
Remodeling to Powertype Pattern

Matthias Jahn, Bastian Roth, Stefan Jablonski

Chair for Databases & Information Systems

University of Bayreuth

Bayreuth, Germany

{matthias.jahn, bastian.roth, stefan.jablonski} @ uni-bayreuth.de

Abstract— Nowadays, models often stand as first class objects

in the field of software development. That’s why clarity and

understandability are important markers of high quality

models. Therefore, several patterns exists that can help to

improve model quality. However, developing a domain specific

language is affected by understanding the domain of interest

which often evolves during the development of the software

system. This evolution again causes the language to change

either. As a consequence of that, meta-modeling patterns are

oftentimes inserted in an existing meta-model which results in

various adaptions to migrate the system into a valid state.

Since the current research has not discovered any techniques

to cope with a remodeling to such a pattern these adaptions

have to be done manually. Focusing on this challenge, we

present in this article an evolution operator that creates a

powertype within an existing model and furthermore adapts

the other related models simultaneously.

Keywords-powertype, extended powertype, remodeling to

patterns, meta-model evolution, meta-model, deep instantiation

I. MOTIVATION

Today, developers often tend to define a separate
modeling language for special parts of the domain of interest.
That is especially the case if standard modeling languages do
not cope with special application settings. This trend is
referred to as domain specific modeling (DSM) and the
resulting language is hence called domain specific language
(DSL).

A modeling language in general consists of three parts: a
definition of an abstract syntax, a definition of a concrete
syntax, and a rule set (constraints) [1]. Thereby, meta-models
are oftentimes used to express both the abstract and the
concrete syntax. Hence, the quality of the resulting language
is highly-coupled to the quality of the meta-models
describing it. Consequently, these meta-model have to be
concise and human-readable.

Therefore, current research has discovered several
patterns (in the following called language patterns to
distinguish them from design patterns) that enrich meta-
models in different aspects, e.g., helping persons of different
perspectives in the software development process (e.g., the
software developer or the method engineer) to understand
the meta-model easier [2] or improving their conciseness [3].

One of these language patterns with the above mentioned
benefits is the powertype pattern [4], [5]. However,
introducing a powertype pattern into an existing meta-model
often results in several manual adaptions in other meta-levels

for migrating models to the new meta-model. Hence, such a
remodeling to powertype patterns can be a time-consuming
and error-prone task [6]. Focusing on this problem, we
present below an operator that introduces a powertype
pattern into an existing meta-model. Simultaneously, the
operator adapts corresponding models into a valid state.

Therefore, in the following section we are going to show
the state of the art. Subsequently, we explain the powertype
(pattern). After that, we will present an extension for this
pattern: the extended powertype. In section V we present the
Create-Powertype-For operator which introduces an
(extended) powertype pattern into a meta-model. In the
subsequent section we provide an example model on which
we apply the operator. Finally, we give a conclusion and an
outlook to our future work.

II. RELATED WORK

The presented work belongs to the research field of meta-
model evolution. The Create-Powertype-For operator
changes the (meta-) meta-model and migrates other (meta-)
models to become valid to the new meta-model.

In the current research such an approach is called coupled
evolution [7]. Since most of the work in this field considers
merely two meta-levels the coupled evolution definition is
limited to a model and a meta-model. As we do support more
than two meta-levels in our modeling environment we
extend this definition to arbitrary levels.

 Meta-model evolution, in general, faces two main
challenges. First, adaptations and changes performed on a
meta-model need to be captured [8]. Second, evolving a
meta-model might render models as instances of a meta-
model invalid, e.g., when attributes are removed or a type
within a meta-model is defined to be abstract within an
evolution step. Hence, these invalid models have to be
migrated which is called co-evolution [9].

According to the work of Herrmannsdorfer et al. [8],
approaches for capturing meta model evolution can be
categorized into three kinds: state based, change based and
operation based approaches. State based approaches store
two versions of a model and derive differences between
those two versions after changes were actually performed
(which is an implementation of the Model Management
operator DIFF [10]). Contrariwise, change based approaches
record differences at the moment they occur. Operation
based approaches are a subclass of the change based
approaches since changes on meta models are defined by
means of transformation operators before they are actually

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

performed. In today’s systems often state based recording is
chosen although it is not as powerful as the operation based
approach [8]. Our presented approach belongs to the
operation based approaches.

Practical application scenarios of the varied approaches
can be found in the work of Gruschko et. al. [11] (state
based), Aboulsamh et. al. [12] (change based) and
Herrmannsdorfer et. al. [8], [13] (operation based).

Similar to the above presented work, Wachsmuth [14]
and Herrmannsdorfer et. al. [13] provide an operation set that
is used to evolve the meta-model explicitly, i.e., by means of
well-defined transformations the user evolves the meta-
model stepwise. In consequence, co-evolution can be
performed without the need to handle ambiguity which is a
challenge for state-based approaches [15].

Up to our knowledge, the current research in meta-model
evolution mostly considers common meta-modeling concepts
like classes, attributes and relations. Only some approaches
(e.g., [13], [14], [16]) also analyze inheritance hierarchies for
evolution and explain solution for handling co-evolution.
However, there is no approach that considers other language
pattern like the powertype pattern, deep instantiation or
materialization [17].

Besides handling the evolution itself, handling co-
evolution is another important topic in this field of research.
To face this challenge, various approaches can be observed:
matching of two meta models (see model management [18]),
operation based co-evolution and manually specification of
migration [15]. An Example for an operation based co-
evolution can be found at the work of Wachsmuth [14],
within the COPE System [19] and also within this paper.

III. THE POWERTYPE PATTERN

The powertype pattern is a language pattern used to
describe that a concept A extends another concept Part (this
is called the partitioned type) and at the same time this
concept A is an instance of concept Pow (which is then
called powertype).

A. Example

Below, there is an example of the powertype pattern that
shows a simple meta-model (named M2) with two concepts:
Tree and TreeKind. The concept Tree stands of course for a
tree and TreeKind is a representation for a kind of a tree.
Furthermore, a model (M1) is shown with only one concept
Maple which stands for a correspondent real world object.

If one wants to model trees there are at least two different
views of seeing a maple. On the one hand, this maple is a
specialization of the class tree. On the other hand, maple
partitions the set of trees because it is a kind of a tree. Hence,
maple can be seen as a specialization of tree. To combine
these two views, one can introduce the powertype pattern
(Figure 1). Then, Tree is partitioned with TreeKind (the
powertype) and Maple is an instance of TreeKind and
together with that a specialization of Tree.

As a consequence, Maple has two different facets. The
first one is the type facet that extends Tree and the second
one is the instance facet, an instance of TreeKind.

Maple

TreeTreeKind

partitions

M2

M1

Figure 1. Example of a powertype pattern

Such a mixture of a class and an object is called clabject
[20] or concept [21]. The specialization relationship is often
not visualized within meta-model diagrams.

IV. THE EXTENDED POWERTYPE PATTERN

One rule of practice in modeling is that all attributes
being common in all subclasses are added to the superclass
[22]. Other attributes that do not belong to each of the
subclasses are not declared in the superclass, in general.
Instead, often new subclasses are created that stand between
the super- and the subclasses in the inheritance hierarchy. As
a consequence, a deep inheritance hierarchy could result
which is often seen as bad design [23]. Furthermore, this
approach leads to multiple inheritance which sometimes
causes problems [24], [25] like the diamond of death.

To avoid this complex inheritance hierarchy, one can use
the extended powertype pattern [26], [27]. This pattern
enhances the powertype pattern with so called feature
attributes.

These boolean attributes are declared at the powertype
with a link to an attribute of the partitioned type (the enabled
attribute). Afterwards, one can decide for each instance of
the powertype if an attribute of the partitioned type is
inherited or not. If a feature attribute at an instance of the
powertype is set to true the corresponding enabled attribute
of the partitioned type is inherited. Needless to say that if a
feature attribute has the value false no attribute is inherited.

Hence, all attributes of the sub-concepts can be collected
in the partitioned type and for each sub-concept one can
decide the set of attributes that are inherited.

A. Example

In Figure 2 a simple graph-based process modeling
language with an extended powertype pattern is shown.

 To visualize the complete meta-model stack we use a
tree editor with syntax similar to object-oriented
programming languages. The root of the tree is the whole
meta-model stack. The children of that are the different
meta-levels. The next higher meta-level which is instantiated
by the current level is shown after the colon. Each level
again contains at least one or more packages structuring the
level. In a package lie concepts (clabjects) and these
concepts can have attributes and/or assignments. Again, after
the colon all instantiated concepts are listed. Other relations
like extends or partitions are also shown together with the
corresponding other concept.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Figure 2. Morning Process Example

Furthermore, the deep instantiation counter (also called
deep instantiation potency) is displayed, if the value is
greater than 1 (see section VI.A). Attributes have a
cardinality (0..1, 0..*, 1..*) and an attribute type.
Assignments consist of a corresponding attribute and a value
for it.

 In the meta-meta-model (M2), Nodes are connected with
each other using outgoing control flows. This is done with
the corresponding outgoingCF attribute at Node. Besides, an
extended powertype (NodeKind) is modeled due to the fact
that NodeKind has a partitions relation to Node. NodeKind
again has a boolean feature attribute supportsOutCF enabling
or disabling the outgoingCF attribute of Node.

At level M1, Process and Stop are instances of the

powertype. Since a stop interface does not have any outgoing
control flows the supportOutCF attribute is set to false
whereas the Process attribute is set to true.

Level M0 contains a little model that describes a (spare)
morning process. After waking up, the concerning person
brushes his/her teeth and then stops the morning process.
Since the feature attribute of Stop was set to false setting the
value of outgoingCF in StopMorning would cause a
validation error.

V. THE CREATE-POWERTYPE-FOR OPERATOR

In the following, we present an Evolution operator that
introduces a powertype into an existing (meta-) model and
simultaneously adapts the meta-model hierarchy to be valid
again.

A. Operator Process

In Figure 3 the process of the Create-Powertype-For
operator is shown. Therein all steps that need an input from
the user are highlighted with black boxes. “The Move
concept to upper level” and “the Add instantiation to
powertype” steps are also highlighted as they are other
complex evolution operators that will be presented below.

Initially, the operator is invoked with a source concept
(e.g., chosen by the user). In the following, this concept is
called Part as it will be the partitioned typed after the
operator has finished. In the next step the operator collects
all concepts that specialize Part. This set of concepts (in the
following called SCs) is important because all members
could potentially be an instance of the newly created
powertype.

After that, the user decides which member of SCs will
become an instance of the powertype and hence creates a
subset of SCs (SubSCs). Then, for each member of SubSCs
the specialization relation to concept Part is deleted.
Afterwards, each concept of SubSCs is checked whether it is
instantiated or not. If one concept is instantiated, concept

Start
Collect

specializations
of concept

Choose future
instances of the

powertype

source
concept

set of
concepts

Has one of
these concepts

instances?

Move concept
to upper level

yes

Stop

no
set of

concepts

Create
powertype

Delete
specialization

Extended
Powertype?

no

Collect
attributes of

concept
yes

set of
attributes

Create Feature
attributes

Add
instantiation to

powerype

Figure 3. Create-Powertype-For operator process

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Part and all related concepts (see section V.B) have to be
moved to the upper level. Otherwise, it would not be
possible to instantiate the instances of the powertype again.
Of course, in case a modeling environment does not support
several levels this step cannot be done and hence the
instantiation has to be deleted.

Then, a new concept (the powertype) is created by the
operator. The user specifies the properties of the concept like
the name, whether the concept is abstract or final, its
visibility, its instantiated concepts (optional), its extended
concepts (optional) and its concretely used concepts (for
instance specialization see [21]), also optional). The user also
must specify whether the concept is an extended powertype
or not. The concept Part will then be added to the set of
partitioned concepts whereby the partitions relation of the
powertype is created.

If the created powertype is an extended one the operator
collects the attributes of the initially given concept Part.
Then, the user chooses the attributes that will get a
corresponding feature attribute which will be created in the
powertype. Finally, each of the previously chosen concepts
(SubSCs) will become an instance of the new powertype
using the corresponding operator (see section V.C).

B. THE MOVE-CONCEPT-TO-UPPER-LEVEL Operator

The Move-Concept-To-Upper-Level operator moves, as
the name indicates, a concept from a given level upon the
next upper level. The process of the operator is shown in
Figure 4.

1) Operator Process
The operator gets as input a concept that will be moved

one meta-level up.
In the first step the operator tries to get the upper level

and checks whether the level exists or not. If not a new level
is created and the name of it has to be set. Then the operator
changes the level of the given concept to the upper level.

Afterwards, the operator increments the deep
instantiation counter of the given concept if the concept is
instantiated.

Start concept

Does the
upper level

exist?

Create meta
level

no

yes

Is the Concept
instantiated?

Increment Deep
Instantiation

Potency
yes

Collect related
concepts

no

Set of
concepts

Move concept
to upper level

Stop

Change Level of
concept

Get upper level

Figure 4. Move-Concept-To-Upper-Level operator process

Changing the value of the deep instantiation counter [28]
causes that instances of the concept can instantiate the
concept again although they are more than one (exactly two)
meta-level lower. If deep instantiation is not supported other
techniques like nested meta levels [29] may be used at this
point.

For correct migration of the meta-model the operator has
to invoke itself recursively on all related concepts. Thus,
these concepts are collected in the next step. Related
concepts are those concepts that stand in a relationship with
the given concept (includes relationships like extends (for
specialization), partitions (for powertype relation) or
concreteUseOf (for instance specialization) [21]. Thereby,
the operator has to detect cycles to avoid an endless loop.

C. The Add-Instantiation-To-Powertype operator

This operator adds an instanceOf relation from a given
concept to a given powertype. In Figure 5 the process of the
operator is presented.

1) Operator Process
Initially, the operator is invoked with a concept (the

future instance) and a powertype. If the powertype is not an
extended one merely the instanceOf relation between the
concept and the powertype is created. Thereby, a constraint
has to be considered. In case the instance of the powertype is
already an instance of another concept this would end in
multiple instantiation which breaks, e.g., strict meta
modeling [30]. Thus, for such environments the operator has
to delete one instantiation.

If the powertype is an extended powertype the operator
has to provide a possibility to move the attributes from the
given concept to the partitioned type. Therefore, the user has
to choose all attributes of the concept that should be moved.

For each reference attributes (the attribute type is a
concept) the operator has to check whether the attribute type
is a specialization of the partitioned type.

Start
concept +
powertype

Extended
powertype?

Add
instantiation

no

Stop
Collect

attributes of
concept

yes

set of
attributes

Choose
attributes to

move

set of
attributes

Move attributes
to partitioned

type

Set values of
feature

attributes

Create feature
attributes

Collect
instances of
powertype

set of
concepts

Reference
attributes?

Attribute type
extends

partitioned
type?

yes

Change
attribute type

Move concept
to upper level

set of
concepts

no
yes

no

Figure 5. Add-Instantiation-To-Powertype operator process

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

If so, the attribute type has to be changed to the

partitioned type. Otherwise, the referenced concept has to be
put one level up because relationships cannot cross levels.
Hence the Move-Concept-To-Upper-Level operator is called.

Now the operator can move all selected attributes to the
partitioned type.

 Afterwards, the operator creates corresponding feature
attributes in the powertype for the moved attributes. Then,
the operator collects all instances of the powertype and the
user chooses those ones which should inherit the moved
attributes.

Finally, the operator sets according to the user selection
before the feature attribute values of all powertype instances.
Of course, the value of the feature attributes for the given
concept is set to true (since this concept declared the
attributes before).

VI. EXAMPLE

In this section we give an example for the application of
the Create-Powertype-For operator. The example shows a
simple feature model of a car product line inspired by [3].
This simple feature model gives the opportunity to model
Features and link them with the help of Associations
together.

 Figure 6 shows the complete meta-model stack.
Therein M1 is the meta-model for M0. On M1 there are two
concepts: Feature and Association. Each Association element
connects one Feature element as source and zero or more
Feature elements as target. On the other side, Features can
refer to zero or one Association. Thus, this relationship is
bidirectional.

Figure 6. Car product line model

Furthermore, the concept Association is specialized in
form of the concepts Or, Xor, Mandatory and Optional. Xor

 and Or can be used to express that at least one of several
target features have to be selected. Instances of Optional can
set a target whereas instances of Mandatory have to select a
target.

Based on M1, there is a model M0 that declares four
features (Car, Body, Transmission and Engine) and one
association (CarMandatory). These features are linked
together with the association so that following constraint is
expressed: A car must have a body, an engine and a
transmission.

A. Application of the operator

Now, we apply the Create-Powertype-For operator to the
above introduced model. The result is shown in Figure 7.

First, we select the concept Association and invoke the
operator on it. The operator uses the given concept and
collects all its specializations since these concepts are
candidates for instances of the future powertype. The
outcome of this step is a set of four concepts: Or, Xor,
Mandatory and Optional.

Afterwards, we have to review this set and tell the
operator which concepts will become instances of the future
powertype. In our example, we choose all of them. Then, the
operator checks all selected concepts if they were
instantiated before. This is true for Mandatory. Thus, the
operator has to move the future powertype to the upper level
and invokes the corresponding operator.

Hence, the concept Association is delivered to the Move-
Concept-To-Upper-Level operator.

Figure 7. The resulting car product line model after application of

the operator

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Figure 8. Result of the operator with extended powertype

After that, the operator checks if an upper level exists
which is false. That’s why it creates a new level that we
name M2. Then the operator changes the level of
Association to M2. After that, the specialization relation of
Or, Xor, Mandatory and Optional is deleted. As Association
is not instantiated, no deep instantiation counter has to be
changed.

In the next step all related concepts are collected by the
operator, which is only Feature (relationship to and from
Association). Thus, the operator Move-Concept-To-Upper-
Level is again called for Feature.

Because M2 already exists no meta-level has to be
created. Subsequently, the meta-level of Feature is changed
to M2 and the deep instantiation counter is incremented as it
is instantiated in form of Car, Body, Transmission and
Engine. Hence, the deep instantiation counter of Feature is
now 2 (shown after the keyword deferred by in Figure 7).
Since Feature has no related concepts because Association is
already visited, the Move-Concept-To-Upper-Level operator
terminates.

Afterwards, the Create-Concept-For-Powertype operator
starts again with creating a new concept that we name
AssociationKind and setting the partitions relation to
Association.

If we decide to create a “simple” powertype Or, Xor,
Mandatory and Optional just become instances of
AssociationKind.

Otherwise, the operator collects for each concept (Or,
Xor, Mandatory and Optional) all declared attributes. Since
none of the concepts have attributes no user selection is
needed and no reference attribute is part of the selection.

The operator continues with the creation of the feature
attributes for targets and source (supportSource,
supportTargets). Since Or, Xor, Mandatory and Optional
were specializations of Association the feature attribute
values for all concepts are set to true.

The result of creating an extended powertype is shown in
Figure 8.

VII. CONCLUSION

Nowadays, meta-modeling is an often used approach for
developing a domain specific language. Since these
languages evolve during modeling of the domain of interest
it is important to support this evolution to avoid manual
migration of models.

Current research has discovered several patterns helping
to improve the quality of (meta-) models [3]. Unfortunately,
a remodeling of a meta-model to such a pattern is not
supported today.

Facing this challenge, we presented in this article an
operator that allows introducing a powertype pattern into an
existing meta-model hierarchy considering migration of
invalid models.

Currently, we have developed an Eclipse-based editor
that supports several basic evolution operators like creating
levels, packages, concepts and attributes. Furthermore some
complex operators like the presented Create-Powertype-For,
the Move-Concept-To-Upper-Level and the Add-
Instantiation-To-Powertype operator are implemented as
well.

In future work we will present complex evolution
operators that support other language patterns like deep
instantiation [28], materialization [17] or instance
specialization [21]. Furthermore, we envision providing a
preview of evolution operators similar to refactoring
previews in modern IDEs. With the help of these previews,
users can compare possible evolution steps.

REFERENCES

[1] H. Cho, “A demonstration-based approach for designing domain-
specific modeling languages,” Proceedings of the ACM international
conference companion on Object oriented programming systems
languages and applications companion, pp. 51–54, 2011.

[2] B. Henderson-Sellers and C. Gonzalez-Perez, “The rationale of
powertype-based metamodelling to underpin software development
methodologies,” Proceedings of the 2nd Asia-Pacific conference on
Conceptual modelling, vol. 43, pp. 7–16, 2005.

[3] B. Neumayr, M. Schrefl, and B. Thalheim, “Modeling techniques for
multi-level abstraction,” The evolution of conceptual modeling, pp.
68–92, 2011.

[4] C. Gonzalez-Perez and B. Henderson-Sellers, “A powertype-based
metamodelling framework,” Software and Systems Modeling, vol. 5,
pp. 72–90, 2006.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

[5] J. Odell, “Power types,” Journal of Object-Oriented Programming,
vol. 7(2), pp. 8–12, 1994.

[6] A. Demuth, “Cross-layer modeler: a tool for flexible multilevel
modeling with consistency checking,” Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pp. 452–455, 2011.

[7] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE-automating
coupled evolution of metamodels and models,” European Conference
on Object-Oriented Programming, pp. 52–76, 2009.

[8] M. Herrmannsdoerfer and M. Koegel, “Towards a generic operation
recorder for model evolution,” Proceedings of the 1st International
Workshop on Model Comparison in Practice, pp. 76–81, 2010.

[9] D. Di Ruscio, “What is needed for managing co-evolution in MDE?,”
Proceedings of the 2nd International Workshop on Model
Comparison in Practice, pp. 30–38, 2011.

[10] [P. A. Bernstein and S. Melnik, “Model Management 2.0:
Manipulating Richer Mappings,” Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pp. 1 –
12, 2007.

[11] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards
Synchronizing Models with Evolving Metamodels,” Int. Workshop on
Model-Driven Software Evolution held with the ECSMR, 2007.

[12] M. A. Aboulsamh and J. Davies, “A Metamodel-Based Approach to
Information Systems Evolution and Data Migration,” Proceedings of
the 2010 Fifth International Conference on Software Engineering
Advances, pp. 155–161, 2010.

[13] M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” Software Language Engineering, pp. 163–
182, 2011.

[14] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,”
European Conference on Object-Oriented Programming, pp. 600–
624, 2007.

[15] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “An
analysis of approaches to model migration,” In Proceedings of
Models and Evolution (MoDSE-MCCM) Workshop, pp. 6–15, 2009.

[16] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth, “Language
evolution in practice: The history of GMF,” Software Language
Engineering, pp. 3–22, 2010.

[17] M. Dahchour, A. Pirotte, and E. Zimányi, “Materialization and its
metaclass implementation,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 14, no. 5, pp. 1078–1094, 2002.

[18] P. A. Bernstein, “Applying Model Management to Classical Meta
Data Problems,” Proceedings of the 1st Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[19] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE: a language
for the coupled evolution of metamodels and models,” Proceedings of
the 1st International Workshop on Model Co-Evolution and
Consistency Management., 2008.

[20] C. Atkinson and T. Kühne, “Meta-level independent modelling,”
International Workshop on Model Engineering at the 14th European
Conference on Object-Oriented Programming, vol. 12, p. 16, 2000.

[21] B. Volz, “Werkzeugunterstützung für methodenneutrale
Metamodellierung,” Dissertation, Fakultät für Mathematik, Physik
und Informatik, Universität Bayreuth, Bayreuth, 2011.

[22] R. Elmasri and S. Navathe, Fundamentals of Database Systems.
Prentice Hall International; Auflage: 6th edition. Global Edition.,
2010, p. 1155.

[23] Microsoft, “When to Use Inheritance,” 2012. [Online]. Available:
http://msdn.microsoft.com/en-us/library/27db6csx(v=vs.90).aspx.
[Accessed: 26-Sep-2012].

[24] G. B. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, vol. 6, no. 1, pp.
30–39, Jan. 1995.

[25] B. Zengler, J. Hahn, C. Rupp, M. Jeckle, and S. Queins, UML 2
glasklar: Praxiswissen für die UML-Modellierung und -
Zertifizierung. München - Wien: Hanser Fachbuchverlag, 2007, p.
559.

[26] S. Jablonski, B. Volz, and S. Dornstauder, “On the Implementation of
Tools for Domain Specific Process Modelling,” International
Conference on the Evaluation of Novel Approaches to Software
Engineering, vol. 4, pp. 109–120, 2009.

[27] B. Volz and S. Dornstauder, “Implementing Domain Specific Process
Modelling,” Communications in Computer and Information Science,
vol. 69, pp. 120–132, 2010.

[28] T. Kühne and F. Steimann, “Tiefe charakterisierung,” Modellierung
2004 : Proceedings zur Tagung, pp. 109–120, 2004.

[29] C. Atkinson and T. Kühne, “The essence of multilevel
metamodeling,” «UML» 2001—The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, pp. 19–33, 2001.

[30] C. Atkinson, “Supporting and applying the UML conceptual
framework,” Lecture Notes in Computer Science, UML’98, pp. 21–
36, 1999.

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

