce the bitrate to 1 bit/s
we only needed to apply a max. delay of d = 1 s. A max.
delay of d = 2 s reduces the PC’s bitrate to 0.65 bit/s.
The higher efficiency of a randomized delay comes due to
the circumstance, that when a packet is delayed and the
following packet is delayed as well, the second packet can be
forwarded earlier than the first packet and thus, jumbles the
packet sequence. If both packets are delayed with a constant
time, a later delayed packet cannot overrun a previously
delayed packet. Figure 7 visualizes both delay differences.

Comparing both results as shown in Figure 6, we identi-
fied the randomized delay to provide a better efficiency than

Figure 7. Output of two delayed packets for a constant and a randomized
delay.

the constant delay.
Since PC and PHCC can both be seen as covert storage

channels, the interesting aspect was to test PHCC situations,
which are not exactly the same as for PCs. We therefore ran
two experiments:
In the first experiment, phcct was used to transfer data with
its capability to re-sort jumbled packet sequences using its
internal micro protocol. The results showed, that phcct was
indeed capable of re-sorting test traffic for 10KByte and
100kByte payload transfers (each sent 10 times through the
active warden).
For the second experiment, we modified phcct in a way that
the re-sorting capability of the internal control protocol was
turned off. Since phcct is capable of transferring b = 792
bits per packet, the applied delays are less efficient than with
a smaller b (as it is given for PCs). However, no transfer
without errors was possible (with and without the active
warden), if phcct was ran and transferred more than 1KByte
(11 packets) of payload. Thus, high bitrate transmissions
– as done by phcct – without a re-sorting capability are
practically not feasible for PHCCs.

V. DISCUSSION

After the concept, implementation and the measured
results of the active warden were presented, this Section
aims on discussing practical aspects of the active warden
and improvements for covert channels to counter the active
warden.

A. Practical Aspects

A goal of the presented active warden approach is to
design the system for a practical use. The requirement for
only small delays is – even if a user’s initial request to
a website will be delayed – an acceptable limitation for
legitimate traffic in high-security environments since delays
of only around 2s can reduce the useful bitrate of PCs to
a maximum of 1 bit/s. For PHCC, the value can differ if
the channel provides high values for b. However, to achieve
the goal of practical usefulness, it is necessary to implement
additional functionality because of the following reasons:
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DNS requests: Typically, a user sends DNS requests to
a DNS server and, after receiving a response, connects to a
system using another protocol. It is required to take care of
this typical effect (and similar effects such as using HTTPS
right after a user clicked on a link of a HTTP-based website).
Protocol switches occur in both cases (DNS→HTTP and
HTTP→HTTPS, respectively). The DNS server and the
system a user connects to (usually a web server) will in
almost all cases have different addresses, thus it is easy
to address this problem if the active warden distinguishes
destination hosts. In Section VI, we present an approach
based on formal grammar to address this problem.

Different protocols on a single host: However, situations
are thinkable in which a user is connected to one host using
two different protocols, e.g., to an SMTP server and an
IMAP server hosted on the same system. In such cases,
whitelisting (e.g., defining trusted hosts) can reduce this
problem. This problem is also addressed in Section VI.

Multiple senders: In an enterprise network, there are
usually a number of different computers with Internet access.
If the active warden is located on the uplink, it will notice
many protocol switches since different systems use different
protocols to achieve different tasks. The active warden
should distinguish source addresses to solve this problem.
Therefore, it is also necessary to distinguish source addresses
in the active warden to overcome this problem.

Some companies run a network address translation (NAT)
service within their network. These systems would appear as
a single system to the active warden although the systems
as well as the active warden are located inside the company
network. Thus, the NAT’ed systems would face delays. A
whitelisting is no sufficient solution since these address
translated systems are required to be protected from data
leakage too. A possible remedy for that problem would be
to use remote physical device fingerprinting [46] to count
the number of NAT’ed systems and apply smaller delays per
packet switch if the number of hosts behind NAT increases
(and vice versa).

Redundancy: As all normalizer and firewall-like systems,
our prototype of an active warden can result in a single
point of failure if not operated on a redundant installa-
tion. Modifications of existing redundancy protocols (e.g.,
the common address redundancy protocol, CARP) might
be used to solve this problem. However, as any firewall-
like system, the active warden introduces side-effects, i.e.,
delays, into network traffic.

End-User Limitation: As explained, the effect for end-
users is low if the active warden is used.

While an extensive end-user study was not part of this
work, we measured different HTTP request-response times
for 10MByte downloads over the active warden. The stan-
dard download time in our network was 0.41-0.57s. After we
installed the active warden, we ran a HTTP download as well
as a 0.25 bit/s PC to simulate a number of protocol switches

as they occur for modern websites (multiple DNS requests
for a whole site are normal since they can include script
sources from other domains). This increased the download
time to 0.43-3s. We observed that the basic limitation for
connections happens in the establishment phase where a new
protocol (HTTP over TCP) occurred. In the context of the
4s-rule for website rendering [47], we can assume that our
active warden is valuable for practical use-cases.

To summarize, all mentioned problems (except the net-
work address translation) are solvable by adding the men-
tioned simple features. The configurable delay parameter d
provides administrators a way to adjust the efficiency of
the active warden to their requirements. Since only protocol
switching packets are affected by the active warden, most of
a network’s traffic is not affected, i.e., download rates and
upload rates will not decrease notably.

B. Covert Channel Improvements

While we already discussed improved encoding tech-
niques for both, PC and PHCC, in Section III-B, this Section
will highlight architectural means, which can be used by
both channel types to bypass the active warden. We will
also discuss the subject of covert channel-internal control
protocols for PHCC.

Multiple Covert Channel Senders: While the previously
mentioned approach of distinguishing source addresses is
a requirement for the practical application of the active
warden, a distributed covert channel sender can take ad-
vantage of it: If the covert channel sender consists of
multiple inhouse systems, each associated with a single
network protocol, these systems can send PC/PHCC data to a
destination host outside of the enterprise network through the
active warden without causing protocol switches. Therefore,
a coordination of the distributed sender hosts is necessary
but can be achieved by introducing a single coordinator host
connected to the actual PC/PHCC senders. However, due
to the presence of the active warden, the covert channel
sender is forced to coordinate its distributed transfer and
the command and control traffic between the covert channel
sender hosts and the covert channel coordinator system are
required to be hidden as well, i.e., will raise the chance of
a detection.

A similar approach is a Covert Channels with Multiple
Receivers: If one covert channel host sends packets to
different covert channel receivers and each covert channel
receiver is associated with only a single protocol, no protocol
switches between a single sender and a single destination
occur (since each path is only used for one protocol) and no
bitrate is limited in a direct way but in an indirect way: If the
covert channel receiver is forced to be a distributed system
(i.e., a covert channel-based botnet/zombie network), it has
to implement a distributed coordination mechanism (sorting
packets and extracting all hidden information on a single
system that finally computes the whole hidden message). If
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the receiver-side network is monitored as well, the coordi-
nation itself must be covered too, and thus can probably be
detected or at least raise attention. Also, the bitrate is limited
since multiple receivers can receive messages via network
access points with different performance and the network
packets for the coordination can differ in their timings, too.
Therefore, the sender must introduce pause intervals (which
limit the bitrate) between new packets to prevent a jumbled
result at the receiver.

Improved Control Protocols: PHCCs with internal con-
trol protocols can – if a sequence number is present – re-
sort jumbled packet sequences at the receiver side and thus,
can make the active warden inefficient even if delays are
introduced. However, applied delays can cause the active
warden to report abnormal protocol switching traffic and
it would be useful, if the size of PHCC-internal control
protocols could can be shrinked to prevent such attention
raising behavior.

Therefore, we developed a technique called status updates
[48]. The concept of status updates is to only transfer a
header component to the receiver, if the last status of the
header component changes. For instance, imagine a PHCC
between a system A and C via a proxy B, i.e., A→ B →
C. Therefore, A configures the covert channel proxy B to
forward data to C via sending a status update that defines the
forwarding destination C. All following packets received by
B from A will be forwarded to C and A is not required to
define the covert payload’s destination C again. However,
A can send a new status update for the destination to B
to, for instance, send all following traffic to D (instead of
sending it to the previously configured destination C). Status
updates work for all status-based header components (e.g.,
also for source addresses or fields to indicate the start/end
of a transaction) and can therefore decrease header sizes.

We combined our status update approach in [48] with dy-
namic routing for covert channel overlays. If a PHCC sender
can measure a delay applied on protocol switches between
itself and the PHCC receiver by ping’ing the receiving peer
with and without causing a protocol switch, it can determine
the possible presence of an active warden. In such a case,
the PHCC sender could try to find an alternative routing path
that does not face delays on protocol switches. Afterwards,
the PHCC can even be transformed into a PC since no delay
is applied and no packet jumbling will occur. To achieve
this goal, we developed the Smart Covert Channel Tool –
a dynamic routing middleware capable of utilizing various
covert channel technologies, which can include PCs, but
other covert channel techniques, such as network timing
channels and network storage channels, as well.

VI. IMPROVEMENT PROPOSAL 1: APPLYING FORMAL
GRAMMAR TO INCREASE PRACTICAL USAGE

As mentioned earlier, our active warden must comprise
an additional means to handle selected practical issues. We

therefore propose a means based on formal grammar that
addresses the following previously discussed problems:

1) The problem of delaying legitime protocol switches
(e.g., DNS → HTTP),

2) the problem of host-related protocol switches (e.g., a
client downloads from a web-server while sending a
large e-mail to the SMTP server),

3) the problem of running multiple services on a single
host (e.g., SMTP and IMAP service on the same
machine).

Formal grammar has previously been applied in the con-
text of computer security. For instance, Gorodetski et al. used
formal grammar for attack modelling in [49] and Trinius and
Freiling realized SPAM filters with context-free grammars
[50].

A formal grammar G = (V,Σ, P, S) comprises the set V
of non-terminals, the set Σ of terminal symbols, the set P
of productions and the starting symbol S ∈ V [49].

Our formal grammar-based approach is based on the idea
of whitelisting, i.e., we define the allowed protocol switching
behavior within in the context of a company’s network
within our formal grammar and afterwards test, whether the
network’s actual behavior is conform to the rules of the
grammar. If the protocol switching behavior is conform, the
active warden does not apply a delay, otherwise it will delay
packets.

Therefore, we first define the allowed network protocols
as terminal symbols px where x is the protocol, e.g.,
Σ1 = {pdns, phttp, phttps, psmtp, pimap}. Afterwards, we
define additional terminal symbols for the servers sy in our
network where y is the address of the server (it can be an IP
or a hostname, e.g., Σ2 = {smail, sname, sweb}). Both sets
form the set of terminal symbols Σ = Σ1 ∪ Σ2.

In the next step, we define the production rules in P . We
define productions, which are built in the form <server>
<protocol>, e.g., smailpsmtp, which can comprise allowed
rules of the utilized grammar type (e.g., context-free or
regular).

The following example grammar allows

1) the use of SMTP and HTTP (both also after DNS),
and

2) to switch from HTTP to HTTPS and vice versa,
i.e., we support HTTP-based websites with HTTPS
links/content (and vice versa),

3) as well as to switch between SMTP and IMAP to allow
sending and receiving e-mails at the same time;

4) to run different services on the same machine (here,
the SMTP and IMAP services are located on the same
machine smail);

5) the simultanous use of e-mail, DNS and web access,
since W2 allows the production M2 and since M2

allows the production W2.
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Figure 8. The integration of grammar productions and terminal symbols
in the active warden.

V = {S,D,W1,W2,M1,M2} (3)
P = {S → D(W1|M1)|W1|M1 (4)

D → snamepdns (5)
W1 → sweb(phttp|phttps)W2 (6)
W2 → DW1|W1|M2|ε (7)
M1 → smail(psmtp|pimap)M2 (8)
M2 → DM1|M1|W2|ε} (9)

If a new packet arrives at the active warden, the active
warden tries to find a production rule that fits the protocol
sequence – either by starting a production from scratch or
by continuing an existing one – in other words, the active
warden tries to find a suitable production to allow a direct
forwarding. Figure 8 visualizes this concept.

For instance, if a DNS packet was received (e.g., identified
by the DNS port or by advanced protocol identifying tests
like [51]), it is not delayed because a production rule (S →
D(W1|M1)) allows the DNS packet. Afterwards, an SMTP
packet arrives, which is also allowed by the production rules
(S → D →M1).

If multiple packets of the same protocol (e.g., many
SMTP packets for sending a larger e-mail or multiple HTTP
packets from a file download) occur, they are not delayed
because no protocol switch is taking place. Thus, non-
protocol switching rules are not required, which ensures
small grammar productions.

As an additional means to keep grammars as small as
possible, we propose to implement layer-based grammars
for the application of rules specific to the network layer
of the TCP/IP model. Low-level protocol switching covert
channels are not considered a threat in that case because
they are not available for routing and low-level frames will
not directly pass the active warden. For instance, an ARP
request need not be modelled in the grammar nor must it be

handled by the active warden since the active warden will
not forward ARP requests (as long as it does not explicitly
act as an ARP proxy).

VII. IMPROVEMENT PROPOSAL 2: DETECTION-CAPABLE
ACTIVE WARDEN TO COUNTER PCS

In recent work [35], we evaluated the detectability of
protocol channels. We presented two algorithms for a PC
detection. The first algorithm uses a static formula for a
traffic detection, the other algorithm uses machine learning
based on the C4.5 algorithm to build a decision tree and
provides better results than the first algorithm and shall be
discussed in this Section.

The C4.5 algorithm requires a traffic recording of at least
a few thousand packets (in our tests, we used 5000 packets)
and thus, only existing protocol channels that already trans-
ferred information can be detected and the continuing covert
channel transmission can be interrupted (e.g., blocked by a
firewall or delayed by the active warden).

For the detection of protocol channels, we use the change
rate R that reflects how frequently protocol switches for
a given sender occur (C is the total number of protocol
switches and P the total number of packets of a traffic
recording).

R =
C

P
(10)

A second parameter introduced is the average time be-
tween protocol switches D (Ti is the time of a protocol
switch i).

D =

∑
i (Ti+1 − Ti)

C
(11)

We observed, that protocol channels are linked to higher
R and/or smaller D values than normal traffic [35].

Since our technique provides an accuracy of 98-99% for
PCs with a bitrate of 4 bits/s or higher, the decision tree-
approach can be considered useful in practice if used in
conjunction with the active warden. Therefore, the active
warden would act as described but would stop applying a
delay (or would decrease the applied delay) on traffic that
comprises no PC.

As mentioned, the machine learning-based detection ap-
proach requires a traffic recording. The active warden must
therefore record the traffic on the fly and would only
apply delays if enough packets were recorded and if the
traffic got classified as being covert channel traffic (optimal
results require n = 5000 packets). Thus, the active-warden’s
detection capability would not be usable for the first n
packets.

Our problem of requiring enough traffic data before being
able to act as required is similar to another kind of active
warden: the traffic normalizer. Traffic normalizers face a so-
called cold start problem [7]: If a traffic normalizer boot-
straps, it receives packets of already existing connections and
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does not know any details of previously sent packets (e.g.,
whether a received packet belongs to an actually established
connection or not) and cannot apply all normalization rules
without causing negative effects on the traffic.

However, after a first traffic recording of n packets got
classified, the active warden must continue recording traffic
in a queue. The queue should contain n = 5000 packets at
all times to provide optimal detection results. Therefore, the
oldest packet is removed when a new packet is added to the
queue. A queue also prevents continuously growing buffers
that decrease the active warden’s performance over the time.

Since a traffic classification is time-consuming and the
performance of the active warden must be ensured, it is
not recommendable to classify the traffic recording for each
received packet. Instead, the number of packets < n before
a new C4.5 classification is applied should be adjusted to the
throughput of the links (e.g., every 1000 or 2500 packets).

The active warden can either stop applying delays on
traffic if a traffic was classified as not being a covert channel,
or it can decrease the applied delay. On the other hand, it
can apply the delay (or increase the delay) if a traffic was
classified as being covert channel traffic.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present the first active warden designed
to counter both types of protocol switching covert chan-
nels: protocol channels (PCs) as well as protocol hopping
covert channels (PHCCs). We limit the useful bitrate of
these covert channels by disturbing the protocol switches
through synthetically introduced delays. We implemented
an active warden with both constant and randomized delay,
based on netfilter/iptables. The active warden is suitable
for a practical use but can still result in side-effects on
regular traffic. Therefore, we proposed to combine the active
warden with a detection functionality for protocol channels
and additionally, to apply whitelisting based on a formal
grammar to prevent that delays are applied to legitimate
network traffic.

Future work will include to find solutions for the problem
of network address translation (NAT) inside a protected
network as well as to find solutions for effects of large
network environments where load balancing and redundancy
protocols are required; the presented prototype was not
designed for such environments. Additionally, research must
be done to provide an exact bitrate controlling for PHCCs
using internal sequence numbers since these channels can re-
sort jumbled packet sequences caused by the active warden.
We do not expect our approach to be easily modifiable to
counter such advanced protocol hopping covert channels.
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