
An Holistic Approach to Public/Private–Key Based Security
in Locator/Identifier–Split Architectures

Oliver Hanka
Technische Universität München

Institute of Communication Networks
80333 Munich, Germany

oliver.hanka@tum.de

Wolfgang Fritz
Leibniz Supercomputing Centre

85748 Garching, Germany
wolfgang.fritz@lrz.de

Abstract—Network security has become an essential business
requirement over the past few years. As this demand will
increase even more in the future, researchers agree that security
must be a key element for any novel Next Generation Internet
architecture. Contrary to today’s add–on approach to security,
the mechanisms must be anchored in the overall architecture
and should be a major concern already during the design
phase. In this article we present an approach based on the
private/public–key principle for almost any locator/identifier–
split architecture. We suggest to extend the mapping system to
also serve as public–key infrastructure and recommend to use
smart cards for the client side key management.

Keywords-Public–Key Infrastructure, Locator/Identifier–
Split, Smart Cards, Asymmetric Cryptography, Next Gener-
ation Internet, HiiMap

I. INTRODUCTION

Today’s Internet architecture faces some well-known lim-
itations and many ongoing research activities exist to define
the so called Next Generation Internet (NGI). For example,
there is currently only one address representing differ-
ent aspects—the IP address stands both for the particular
host we want to contact and for the topological location,
where it can be reached. That’s why many clean–slate
approaches towards an NGI architecture favor a so called
locator/identifier–split [1][2][3][4][5][6]. Furthermore, as the
Internet evolved during the years, many new aspects had
to be considered, i.e., how to communicate in a secure
way? Many small and different solutions have been applied
to the architecture to answer this question. Rather than
using these numerous add-ons, it is agreed that security
needs to be an integral part in future concepts, providing an
holistic approach to guarantee secure communication. This is
because the Internet has transformed from a communication
means to transfer files and messages between some few
nodes to the basis of today’s economy with billions of
participants.

Like Moskowitz et al. [4], for example, many have sug-
gested linking the identifier with a public–key in some way.
This has the benefit that each communication partner can be
authenticated based on the public/private–key principle by

Diffie et al. [7]. Additionally, it can be used to exchange a
symmetric secret for stream encryption.

Moskowitz et al. suggest hashing the public–key and
using it as the identifier of that node. This, however, raises
some problems as described in [2]. For example, it it
easy to find a random private–key, public–key, identifier
triple and furthermore, the public–key can not be exchanged
while keeping the identifier. Therefore, we propose a loose
coupling between the public–key and the identifier [2]. For
that loose coupling, the relation between a certain key and
an identifier is stored in the mapping system.

In this article we introduce a way to use a mapping system
of an locator/identifier–split architecture as a public–key in-
frastructure. One very important aspect of the private/public–
key principle is the integrity of the public–key. Therefore, we
focus on the retrieval of the public–key from the mapping
system and discuss how the user can verify the integrity
of it. Additionally, we describe the key management on
the client side supported by smart cards. We detail the
initial bootstrap process and discuss the mechanisms for
an encrypted communication. We will also consider client
devices with low computational power, like sensors, as they
already play an important role today that will even more
increase in the future.

The remainder of this article is structured as follows: Sec-
tion II discusses related work like the Host Identity Protocol,
some key features of UMTS/GSM regarding security and
basics of a public–key infrastructure. In Section III, we give
a brief overview of HiiMap which we use as an example
architecture throughout the rest of this article. Afterwards in
Section IV we detail our approach to integrate the public–
key infrastructure into the mapping system. The smart card
based client key management is outline in Section V. Before
we conclude our work in Section VII, we will evaluate the
concept in Section VI.

II. RELATED WORK

In the following, we will first give a brief introduction
of the so called locator/identifier–split principle and discuss
one example architecture (Host Identity Protocol (HIP)) that

135

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is based on it. Afterwards, some key functionalities of the
Universal Mobile Telecommunications System’s (UMTS’)
security mechanisms are described, as some approaches are
similar to the ones used in our concept (see Section V).
Finally, we outline the key concepts of today’s Public Key
Infrastructure (PKI).

A. Locator/identifier-split

In today’s Internet, the IP–address represents in fact two
different meanings: First, it is of course an identifier of the
particular node we want to contact (who?). Secondly, it also
answers the question how this node can be reached (where?).
Many Next Generation Internet (NGI) approaches propose
to use a so called locator/identifier–split, in order to answer
only one question at a time. In these concepts, there is the
identifier, that stands for the endpoint we want to contact.
In contrast, the locator answers the question how this can
be done. Therefore, we have two different addresses, one
for each meaning. By providing these, the locator/identifier–
split solves several issues concerning mobility, routing table
growth and scalability. Additionally, it leaves some space to
integrate security mechanisms into the network layer.

B. Host Identity Protocol

HIP [4] uses the Host Identity Tag (HIT) as identifier. The
HIT either represents the 128 bit long public key or—in case
of greater key length—the hash of it. In that way, any node
can verify the public key of its peer by only knowing the
identifier. Therefore, no PKI is required. During HIP base
exchange, the public keys and a secret are exchanged [8].

As already stated in the introduction, this approach has
a major security vulnerability. An attacker could start to
generate many private/public–key pairs and hash the public
key into a HIT. In a next step, he could query the mapping
system and check whether the HIT is already reserved. In
case he finds an already reserved HIT, the attacker holds
a valid private key to that HIT. This does not enable an
attacker to find a specific private key for a certain HIT, but
allows for random attacks and could become interesting for
Botnets, for example.

C. UMTS/GSM

The Global System for Mobile Communications (GSM)
has some major drawbacks as described in [9][10]. As it
was not initially designed for Internet purposes, it faces
many new challenges. Most of them are eliminated in pure
UMTS environments [11][12]. Nevertheless, some problems
still exist when roaming from UMTS to GSM and vice versa
is supported [13].

The UMTS architecture also uses a smart card based
principle for authenticating its clients—the so called Au-
thentication and Key Agreement (AKA) [13]. In addition to
authentication, it provides data encryption (with cipher key
CK) as well as integrity protection (with integrity key IK).

Similar to parts of our concept, UMTS is therefore able to
prove the integrity of received messages. In contrary, UMTS
security functions only protect the last security command
mode message used in AKA [13] and all subsequent ones,
whereas we are able to provide integrity protection and en-
cryption from the beginning. Mechanisms of delivering and
activating smart cards (sending card, Personal Identification
Number (PIN) and Personal Unblocking Key (PUK) per mail
and activating it with the appropriate PIN) is also realized
analogously in UMTS systems.

D. Public Key Infrastructure

Today, the exchange of public–keys is done via a public
key infrastructure e.g., defined by the ITU-T standard X.509
[14][15]. All approaches have in common that a particular
user or node publishes its public key on a key server of some
sort from which it can be downloaded by other peers. After
that, encrypted and signed messages can be exchanged. This,
of course, requires that each participating node has to trust
the key server. If a key pair ever gets lost, it can be revoked
by including it in the so–called Certificate Revocation List
(CRL), where all invalid keys and certificates are kept [15].

In [16] Ellison et al. argue that today’s public key in-
frastructure based on certificate authorities (CA) imposes
ten major risks. They describe, for example, the problematic
trust background of self-proclaimed authorities and discuss
the weakest link issue of the CA structure. Furthermore
they raise the question how the certificate holder identifies
himself against the CA. They state that several procedures
do exist and that there are no consistencies over all CAs.

III. HIIMAP ARCHITECTURE

The HiiMap Next Generation Internet architecture [2] is
based on the locator/identifier–split principle and provides a
two–tier hierarchical mapping system. In the following, we
will give a brief overview of the mapping system, as we will
use HiiMap as example architecture.

In HiiMap, the mapping system is divided into so called
regions as illustrated in Figure 1. Each region is responsible
for all its nodes and has to provide the mapping for them.
The region remains responsible, even if the node temporarily
roams to another region. To identify a responsible region
(RR) for a node, an additional 8 bit regional prefix (RP) to
the identifier is provided. Within the HiiMap architecture,
the identifier is assigned for life time and not subject to
change as long as the owner doesn’t request a new one. The
regional prefix, however, is allowed to change whenever a
node permanently migrates to another region. In HiiMap the
identifier is called unique identifier (UID). The identifier and
regional prefix is depicted in Figure 2.

Whenever a node wants to contact another node, it needs
to query the RR of that node for the actual locator (which
is called local temporary address or LTA in HiiMap).
Therefore, it needs to know the regional prefix for that

136

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Region 2Region 1

Provider A

Provider B
Provider C Provider D

Core

Global Authority

Server SUser A User B

Core Network

Regional Network

Access Network

Figure 1. Example HiiMap topology

RP 128 bit identifier

Assigned for lifetimeAllowed to change
(change expected to be rare)

Figure 2. Identifier with regional prefix

region. In case the regional prefix hasn’t been cached from
previous communications, there are two ways to obtain it.
The first possibility is together with the identifier itself. In
case the identifier was learned from a link on a website or
by means of a domain name system, the regional prefix can
be provided along with the identifier. The second and fail
proof possibility is to query the global authority. The global
authority (GA) holds all 〈RP, identifier〉 tuples and can
be queried, in case the regional prefix can’t be learned by
any other means.

As mentioned earlier, the mapping system is partitioned
into multiple regions. For HiiMap, we propose to base the
partitioning on countries, whereby each country forms its
own region. This concept has two important advantages.
Firstly, most countries show a relatively stable state. It rarely
occurs that a country institutes or vanishes. This means
there is a very seldom need to adjust the regional prefix.
The second benefit of a partitioning based on countries is
the common legal system. Each country has its own laws
and ways of law enforcement. Therefore, a region based on
more than one country has to deal with different political
and legal systems. Smaller countries with similar laws, of

course, can form a single region to lower the administrative
overhead. In this way it is easier to build trust relationships
between providers and handle infringements of contracts by
the local law enforcement. Furthermore, we propose that the
mapping system in each region is operated by a non–profit
organization.

Regional DHT

Load Balancer
UID: ::1

Figure 3. Mapping system of one region

Figure 3 illustrates the mapping architecture within one
region. To be able to cope with the huge load of the mapping
system, one–hop distributed hash tables (DHT) are used.
In that way, it is no problem to meet the storage capacity
requirements and the servers within the DHT are able
to handle frequent locator updates and mapping requests.
To provide a well–known address and fairly distribute the
request load over the DHT, a load balancer is used. The
address for each region is the same (e.g. region number::1)
and clients do not need any additional information to access
the mapping service of any region.

IV. PUBLIC KEY INFRASTRUCTURE

In this section, we describe the integration of the public
key infrastructure into the HiiMap mapping system.

A. PKI and the mapping

In today’s Internet, the public–key infrastructure is sepa-
rated from all network services. This means that additional
resources for the PKI must be provided despite all the net-
work elements already in place for other functionality (e.g.
DNS server). Contrary to this, we propose to integrate the
PKI into the mapping system for the HiiMap architecture.
This has the benefit that resources can be shared between
functionalities and maintenance can be kept significantly
lower compared to operating separate services.

Each mapping entry consist of the identifier as the primary
key and a set of locators by which the node currently can
be reached (see section III). Further, a timestamp of the last

137

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

update and a flag indicating whether the location update was
cryptographically signed by the node or not is stored (we
will come back to this issue later on).

To combine the PKI with the mapping system, only the
public–key of each node must be additionally stored for each
mapping entry. This means, that no additional protocol or
infrastructure must be provided for querying and storing
the public keys. Because the public–key is a very static
value and not expected to change frequently, the additional
burden for the mapping system is limited and the public–
key databases can be optimized for frequent read requests—
contrary to frequent read and write requests for the locators.

In comparison to today’s public–key infrastructure, it
is also not necessary to provide additional lists for key
revocation. This is implicitly realized by the loose identifier
- public–key binding. Whenever a public–key for a certain
identifier changes, the old public–key implicitly becomes
invalid.

B. Trusting the mapping

By storing the public–key at only one location (region)
in the mapping system, however, the user heavily depends
on the trustworthiness of that particular location. In case
the mapping service provider collaborates with an attacker,
it could send a wrong or manipulated public–key to the
client. Therefore, any security functionality based on the
public/private–key principle would be rendered useless.
Even worse, the client considers the connection to be secure
while in fact talking directly to the attacker.

Therefore, we propose to distribute several copies of the
public–key to various independent locations (regions) in the
mapping system. Figure 4 illustrates the basic principal.

Region 1
Region 2

Region 3

PowerBook G4

Get Locator +
Pub Key
for ID xyz

Get Pub Key
for ID xyz

PK from R1 PK from R2 PK from R3= = =

Figure 4. The public key is stored at multiple regions

The client first queries the responsible region (RR) of the
identifier it wants to communicate with. As response, the
RR replies with the locator and public–key stored for that
identifier. In a next step, the client queries additional regions

for the public–key. We will explain which regions to query in
the next section. After receiving all requested public–keys,
the client compares these. In case they do match, it is very
likely that the public–key is the correct one. Contrary, if they
differ, the client can either stop the communication setup
or decide, which is the correct key based on the majority
principle.

There is one special case, however. If the public–key from
the RR differs from the other ones, then the retrieved locator
must be considered incorrect as well. This is because having
identified the RR as accessory or even the attacker itself, it
is very likely that the locator has been modified as well and
is now pointing directly towards the attacker.

A solution to this problem would be to also replicate the
locator over several other regions. This, however, is not a
good idea performance wise. The locator is the entry in
the mapping system, which will be updated and changed
frequently. In case several regions hold a copy of it, these
changes have to be carried out to all of them. The public–
key on the other hand is expected to change very rarely and
thus causing very little update traffic.

C. Determining the storage location

Having copies of the public–key distributed over several
locations in the mapping system, one questions remains: In
which way does the client learn about the storage location
of the additional copies.

Storing the list of the additional locations at the RR does
not solve the problem. In case the RR is the attacker, it
can simply manipulate this list as well and distribute the
malicious key to collaborating regions. Therefore, the client
must learn the information about the storage locations in
another way.

For the following proposal, we assume that less than 256
regions exist and the key is distributed to two additional
regions. After having received the locator and public key
from the RR, the client hashes the identifier to an 16 bit
value. The 16 bit value is split into two halves (8 bit each).
Each 8 bit value represents the storage location of one of
the public key copies. We will call it key storage address
space (KSA) from now on. Since the 8 bit address space
for the regions is not completely full, a mapping directive is
required. This mapping directive can be downloaded from
the global authority. It is sufficient to do this very seldom,
as the directive is expected to change very rarely. For each
value in the KSA, the mapping directive specifies a region,
where the key is stored. This means, that a single region can
be responsible for several KSA values. In that way, the load
can be fairly distributed over all regions depending on their
size. Figure 5 illustrates the process.

Should the hashing and mapping to regions result in two
copies of a key being stored at the same region, the first
copy is stored at this region and the second copy at the
region with the next higher region number.

138

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Identifier

16bit Hash

8bit 8bit

hash(identifier)

split(hash)

47
6 3

35
4 2
3 1
2 1
1 1

KSA Region

Map to region

Request key
from regions

Figure 5. Retrieving the additional key storage locations

V. USER KEY MANAGEMENT

The user key management in our concept is based on
cryptographic smart cards (herein after referred to as smart
card). For the sake of simplicity, we assume that the smart
card can’t be compromised on a physical level and that it is
protected by the well–known PIN/PUK mechanism. As of
today, this mechanism is considered to be secure enough to
protect any smart card from unauthorized access.

As with the previous section, the approach is not bound to
a specific architecture. We again, however, will use HiiMap
as an example architecture to illustrate the functionality.
Any other concept, which provides a single point of trust
(SPT) can be used as underlying architecture. As with
HiiMap, the SPT should be independent—politically and
organizationally—to reflect all participants’ needs and inter-
ests in the same way. It will take responsibility considering
key management issues and authentication of particular
nodes later on. SPT, however, doesn’t mean that it has to
be one physical component with respect to reliability. Fur-
thermore, management tasks can be delegated to subsequent
authorities. In HiiMap the global authority (GA) acts like a
SPT and can delegate tasks to the regional authorities (RA).

In this section we will discuss the topics of authentication
methods, initial bootstrap, key revocation and how devices
with low computational power can participate.

A. Peer communication

The authentication and communication concept differen-
tiates between the used hardware components (notebook,
PDA, mobile phone, etc.) and access authorization, which is
handled by the above mentioned smart card. Vendors only
have to provide an interface for this card in each of their
products. The assembly of these smart cards is done by
the single point of trust (SPT) respectively by another party
authorized and trusted by the SPT. They contain a master
key pair, the card-ID and, of course, the identifier address. In
HiiMap, this identifier is called UID (see section III). Before
the SPT can send the cards to authorized providers, it has to
save every public–key stored on them and the other entries
already mentioned in Section IV-A. The SPT furthermore
saves the appropriate card-ID and if the particular card is
already in use or not. Therefore, it always possesses all
relevant information. We have to remark that authorized
providers of course can keep a certain amount of smart cards
in stock so that they do not have to request every single card
each time they get a new customer.

Every time somebody buys a new device, he chooses a
provider. If he is in possession of such a smart card already,
he can either sign up for a new one (and meanwhile use
the existing card) or use the old one in the new device. It is
also possible to change the provider with every card request.
This modularity is an important advantage of smart cards
in comparison to fixed security modules as they provide
much more flexibility and do not involve manufacturers in
the network management process (assignment of identifiers,
etc).

If the user requests a new card, the provider then sends
smart card and PIN/PUK to the user, for example by mail.
If the user requests such a card for the first time, the trader
informs the particular provider directly at buying time to
minimize downtime. At the same time, the provider tells
the authorities (the SPT or its delegates) about the selling
of this card. They can then update their databases and know
that the particular card is in use from now on. Thus, the
authorities know which cards are in use and which aren’t
at any point in time. This makes it difficult for possible
attackers to use non–assigned card-IDs. Assigned IDs cannot
be compromised, because the attacker cannot prove the
possession of the private key, as we will see later on.

After the user has received the smart card, he can sign
on to the device by inserting the card and typing the correct
PIN. The security mechanisms can then be enabled and the
device is able to authorize itself to the network.

B. Bootstrap

The procedure of joining a network for the first time is
called bootstrap. If the particular user is not yet known to the
network and other users, there is no possibility to prove his
identity in general. In most cases of security mechanisms,
other peers have to trust this user once. After keys have been

139

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exchanged between participants, they can later on check the
identity with the corresponding key pairs. As this is a great
drawback (possible attackers could replace the keys with
their own), we will present a solution to this problem.

As mentioned above, the authentication procedure uses
a smart card for key storing and cryptographic functions.
The SPT (and its delegates—also called ”authorities” in the
following) is in possession of all public keys stored on these
cards and can connect them to the respective IDs (see section
V-A). This is the essential point of the bootstrap mechanism.
Imagine a node i joining the network where the associated
user has already enabled the smart card by entering the
correct PIN. As shown in Figure 6, the node first has to
send a location update request to the responsible authorities.
It contains the card ID of the smart card used, so that the
network can check whether or not the card is allowed to
participate in the network’s functionalities. This message
is already signed with its private key to prove integrity.
Therefore, the whole communication is integrity protected
from the beginning.

The authority can then lookup the node’s public key. If
the public key is not yet known to the authority, it has to
request it from the SPT. After that, the authority computes
a common secret Kir using node i’s public and its own
private key, similar to the Diffie-Hellman–procedure [7].
This secret Kir can also be computed by node i in the
same way (i also gets the public key of authority R from
the SPT). Therefore, the common secret Kir never has to
be exchanged between the two peers, which eliminates the
danger of being compromised. Furthermore, it is only used
once to encrypt data (part of message 2 in Figure 6). With
this message, the authority chooses a random session key
Kp and a rule to generate a modified common key K∗

ir. K∗
ir

can be calculated, for example, by shifting Kir, computing
the product Kir XOR itself or other methods. The authority
can then answer the location update request by sending this
message containing the rules for generating K∗

ir and the
security functions the authority is capable of (message 2 in
Figure 6). This information is encrypted using the random
session key Kp. Kp is encrypted with the common secret
Kir and sent inline in the packet (message 2 in Figure 6),
based on the principle used in SKIP [17]. Besides, Kir

is only used once to encrypt data. All other packets use
the modified version, which again minimizes the risk of
compromising Kir itself. The header information in this
and all other subsequent packets are sent in plain text. This
reduces complexity for network nodes, firewalls and so on.
A possible attacker possibly acquires part of the payload by
resolving the security functions by sending an own location
update request. However, this is not enough information to
decrypt the key. Afterwards, the authority sends another
packet to node i containing a random number nA, which
is again encrypted using Kp (and Kp with the modified
common secret K∗

ir), see message 3. Node i can extract the

chosen session key Kp by decrypting it with the common
secret Kir of message 2 and then the security functions
and rules for generating K∗

ir with Kp. After that, node
i can compute the modified common secret and therefore
decrypt the random number nA of message 3. Node i

Node I Authority

Location Update Request (card-ID)

calc Kir

set Kir
*
and Kp

calc Kir

(Kp, rules for Kir
*
, security functions)

(encrypted nA, Kp)

get Kp with Kir

and calc Kir
*

get Kp with Kir
*
,

extract nA,

choose nI
(Kp, encrypted nA*nI, security functions)

(encrypted nI, received security functions)

get Kp with Kir
*
,

get nA*nI,

calc nI

Location Update

Figure 6. Bootstrap Message Flow Chart

then also chooses a random number nI and calculates the
product nA ∗ nI . This product is sent back to the authority
together with i’s security functions. Both are again encrypted
using a random session key Kp, which can be the same
as above or vary depending on whether the key is valid
packet- or session-wide. Kp again is encrypted using the
modified common secret K∗

ir (message 4). The authority
can extract the particular information in the same way node
i did before and therefore calculate the chosen random
number nI . Afterwards, the authority can select the strongest
algorithms for creating new session keys Kp supported by
i and R. By sending back this random number in message
5 of Figure 6 both parties can be sure that the other part
is in possession of the right (modified) keys. Additionally,
the received security functions of node i are sent back to
prove they have not been manipulated. A modification of
all those messages would also mean that the signatures
become invalid as every message is not only encrypted, but
also signed to prove integrity. In a last step, the location
update request is accepted by the authority, which results in
publishing node i’s assigned locator address in the mapping
system, so that other nodes can resolve it from then on.
The user or node is then allowed to upload his own key
pair for further use, which has to be validated with the
old key pair again. Thereby, the peer has flexibility to use
own algorithms for creating the keys and the possibility to
influence the parameters, such as the key length. If keys
are changed later on, every party can signalize the wish to
update it with a special key update message. It contains the
new key validated with the old one. Bootstrap is completed
and node i can go on communicating with other peers.

Erroneous messages are ignored by the system and the

140

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user has to resend them. To avoid denial of service attacks by
exploiting this, the system only allows a maximum number
of requests and responses at a time, i.e., five requests within
ten seconds. After that, the system will not accept any more
messages of the particular node in a certain time. At any
time, the user has to be informed if encryption is disabled.
This can be done by the operating system, for example.

C. Dealing with network components

Cases may occur, where users are located behind a fire-
wall, proxy or similar network entities and are not directly
reachable. These non–end–to–end cases are considered as
well. A typical connection establishment for those cases
looks like the following:

First of all, the requesting peer contacts the firewall by
looking up the appropriate UID associated with a human
readable address as known from the Domain Name System
(DNS). The firewall redirects the connection request to the
particular node, i.e., according to load balancing rules and
also informs the requesting peer (see message 2 in Figure
7). Of course, UIDs have to be looked up by the firewall,
too. We call them RSLVreq (resolve request) and RSLVresp
(resolve response), but left them out in Figure 7 for the
sake of simplicity. After that, both nodes can request the

s_connect(service, port, mode)

s_connect_FWD(UIDnode_I, port)s_connect_FWD(UIDnode_J, port)

s_connect(service, port, secure)

s_connect_ACK(Kp, rules KIJ
*
, security func.)

s_connect_ACK(Kp, rules KIJ
*
, security func.)

Node I Node JFirewall

1

2

3

4

5

Figure 7. Passing firewalls (simplified)

needed information held by the SPT and start connecting
to each other (see messages 3 to 5 in Figure 7, where
some additional parameters for encryption and defining
the desired service are negotiated—detailed explanation of
single parameters see Section V-B). The firewall itself is
able to route the packets correctly as it stores the connection
data like in NAT–gateways. By using clear headers instead
of encrypted ones, every network node and therefore the
firewall is able to process all needed data. Both users can
decide about the connection mode on their own at any time,
e.g., encrypted or plain. Similar to the bootstrap process (see
Section V-B), keys can be updated anytime by sending a
key update request.

D. Disabling authentication

In some cases it may be necessary to connect even
devices without smart cards, as they are difficult to reach
physically, e.g., sensors, satellites, etc. Moreover, most of
the available sensor data is not crucial, so that there is no
drawback to operate them in plain text communication mode.
Additionally, not every single sensor needs to be connected
to the Internet, e.g., in cars it is sufficient if the board
computer is connected. Nevertheless, cases may occur in
which those devices have to be integrated without the chance
of attaching the smart card to them. The procedure then is as
follows: First of all, we assume a legal owner of this device,
let us say, a company operating a sensor. This owner requests
a smart card for the sensor in the described manner. After
that, he securely keeps the card somewhere and implements
the particular UID into the sensor’s firmware and also his
own UID. Concurrently, the owner connects to the network
using the sensor’s smart card and the appropriate PIN. After
the encrypted location update is completed successfully, he
then tells the network or alternatively the authorities that
the UID he is connecting from will disable authentication
mode in the future. This is stored in the database entry
called mode of last location update (see Section VI-B).
The network then and only then permits plain text location
updates from the particular UID. Thus, disabling security
functions is possible, but only on explicit inquiry. If the
UID ever wants to return to secure mode, this again has
to be done with the appropriate smart card and PIN and
can therefore only be realized after secure location updates.
After that, the owner keeps the card and PIN secret again.
In this way it can always be guaranteed that only the sensor
itself can disable encryption. To summarize, the procedure
is depicted in Figure 8.

Consequently, an attacker is not able to force plain text
communication. If the owner decides to sell the device, he
simply has to distribute the particular card to the new owner,
whereon he can handle communication modes on his own.
Requesting a new smart card for the sensor (with same
ID, of course) is also possible. This mechanism is another
great advantage of modular chips in comparison to fixed
ones as they easily enable such devices to join the network.
Every time such a sensor connects to the network, it sends
an unencrypted location update request to the responsible
authorities. The mode of the connection (secure or plain)
is indicated by special fields in the message’s header. The
authorities can then check, whether plain text location up-
dates are enabled for the particular node or not. After that,
the location update without authentication is granted and
the sensor can participate in the network’s functionalities.
We have to remark that such devices only get limited
access to resources as they have not been identified securely.
Furthermore, they have to keep plain text communication
enabled for security reasons (otherwise one could easily

141

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AuthoritySensor Owner

192864

672519

187238

Plaintext LU

allowed?

Plaintext Location Update Request

Location Update

Disable sec.

Figure 8. Location update with disabled security

upgrade to ”secure” mode and get access to critical content).
Every time a user requests the public key of another user

from the authorities, they also inform him about the last
kind of location update (secure or insecure). He can then
decide on his own whether he wants to continue connecting
to the desired node or not. This offers many possibilities for
user-defined security policies, as it is possible, e.g., to grant
access to e-business-products only to securely authorized
nodes, whereas insecurely authorized nodes only get access
to information material.

The concept of providing plain text authentication can
also be seen as fallback solution in case the whole system
becomes compromised in the future. Then it is sufficient to
switch all participants to plain text mode and provide an
overlay network that is responsible for security issues.

E. Key Revocation

The high modularity in this concept using smart cards
also implies a drawback: the card can easily be lost or even
stolen. This can be mitigated as the card itself is not usable
without the appropriate PIN assigned to the authorized user.
In our opinion, the chance for a possible attacker to get
the valid PIN in only three guesses is very small and thus
negligible. Besides, after that the card is disabled until
the correct PUK (personal unblocking key) is entered. The
PUK again may not be entered incorrectly more than ten
times. This behavior is known from today’s concepts and
is assumed to be secure enough. The smart card itself—as
in today’s ones—has to be protected against physical and
chemical manipulation such as side channel attacks, power
analysis, etching and so on (details see [18]). Baring these
things in mind, the physical theft of a smart card implies no
great security risk. Of course, there has to be some kind of
approach the user has to follow if his card is stolen or lost:

The user has to report the loss or theft immediately to
his responsible provider, i.e. by phone, who then disables
the card by denying the particular card-ID from joining the
network in the future. This can be done by the authorities
or delegated to the providers. The disabled card-IDs are

stored in order to detect future connections of the card and
eventually having the chance of locating it. The SPT then
also has to be informed as it now is in charge of producing
a new card containing the old identifier (as the identifier
shall not change), a new key pair and, of course, a new
card-ID. This step may take some time, as the card is not
already produced but has to be created on inquiry. After that,
the normal procedure takes place again: The SPT and the
responsible authorities get the public key and replace the old
one with it. The card/PIN pair is delivered to the provider
who then ships it to the desired customer. After that, the
user can proceed as normal.

The provider has to make sure that only the actual owner
of the card is allowed to report the loss or theft so that an
attack on disabling all cards by simply calling all providers is
not possible. This can be done by requesting some additional
information of the caller, for example street, postal code,
birth date etc. Even if the attacker is in possession of this
information, the risk of such an attack is highly improbable
as this causes much effort for the attacker and can not be
automated in an easy way.

Following this procedure, the device or the user is able
to request a new key pair without loosing his assigned
identifier. Other nodes in the network will probably not
even notice the change as they request the public key from
the authorities and do not cache the old public key for an
unlimited time.

VI. EVALUATION

The security mechanism proposed in this paper is very
flexible and neither bound to a specific algorithm nor ar-
chitecture. Only some already mentioned pre-requirements
must be met. For the analysis of the mechanism, however,
we need to assume some protocols and algorithms, which
are likely to be used. Please note that the mechanism can
also be applied to different proposals and is not limited to
the ones discussed in this section.

A. Algorithm

As already mentioned, we choose HiiMap as the under-
lying locator/identifier–split architecture where the Global
Authority (GA) acts as single point of trust. The GA can
delegate management and maintenance tasks to Regional
Authorities (RA), which are responsible for their region
respectively. Thus, without any security capabilities enabled,
the system already has to store these entries (UID, LTA and
Region Prefix).

The public/private–key principle requires an asymmetric
cryptographic algorithm. The probably best known one is
RSA by Rivest et al. [19]. RSA is widely used in electronic
commerce protocols, and is believed to be secure given
sufficiently long keys. While a key length of 1024 bit is
still assumed to be secure enough, a length of 2048 bit
is recommended (as of early 2010). A downside of the

142

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RSA algorithm, however, is its large memory footprint and
requirement towards the computational power of a device.

Another asymmetric algorithm, the ECC by Koblitz et
al. [20], can be found on some low power units like smart
cards and sensors. This is because ECC is less computational
power and memory consuming compared to RSA [21]. Also
the required key length is almost one magnitude smaller
while maintaining the same level of security. An 160 bit
ECC key, for example, is believed to be equal in terms of
cryptographic strength compared to a 1024 bit RSA key.

To provide a better overview and point out the flexibility
once again, we will calculate the resource requirements
for both, RSA and ECC. As you will see, replacing the
algorithm will result in a huge decrease of requirements. In
case of ECC, we choose a key length of 160 bit. We will
first do the calculation with the RSA algorithm and then
present the respective values for ECC.

B. Analyses

To calculate the overall overhead and storage require-
ments, we have to make some assumptions and declarations.
First of all, we have to choose an average key length for the
public–key. The initial key pairs stored on the smart cards
are all of the same size, but users can later change them and
influence these parameters. As in today’s Trusted Platform
Module (TPM) [22], which we consider to be safe enough,
RSA keys of 2048 bit are used, we will assume an average
public–key length of 2048 bit for the RSA study. In fact, this
is the entry which consumes most of the needed storage in
comparison to the rest. Increasing or decreasing this value
will have a strong impact on the overall storage capacities.
The next entry is the smart card’s actual allowed ID. With
this ID, the network can verify if the particular node is
allowed to join the network or if this card has been reported
as stolen or lost. The card-ID is only valid within the UID
range, therefore it is sufficient to reserve 32 bits for it. This
value is high enough to avoid guessing the next valid card ID
by attackers, as well as leaving sufficient space to replace the
card several times every day. The last entry in Table I (list of
disabled card IDs) is the opposite: it holds all card IDs that
have been disabled and are no longer allowed to connect.
In case of such an ID joining the network, the authorities
can trace the request and thereby locate the missing card.
Depending on the number n of disabled smart cards, the list
may increase.

Last but not least, there are two entries of four bit each:
On the one hand, the field UID assigned, which specifies if
the particular UID is already in use by a node or not, and on
the other hand, the entry mode of last location update. This
field gives information about whether the last location update
was encrypted or in plain text. It is sent with every public
key request so that the peer can decide on its own whether
or not it wants to continue connecting. Both fields could
have also been realized with only one bit, but by reserving

entry length
UID 128 bit
LTA 128 bit
RP 8 bit
public key 2048 bit
valid card ID 32 bit
mode of last location update 4 bit
UID assigned 4 bit
list of disabled card IDs n∗ 32 bit
Sum 2352 + n ∗ 32 bit

Table I
ENTRIES TO BE STORED (LIKE IN HIIMAP [2]) – RSA

three additional bits we get enough flexibility to adapt future
challenges, e.g., the connection modes can be split up in
more detail.

A summarizing overview of all necessary entries can be
found in Table I. Based on them we want to present a typical

parameter value
n 20
cards per human being 10
human beings on earth 6.7 ∗ 109

Table II
PARAMETERS USED (LIKE IN HIIMAP [2])

example to estimate the needed storage capacities in a future
NGI system. Therefore, we choose ten as the number of
smart cards per human being on earth (currently about 6.7∗
109). We assume an average invalid card–ID count of 20
per smart card. Putting all these parameters (see Table II)
together, we get a total requirement of 10∗6.7∗109∗(2352+
20 ∗ 32) bit = 2.00464 ∗ 1014 bit = 25.05 Terabyte. Even
in today’s architectures, this value is no major challenge.
Taking the computing power available in 10 to 15 years into
account, we are not talking about a huge burden compared
to the security benefits we are gaining. If the load can be
delegated to subsequent authorities like the RAs in HiiMap,
the burden is distributed over several nodes. This also applies
to bandwidth and other metrics so that the SPT itself ideally
is not involved in handling authorization requests unless the
delegates (RAs in HiiMap) can not resolve them on their
own. Thus, our concept demands no great resources and
therefore is suited for use in any kind of locator/identifier–
split architecture.

Having outlined in detail the requirements for an im-
plementation with RSA, we will now shortly present the
respective values in case of using ECC. Most of the values
presented in Table I do not change as they do not depend
on a specific algorithm. What in fact does change, is the
public–key, of course. This decreases from 2048 bit (RSA)
to 160 bit (ECC). So the overall sum decreases, too (see
Table III). The values presented in Table II do not change

143

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

entry length
UID 128 bit
LTA 128 bit
RP 8 bit
public key 160 bit
valid card ID 32 bit
mode of last location update 4 bit
UID assigned 4 bit
list of disabled card IDs n∗ 32 bit
Sum 464 + n ∗ 32 bit

Table III
ENTRIES TO BE STORED (LIKE IN HIIMAP [2]) – ECC

at all. If we calculate the sum again, we get an overall
storage requirement of 10 ∗ 6.7 ∗ 109 ∗ (464+20 ∗ 32) bit =
1.10∗1013 bit = 1.38 Terabyte. So the storage capacity can
be decreased by an order of more than ten.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

R
eq

ui
re

d
st

or
ag

e
[T

By
te

]

Number of IDs in billion

20 disabled cards RSA
10 disabled cards RSA
no disabled cards RSA

Figure 9. Storage requirement RSA

As already pointed out in section IV-A, we need to store
the public key not only at one, but at multiple locations.
For the overall storage calculation we have to reflect this
additional requirement as well. The total storage varies
depending on the number of used UIDs and the number
of disabled card IDs per UID. Figure 9 shows the storage
requirement using 2048 bit RSA keys and Figure 10 the
requirements with 160 bit ECC.

Concluding our computations, the concept does not con-
sume a huge amount of resources. No matter which al-
gorithm we choose, we are not facing a huge burden to
the architecture—even in today’s view. Nevertheless, by
decreasing the biggest factor, the public–key length, we can
decrease storage requirements drastically.

VII. CONCLUSION

Many security concepts for locator/identifier–split archi-
tectures bind the identifier to the public–key. Contrary to this
common approach, we suggested a loose coupling between

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60 70 80 90 100

R
eq

ui
re

d
st

or
ag

e
[T

By
te

]

Number of IDs in billion

20 disabled cards ECC
10 disabled cards ECC
no disabled cards ECC

Figure 10. Storage requirement ECC

the identifier and the public–key, allowing for exchangeabil-
ity of those two entities [2].

In this article, we presented a holistic approach to public
key management including key distribution, key revocation
and key storing. We covered the public–key infrastructure
aspect by extending the mapping system to also store a
public–key for each identifier. We introduced a mechanism
to trustfully retrieve keys from the mapping system without
being dependent on a single region of the mapping.

Furthermore, we discussed the client side key manage-
ment and suggested to use smart cards to store the private
and public–key. We described the initial bootstrap process,
detailed the communication setup and showed how devices
with very limited computational power can also participate
by disabling encryption.

The concept is not bound to a specific crypto algorithm
and is able to cope with varying key length. Therefore, the
architecture is very flexible and open to future improvements
or requirements. Although we explained the concept by
using the HiiMap architecture as example, the concept can
be applied to any locator/identifier–split architecture, which
provides a single point of trust and a mapping, which can
be divided into several administrative zones.

ACKNOWLEDGMENT

This work has been performed within the G-Lab project
and was funded by the Federal Ministry of Education and
Research of the Federal Republic of Germany (Project ID
01BK0807). The authors would also like to thank their
colleagues at the Leibniz Supercomputing Centre of the
Bavarian Academy of Sciences and Humanities (see http://
www.lrz.de/) for helpful discussions and valuable comments
about this paper. The authors alone are responsible for the
content of the paper.

144

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] W. Fritz and O. Hanka, “Smart Card Based Security in
Locator/Identifier-Split Architectures,” International Confer-
ence on Networking, pp. 194–200, April 2010.

[2] O. Hanka, G. Kunzmann, C. Spleiß, J. Eberspächer, and
A. Bauer, “HiiMap: Hierarchical Internet Mapping Architec-
ture,” In First International Conference on Future Information
Networks, Beijing, China, P.R. China, pp. 17–24, October
2009.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica, “A data-oriented (and beyond)
network architecture,” in SIGCOMM ’07: Proceedings of the
2007 conference on Applications, technologies, architectures,
and protocols for computer communications. New York, NY,
USA: ACM, 2007, pp. 181–192.

[4] R. Moskowitz and P. Nikander, “Host Identity Protocol,”
IETF, United States, RFC 4423, May 2006.

[5] M. Menth, M. Hartmann, and M. Hoefling, “Firms: a future
internet mapping system,” IEEE Journal on Selected Areas in
Communications (JSAC), Special Issue on Internet Routing
Scalability, August 2010.

[6] A. Feldmann, L. Cittadini, W. Mühlbauer, R. Bush, and
O. Maennel, “HAIR: Hierarchical Architecture for Internet
Routing,” in ReArch09. New York, NY, USA: ACM,
December 2009.

[7] W. Diffie and M. Hellman, “New Directions in Cryptogra-
phy,” IEEE Transactions on Information Theory, vol. IT-22,
no. 6, pp. 644–654, 1976.

[8] M. Komu and J. Lindqvist, “Leap-of-faith security is enough
for ip mobility,” in Consumer Communications and Network-
ing Conference, 2009. CCNC 2009. 6th IEEE, Januar 2009,
pp. 1–5.

[9] S. Siddique and M. Amir, “GSM Security Issues and Chal-
lenges,” in Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing, 2006. SNPD
2006. Seventh ACIS International Conference on, June 2006,
pp. 413–418.

[10] M. Toorani and A. Beheshti Shirazi, “Solutions to the GSM
Security Weaknesses,” in Next Generation Mobile Applica-
tions, Services and Technologies, 2008. NGMAST ’08. The
Second International Conference on, September 2008, pp.
576–581.

[11] M. Khan, A. Ahmed, and A. Cheema, “Vulnerabilities of
UMTS Access Domain Security Architecture,” in Software
Engineering, Artificial Intelligence, Networking, and Par-
allel/Distributed Computing, 2008. SNPD ’08. Ninth ACIS
International Conference on, August 2008, pp. 350–355.

[12] A. Bais, W. Penzhorn, and P. Palensky, “Evaluation of UMTS
security architecture and services,” in Industrial Informatics,
2006 IEEE International Conference on, August 2006, pp.
570–575.

[13] U. Meyer and S. Wetzel, “A man-in-the-middle attack on
UMTS,” in WiSe ’04: Proceedings of the 3rd ACM workshop
on Wireless security. New York, NY, USA: ACM, 2004, pp.
90–97.

[14] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet x.509
public key infrastructure certificate and crl profile,” IETF,
United States, RFC 2459, January 1999.

[15] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet x.509
public key infrastructure certificate and certificate revocation
list (crl) profile,” IETF, United States, RFC 3280, April 2002.

[16] C. Ellsion and B. Schneider, “Ten risks of pki: What you’re
not being told about public key infrastructure,” Computer
Security Journal, vol. 16, no. 1, pp. 1–7, 2000.

[17] A. Aziz, M. Patterson, and G. Baehr, “Simple Key-
Management for Internet Protocol (SKIP),” in Internet So-
ciety: INET’95 Hypermedia Conference Proceedings, June
1995.

[18] W. Rankl and W. Effing, Smart Card Handbook, 3rd ed. John
Wiley & Sons, 2003.

[19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 26, no. 1, pp. 96–99, 1983.

[20] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987. [Online].
Available: http://www.jstor.org/stable/2007884

[21] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C.
Shantz, “Comparing Elliptic Curve Cryptography and RSA
on 8-bit CPUs,” in Lecture Notes in Computer Science.
Berlin/Heidelberg, Germany: Springer, 2004, vol. 3156/2004,
pp. 925–943.

[22] The Trusted Computing Group, “Trusted Platform Mod-
ule (TPM) Main Specification, Version 1.2, Revision
103,” http://www.trustedcomputinggroup.org/resources/tpm\

main\ specification,17.11.2009.

145

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

