
83

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Model for Managed Elements under Autonomic Cloud Computing Management

Rafael de Souza Mendes∗, Rafael Brundo Uriarte†, Carlos Becker Westphall∗
∗Federal University of Santa Catarina, Florianópolis, Brazil

emails: rafael.mendes@posgrad.ufsc.br, westphal@inf.ufsc.br
†IMT School for Advanced Studies Lucca, Italy

email: rafael.uriarte@imtlucca.it

Abstract—Due to the scale and dynamism of cloud computing,
there is a need for new tools and techniques for its management.
This paper proposes an approach to quantitative modelling of
cloud components’ behaviour, using double weighted Directed
Acyclic Multigraphs (DAM) through the different abstraction
levels of components. With this formalism, it is possible to analyse
load propagation and its effects on the cloud elements from an
Anything as a Service (xAAS) perspective. Such model enables
the comparison, analysis and simulation of clouds, which assist
the cloud management with the evaluation of modifications in
the cloud structure and configuration. The existing solutions
either do not have mathematical background, which hinders
the comparison and production of structural variations in cloud
models, or have the mathematical background, but are limited
to a specific area (e.g., energy-efficiency), which does not provide
support to the dynamic nature of clouds and to the different needs
of the managers. In contrast, our model has a formal math-
ematical background and is generic. Furthermore, we present
formalisms and algorithms that support the load propagation
and the metrics of services, systems, third-parties providers and
resources, such as: computing, storage and networking. To demon-
strate the applicability of our solution, we have implemented a
software framework for modelling Infrastructure as a Service,
and conducted numerical experiments with hypothetical loads
and behaviours.

Keywords-Autonomic Cloud Computing; Cloud Computing
Management; Simulation; Multigraph.

I. INTRODUCTION
The management of pooled resources according to high-

level policies is a central requirement of the as a service
model, as fostered by Cloud Computing (CC). The two major
functions in CC management, planning and decision making,
are challenging and are still an open issues in the field. In our
previous work [1], we have presented a formal model, based
on Direct Acyclic Multigraphs (DAM) [2], to model the cloud
elements’ behaviour regarding loads and evaluations. This
formal model intents to reduce the gap between Autonomic
CC [3], [4] management and well-established approaches in
decision theory [5] and managerial science [6]. In this regard,
was presented a managed elements model which make easier
the inference of states, actions and consequences. These states,
actions and consequences are the bases for planning models
and the core of our proposal to fulfil the lack between CC and
decision methods. This lack of formal models is highlighted
by our previous efforts to develop methods for CC autonomic
management: [4][7][8] and formalisms based on Service Level
Agreement (SLA) [9].

Currently, the existing solutions which provide CC models

can be classified into two main groups: general models, usually
represented by simulators; and specific models, devised for
a particular field (e.g., energy saving). The former lacks
a mathematical formalisation that enables comparisons with
variations on the modellings. The latter usually have the formal
mathematical background but, since they are specific, they do
not support reasoning on different management criteria and
encompass only cloud elements related to the target area.

The main obstacle to establish formal general models is
to express the conversion of loads from abstract elements
(i.e., services or systems) to their concrete components (i.e.,
physical machines or third-party services). However, such
model is mandatory to simulate and analyse qualitatively and
quantitatively the CC elements’ behaviour, which facilitate the
evaluation of managerial decisions, especially if the model
deals with abstraction and composition of these elements.
The need of this model do express managerial knowledge
increases as concept of CC moves away from the concept
of infrastructure and Anything as a Service (xAAS) providers
build high level cloud structures. To address this gap in the
literature, we analyse the domain elements and characteristics
to propose the Cloud Computing Load Propagation (C2LP)
graph-based model, which is a formal schema to express the
load flow through the cloud computing components, and the
load’s impact on them. This schema is required because the
system analysis is performed in design time and focus on the
behaviour of data when passing through the cloud structures,
however, the cloud management requires a view about the
behaviour of the structures when the loads are passing through
them, in runtime. Therefore, we define a load as the type and
amount of effort to process services’ requests in systems or
resources.

For example, the (C2LP) model enables the comparison of
different cloud structures, the distinction of load bottlenecks,
the expression of conversion of loads units (change in type)
between elements, the quantitative analysis of the load prop-
agation and the evaluation of the effects of processing a load
on the cloud structure. In more general terms, such solution
unifies heterogeneous abstraction levels of managed elements
into a single model and can assist the decision-making tasks
in processes, such as: load balance, resource allocation, scale
up/down and migrations. Moreover, simulations performed
using our model can be useful to predict the consequences
of managerial decisions and external events, as well as the
evolution of baseline behaviour, in several abstraction levels.

More specifically, we model the basic components of CC:



84

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(i) services; (ii) systems; (iii) resources, in which systems are
deployed, that can be computing, storage and networking; and
(iv) third-party clouds that deploy services. This taxonomy per-
mits putting together, based on Directed Acyclic Multigraphs,
the CC elements on different abstraction levels. It enables
the manager to access consolidated graph analytical tools
to, e.g., measure the components interdependencies, which is
used to improve the availability and resource allocation. In
order to demonstrate the applicability and advantages of the
C2LPmodel, we present a use case where our model is used
to compare and evaluate different managerial configurations
over several quantitative behaviour in load propagation and
evaluation.

This article is organised as follows. Section II discusses the
existing cloud models, the works that inspired the definition
of this model and the background information necessary for
the appreciation of this work. In Section III, we present an
overview of the model, formalise it, the propagation algorithm,
and the evaluation process. Section IV describes the implemen-
tation and the analysis performed on a use case. Finally, in
Section V, we discuss the limitations and the future directions
for the research.

II. RELATED WORK
This section presents the related works that propose models

to describe and simulate clouds. We have analysed them from
a cloud provider management perspective, considering their
capacity to: express general cloud models, define components
of the managed cloud instance; compare structures; simulate
behaviours and provide formal specifications with mathemati-
cal background. Table I summarises model’s comparisons and
the discussion about the survey is presented as follows.

We grouped the proposals into two classes: general and
specific. General models, such as CloudSim [10], GreenCloud
[12], iCanCloud [14], EMUSIM [15] and MDCSim [17], are
usually associated with simulators and used to evaluate several
criteria at the same time. On the other hand, specific models are
commonly associated with particular criterion evaluation, such
as performance [18], security [20][21], accounting [22][23] or
energy [24].

CloudSim [10] was originally built on top of GridSim
[11] and focus on modelling data centres. Its framework is
Java based and loads are modelled through a class called
“CloudLet”, or an extension of it. Depiste its popularity,
CloudSim does not have a strong mathematical background.
This lack of formalism hinders the investigation of data cross-
ing between states and configuration parameter, which limit
the exploration of the cloud behaviours. Furthermore, the core
classes of CloudSim model data centre elements as: physical
machines, virtual machines (VMs), networks and storages; and
requires customisations to deal with more abstract elements,
e.g., services. Finally, also the comparison of simulation struc-
tures is not straightforward with CloudSim.

Kliazovich et al. in [12] presented GreenCloud, an exten-
sion of the network simulator NS2 [13] that offers a fine-
grained modelling of the energy consumed by the elements
of the data centre, such as servers, switches, and links. Green-
Cloud is a programmatic framework based in C++ and TCL
scripts that, despite having the statistic background of NS2,
does not have itself an underlying mathematical formalism.
It also focuses on the data centres view and need extensions
to consider abstract elements as services and systems. Even

though the authors provided a comparison between data centre
architecture in [12], the model does not favor the comparison
of simulation structures.

The simulator iCanCloud, presented in [14], is also a gen-
eral data centre simulation tool. Based in C++, it has classes
as “Hypervisor”, “Scheduler” and “VM” in the core class
structure, which demonstrates its high level of coupling with
infrastructure. Although the authors proposed iCanCloud as
“targeted to conduct large experiments”, it does not offer native
support to compare structural changes between simulations. As
the other general simulator, iCanCloud lacks of mathematical
formalisms.

EMUSIM [15] is an emulator and simulator that enables the
extraction of information from the application behaviour – via
emulation – and uses the information to generate a simulation
model. The EMUSIM has been built on top of two frameworks:
Automated Emulation Framework (AEF) [16] (an emulation
testbed for grid applications) and CloudSim [10]. The objective
of EMUSIM understand application’ behaviour profiles, to
produce more accurate simulations and, consequently, to adapt
the Quality of Service (QoS) and the budget required for
hosting the application in the Cloud. Although EMUSIM
partially addresses the lack of capacity to model application
of CloudSim, adding higher level modelling layer, it still lacks
mathematical formalisms as well as the support to compare
simulation structures.

Finally, MDCSim presents a multi-tier data centre sim-
ulation platform. However, this multi-tier modelling works
with concrete elements, in resource level, as a front-end
tier/web server, a mid tier/application server, and a back-
end tier/database server. The MDCSim also works with some
metrics in a higher abstraction level on specific Java elements
as EJBs and Tomcat. This approach still lacks a representation
for abstract elements, such as services and systems, where
metrics and parameters are related to groups of elements (e.g.,
availability of a service depending on several elements).

Overall, works proposing general models are data centre fo-
cused and have evolved from Grid Computing, which may hin-
ders their usage on service orchestration level and with third-
parties cloud infrastructures, where data centre concepts are
not applicable. Designers of autonomic management methods
require the generation of cloud architectures and behaviours in
a combinatorial fashion, in order to test plans, decisions and
consequences on a wide number cloud architectures, features
that not supported in these models.

In the second group of proposals, that is, frameworks
devised for a specific area, in-depth analysis based on robust
formalisms are usually provided, such as queue theory [24]
[18], probability [20], fuzzy uncertainty [23] and heuristics
[22]. However, their models do not fit well in integrated
management methods that intend to find optimal configurations
considering several criteria of distinct types. Moreover, specific
optimisation models are usually sensible to structural changes,
having no robustness to support the dynamic nature of the
clouds.

Vilaplana et al. in [18] presented a queue theoretic mod-
elling for performance optimisation for scale CC. The model
has a strong mathematical background and is able to evaluate
jobs and VM scheduling policies using simulations. Never-
theless, this optimisation is dependent on strong assumptions,
i.e., that the back-end tier is modelled as an Open Jackson
network [19]. The model is focused on evaluation and it is



85

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only partially capable of performing simulation. In fact, in
the paper the authors employed CloudSim to implement the
simulations used in the experiments.

In [20], Silva et al. proposed a model, based on equations
to quantify the degree of exposure to risk, deficiency in risk
modelling, and impact on an information asset. The model is
used to evaluate cloud service providers and has a mathemat-
ical background. Although in our previous work [1] we have
considered that the ability to generate hypothetical scenarios
and evaluate them as a “simulation” feature, we reconsidered
and redefined it as “feature not supported” since the model
does not support runtime simulations.

Nesmachnow et al. in [22] introduced a broker that resells
reserved VMs in IaaS providers as on-demand VMs for the
customers. The authors presented a specific model to deal with
the Virtual Machine Planning Problem, which was defined
as an optimisation problem that maximises the profit of the
broker. This problem is mathematically well formed as well
as the model that supports the broker representation and the
static components. We consider the experiments presented in
the paper as simulations that were performed using real data
gathered from public reports. However, we considered the
simulation feature only as partially covered since the work
does not enable runtime simulations.

Decision models for service admission are presented in
[23], all with mathematical background and covering fuzzy
uncertainty. The proposed models are specific for admission
control and explicitly used to perform simulations. On the
other hand, the resource types used to model different elements
in the cloud (e.g., CPU, storage) do not cover the concept
of “component”. In fact, the model considers the existence
of resources, from which services depend, but it just models
classes of resources and their economical behaviour related
to service admission. Thus, we consider the concept feature
“component” only partially covered. Also, the models pre-
sented can be compared with respect to revenue and service
request acceptance rate, but the general structure of the models
lacks comparison parameters.

In [24] an energy-saving task scheduling algorithm is
presented, based on the vacation queueing model. The mod-
elling is specific for task scheduling and energy consumption
optimisation. The work has a strong mathematical background
which enables the comparison of results, but does not have
ability to compare the model structure, resulting in a partial
coverage for “comparison” criterion. The evaluation of energy
consumption in nodes motivated us to define the feature
“components” as covered. Finally, the criterion “simulation”
was reviewed from the previous analysis in [1] and we consider
the model’s characterisation as covered since the authors used
discrete event simulation tool in Matlab, that is equivalent to
runtime-like simulators as the CloudSim.

The comparison between the related works is presented
schematically in Table I, where: the column “Class” specifies
if a work is general or specific; “Formalism” evaluates the
mathematical background that supports the models; the column
“Components” presents the capacity of a model to express
cloud components; the ability to compare structures is depicted
in the column “Comparison”; and, “Simulation” expresses the
capacity to perform simulations using the models.

Considering the gap in the existing cloud modelling tech-
niques, our proposal intents to model the load propagation
and evaluation functions over a graph to obtain expressiveness,

TABLE I: COMPARISON BETWEEN RELATED MODELS. �
REPRESENTS A FEATURE COVERED, � A PARTIALLY COVERED

ONE AND - WHEN THE FEATURE IS NOT SUPPORTED.

Model Class Formalism Components Comparison Simulation
CloudSim [10] General - � - �

GreenCloud [12] General - � - �
iCanCloud [14] General - � - �
EMUSIM [15] General - � - �
MDCSim [17] General - � - �

Chang[24] Specific � � � �
Püschel [23] Specific � � � �

Nesmachnow [22] Specific � � � �
Silva [20] Specific � � � -

Vilaplana [18] Specific � � � �
C2LP General � � � �

whilst keeping the mathematical background and components’
details. We opt to model the “load flow” because it is one
of the most important information for managerial decisions,
such as: load balance, resource allocation, scale up/down and
migrations.

III. MODELLING LOAD FLOW IN CLOUDS
In this section we discuss the main components of cloud

structures and propose a formal model based on a directed
acyclic multigraph to represent the load flow in clouds. In
the Subsection III-A we present the concept of load and its
importance for cloud management, as well as, its representa-
tion in different abstraction levels. Subsection III-B presents
the structural model and its main components. In Subsection
III-C, we formally define the data structures to represent
loads, configurations, states and functions. Finally, Subsection
III-D discusses the computational details of the propagation
of the loads and the evaluation of the states for each cloud
component.

A. Loads and Abstraction Levels
The concept of load is central in CC management literature

and it is related to the qualitative and quantitative effort that
an element requires to perform a task. However, in CC, it
is necessary to manage components related to processing,
networking, storage and complex systems, in several abstrac-
tion levels. Materially, the loads and the consumers’ data that
must be transformed, transported and persisted are the same
thing. Nevertheless, the system analysts are focused on the
behaviour of data through the cloud structures, whereas the
cloud manager must pay attention to the behaviour of cloud
structures when the data is passing through them.

In a view based on data centre elements, the loads are
traditionally mapped to metrics of processing, networking and
storing. This concrete view is not complete for CC since the
providers can work with elements in other levels of abstraction.
Providers in a xAAS fashion can have any type of elements
in their structures which must be modelled – from physical
resources, till only third-party services as resources of an
orchestration system. This heterogeneity in the abstraction
levels of managed cloud elements, and their compositional
nature (or fractal nature), produces the need to model the load
propagation through the abstraction levels.

This load propagation through the technology stack is
fundamental to understand how the abstract loads on services’
interfaces become concrete loads in the resources. For ex-
ample, supposing a photography storage service with mobile



86

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and web interfaces, the upload of an array of photos can
represent a load in the server-side interface (expressed in
number of photos), whereas, the same load must be expressed
in several loads on (virtual) links, (virtual) processors, and
(virtual) storages, not necessarily related to time. In fact, the
upload of an array of photos is an abstract load and can be an
useful to perform billing metrics, but it can be not useful to
measure performance, requiring the detailing to concrete loads,
according to the cloud’s service implementation. An autonomic
manager agent, responsible for planning and decision making
in runtime, must understand the quantitative relations into the
managed cloud structure to work in real time.

Thus, using a graph to express the dependences between
elements in different levels, the abstracter elements (services’
interface) must appear in the roots of the graph, the con-
creter elements (resources) must appear in the leaves, whereas
the intermediary elements (systems) orchestrate resources in
order to implement the services. These concepts of services
interfaces, systems and resources become relative terms which
can adapted for any cloud implementation, independent of
absolute level of operation regards to the IaaS, PaaS and SaaS
taxonomy.

B. Modelling Clouds with C2LP
In C2LP, the structural arrangement of cloud elements

is based in a directed acyclic multigraph (DAM) where the
nodes of the graph represent components. To start a horizontal
decomposition must be considered the four main types for CC
elements:
• Resources are the base of any cloud, and can be clas-

sified in three elementary computational function: as
Computing, Storage and Networking; Therefore, these
components are always leaf nodes, even when virtualized
or based on service orchestration (e.g., a storage block
device built on email accounts). The elements with these
computational functions constitute the sources of comput-
ing power into a cloud. The term “computing power” is
used here not only for processing, but also for networking
and storage, since the CC paradigm effectively offer these
last as services, exposing their economical value.

• Systems are abstractions of orchestrated resources that
implement services. They can be, e.g., applications and
platforms. In the model, systems must be directly linked
to at least one of each type of resource: computing, stor-
age and networking. Nevertheless, these resources might
be replaced by other systems or third-party services. In
such cases, the relationship between the system and the
element that represents the resource (e.g., another system
or the third-party service) must be explicitly defined
using stereotypes (virtual computing, virtual networking
or virtual storage).

• Third-Party Services represent: (i) resources to system
components, when the relation is explicitly annotated with
the appropriated stereotype, and (ii) entire systems which
provide services and abstract the underlying layers (e.g.,
email services). The latter models, for example, hybrid
clouds or composed services.

• Services are interfaces between the cloud and the con-
sumers. They must be connected with a respective system
that implement them and never are directly linked to
resource or third-party services. Services interfaces are
the points on which the specification of the consumer’s

needs (SLAs) are attached. In your model the services
interfaces can receive loads from a hypothetical common
source (*), that symbolizes the consumer.

Directed edges define to which elements each cloud com-
ponent can transmit load. Nodes have two main processes:
propagation of the load; and evaluation of the impact of the
load in the node itself. Remarkably, the resources components
do not propagate load and are the only nodes that actually
run the assigned load, while other elements are abstract (e.g.,
applications, middlewares, platforms and operations systems).
Moreover, we consider in the model also the configurations
settings of nodes, which impact the propagation and evaluation
processes.

Providers offers services and receive requests from con-
sumers. These request represent an economical demand by
work, which in providers’ assets represent workloads, or just:
loads. The loads vary according to each cloud component and
are changing in quality and quantity along the computing chain
that compose the providers’ assets. Therefore, each node in the
DAM represents a function that convert the input load to output
load, from the services (sources) to the resources (sinks). In the
resources occurs the work, realizing the load and consuming
computing power.

In fact, just low abstraction loads would need to be
represented in the model, e.g., supposing an IaaS provider:
link, processor and storage. However, the patterns of be-
haviour in low level loads become chaotic and unmanageable
without information about the abstract component that guide
the resources usage. Therefore, distributing load propagation
functions over a graph is a simple way to represent complex
function compositions on a conceptual network. Assuming
that the loads flow from the sources (services) to the sinks
(resources), and a node must have all incoming loads available
to compute the outgoing loads, the propagation must be made
in a breadth-first fashion.

Since loads might have different forms, we model these
relations enabling multiple edges between nodes, which sim-
plifies the understanding of the model. For example, a ser-
vice transmits 10 giga FLoating-point Operations Per Second
(FLOPS) and 100 giga bytes of data to third-party service.
This case is modelled using two edges, one for each type of
load to the third-party. In case of change in the structure (e.g.,
the executor of the loads finds a cheaper storage provider)
the model can be adjusted simply by removing the storage
edge between these nodes and adding it to this new third-party
provider.

When the loads are realized in the resources, they produce
several effects which can be measured by the monitoring. For
example: resource usage, energy consumption, fails, costs, etc.
The modelling of qualitative and quantitative relations between
loads and their effects over the resource is a mandatory task
to enable managerial planning and decision making. Neverthe-
less, measurable effects in resources can also signify metrics in
system and services. For example, the sum of energy consumed
in the processors, network and storage, in order to download
a photo of 10GB, means the amount of energy consume do
resolve a load of type “download photo” of size “10GB”, in
service level.

However, is not only the loads which determine the
behaviours of the resources, but also the configuration
parametrized by the cloud manager, and the accumulated ef-



87

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fects from previous loads. On the other hand, non-leaf elements
– which the evaluations depend of lower level elements – must
consider: incoming loads, the accumulated state (a priori) and
the state of lower elements (target nodes). This is represented
in the model as distinct evaluation functions. In the C2LP were
modelled a set of evaluated functions for leaf nodes, with two
inputs, and a set for non-leaf nodes, with three inputs. The both
type of functions output a new node state which can contain
several sub-evaluations (measures).

The propagation of evaluations is done after the propaga-
tion of loads, from bottom to top. This procedure will provide
the amount of loads in each element of the model. With the
loads and the configurations and accumulated state (a priori
state) in the resources elements, it is possible to compute the
new configurations and accumulated state (the a posteriori
state). So, in the non-leaf nodes it is possible to compute
the a posteriori state with its the a priori state and the a
posteriori states of its dependencies (lower level elements). To
perform the evaluation of whole graph, from the root nodes,
it is necessary to perform a depth-first computing though the
graph.

Figure 1 presents the modelling of a scenario, in which a
cloud provides two services: an email and Infrastructure-as-a-
Service (IaaS). The IaaS is provided by a third-party cloud.
The email service instead, employs a system component to
represent a software email server (in this case a Postfix). This
component uses local computing and networking and storage
from a third-party cloud. The relation (edge) between these
components is annotated accordingly.

In the proposed scenario, we exemplify the load propaga-
tion with a request from consumers to send 2 new emails using
the email service. These 2 emails are converted by the service
component into 2 loads of type “transaction” and sent for the
email server where they are converted into another types of
load and propagated to the resources linked to the server.

The evaluation process of this scenario uses different
metrics in each node and is marked as “eval:“. For example, in
the service level, the load of 2 emails was measured in terms
financial cost and energy necessary to complete the request.

C. Formalisation of the Model
Formally, in C2LP model, a cloud C can be expressed as

C = (V,E, τV , σ,Φ, φ,Γ, γ,Γ′, γ′), where:
• V is the set of nodes V = {v1, v2, . . . , vn} of the

multigraph, such that every item in V represents one
element of the cloud and has one respective node-weight
wv , that usually is a vector of values;

• E is the set of directed edges where E =
{e1, e2, . . . , em}|e = (v, v′), that describes the ability of
a source node v to transmit a load to node v′, such that
each em also has a respective edge-weight wv,v′ ;

• τV : V → TV is a bijective function which
maps the nodes with the respective type, where
the set TV is the set of types of nodes, such
that TV = {′computing′, ′storage′, ′networking′,
′system′, ′service′, ′third party′};

• σ : E{→system,→third−party} → {none, vComputing,
vStorage, vNetworking} is a function which maps the
edges that have systems and third-party services as target
with the respective stereotype, characterising the relation
between the source element with the target;

• Φ represents the set of propagation functions, where

NetworkingComputing

Third-party
IaaS

Consumers

Email
Service

Postfix
Server

Third-party

Cloud

load: 2 New Emails

load: 2 Transactions

load: 1 gFLOP

 load: 2.5mbload: 20 kb

<v-Storage>

eval:
(2 kw,10 sec)

eval:
(0.3 Euros)

eval:
(1 kw)

eval:
 (3 kw, 0.8 Euros)

eval: 
 (3 kw, 0.8 Euros)

load: 2 mb

IaaS

Figure 1: Example of the propagation of loads and the evaluation
processes using the C2LP model.

Φ = {f1, f2, . . . , fv} and φ is a bijective function
φ : V → Φ that maps each node for the respective
propagation function. Each function in the set Φ is defined
as fv : Nn,Ri → Ro, where: the set Nn represents
the space where the n-tuple for the configuration is
contained; the set Ri represents the space where the n-
tuple of incoming edge-weights is contained; and, Ro is
the space where the n-tuple of the outgoing edge-weights
is contained. To simplify the model and the algorithms,
we consider that configurations are stored in the node-
weight, such that wconf

v represents the configuration part
of the node-weight vector.

• Γ is the set of sets that contains the evaluation functions
for the leaf nodes, such that there exists one function
for each distinct evaluation metric (e.g., energy use,
CO2 emission, . . . ). Then, Γ = {Γ1,Γ2, . . .Γk}, such
that Γk = {gn+1, gn+2, . . . , gm}. Each set Γk is re-
lated to a leaf node v ∈ V[leaf ] through the bijective
function γ : V[leaf ] → Γ. Every gn+m is stored in
a distinct position of the node-weight vector of the
respective node – representing a partial state of v –
such that the full new state can be computed through
the expression: w′v = (c1, . . . , cn, gn+1(c1, . . . , cn, w

i
v),

gn+2(c1, . . . , cn, w
i
v), . . . , gn+m(c1, . . . , cn, w

i
v)), where:

c1, . . . , cn is the n-tuple with the configuration part of
the node-weight wv; wi

v is the n-tuple with all incoming
edge-weights w∗,v of v; and w′v is the new node-weight
(full state) for v. The complete evaluation procedure is
detailed in Figure 6;

• Γ′ is the set of sets that holds the evaluation functions
for non-leaf nodes. Therefore, Γ′ = {Γ′1,Γ′2, . . . ,Γ′l},
such that each set Γ′l = {g′n+1, g

′
n+2, . . . , g

′
m} con-

tains the evaluation functions g′n+m. Every Γ′l is as-
sociated with a non-leaf node v through the bijective



88

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

edge-weight edge-weight edge-weight edge-weight

(node-weight)

f(...)

edge-weight edge-weight edge-weight edge-weight

Figure 2: Illustration of load propagation in root or non-leaf nodes.

function γ′ : Vnon−leaf → Γ′. Since the result of
each function g′n+m is stored in a distinct position
of w′v , it represents a partial state of the respective
node v. A new full state of non-leaf nodes can be
computed through the expression: w′v = (c1, . . . , cn,
g′n+1(c1, . . . , cn, w

i
v, w

′
uv

), g′n+2(c1, . . . , cn, w
i
v, w

′
uv

),
. . . , g′n+m(c1, . . . , cn, w

i
v, w

′
uv

)); where w′v is the new
node-weight of v, c1, . . . , cn is the n-tuple with the
configuration part wconf

v of the node-weight, wi
v is the

n-tuple with the incoming edge-weights e∗,v of v, and
w′uv

is a tuple which puts together all node-weights of
the successors of v (see Figure 6 for details).

The main objective of these formalisms is to specify
the data structures that support a model validation, the load
propagation, and elements evaluations. The details of each
procedure concerned with propagation and evaluations are
described in Subsection III-D.

D. Details on the Propagation and Evaluation
The load propagation consists in a top-down process that

uses the breadth-first approach. In a breadth-first algorithm,
all the incoming loads are available for a node before the
inference of its outgoing loads. In the specific case on C2LP
the algorithm starts from the loads on the services, correspond-
ing to the requests received from consumers. The Figure 2
illustrates the load propagation. The blue oblong represents a
non-leaf element that has incoming edges, which the weights
represent incoming loads. Alto, there is the node-weight that
represents the a priori state, that contains the configurations
and accumulated states. Both, the incoming loads and node-
weight, are used as inputs for the node attached propagation
function f(...), that produces a tuple with the output edge-
weights.

The propagation process uses a queue with the service
nodes (the roots of the graph). Then, a node v is picked
from this queue and all its children are placed into the queue.
Afterwards, a function fv = φ(v) is executed to distribute the
load, that is, to define all edge-weights for the outgoing edges
of v. This procedure is repeated while the queue is not empty.

1: procedure BREADHTFIRSTPROPAGATION(C,WV ,WE) .
Requires a cloud model C = (V,E, τV , σ,Φ, φ), the
set of node-weights WV |∀v ∈ V ∧ ∃!wv ∈ WV and
the set of edge-weights WE |∀ev,v′ ∈ E ∧ ∃!wv,v′ ∈
WE .

2: queue← ∅
3: enqueue(∗)
4: repeat
5: v ← dequeue()
6: for each u ∈ successorSet(v) do
7: enqueue(u)
8: end for . enqueues the sucessor of each node
9: fv ← φ(v)

10: wconf
v ← configurationPart(wv) . gets the

config. part of the node-weight (state).
11: wi

v ← (w1,v, w2,v, . . . , wu,v) . builds the
incoming edge-weights in a tuple wi

v .
12: wo

v ← fv(wconf
v , wi

v) . wo
v contains the result of

the propagation function.
13: for each wv,u ∈ wo

v do
14: WE ←WE ⊕ wv,u . replaces the old value

of wv,u.
15: end for. assign the values for the outgoing edges

of v.
16: until queue 6= ∅

return WE

17: end procedure

Figure 3: Breadth-first algorithm used for the load propagation.

The well defined method is detailed in Figure 3.
When the load is propagated to resources components (leaf

nodes), they execute the load. This execution requires power
and resources and can be evaluated in several forms. For exam-
ple, energy (kw), performance, availability, accounting, secu-
rity, CO2 emissions and other cloud specific feature units. This
evaluation process takes every function gn+m ∈ Γk in order
and computes each partial states, storing them into a position of
the new node-weight w′v . A finer description can be defined as:
w′v = (wconf

v , gn+1(wconf
v , wi

v), . . . , gn+m(wconf
v , wi

v), such
that w′v represents the a posteriori state for the node v, wconf

v
are the configurations (a priori state) of v, wi

v are the incoming
edge-weights of v, and gn+m ∈ γ(v) are the evaluation
functions associated with the node.

The process of evaluation in leaf nodes is depicted in the
Figure 4, where the pink oblong represents a leaf node. In these
nodes the edge-weights and the a priori node-weight serve as
inputs for each function in the vector of evaluation functions,
which produce a single value each one. These single values are
grouped in a tuple that results in the a posteriori node weight.

The evaluations also include the non-leaf nodes since
the load also passes through them and it is useful, e.g., to
understand the load distribution and to identify bottlenecks.
In the case of non-leaf nodes, the evaluation requires also the
evaluation results of the bottom nodes. Therefore, this process
is performed from the leaves to the roots using a depth-first
approach.

A non-leaf node receives the tuples (config, loads,
children states), and evaluates by the processing
of all g′n+m ∈ γ′(v) functions. A representation



89

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(g(...),...,g(...))

(node-weight)

(node-weight')
(node-weight')

edge-weight edge-weight edge-weight edge-weight

Figure 4: Illustration of evaluations in leaf nodes.

of this process can be described as: w′v =
(wconf

v , g′n+1(wconf
v , wi

v, w
′
uv

), . . . , g′n+m(wconf
v , wi

v, w
′
uv

),
such that w′v represents the new node-weight (a posteriori
state) for the node v, wconf

v are the configuration part (a
priori state) of node-weight into v, wi

v represent the incoming
edge-weights of v, w′uv

are the computed node-weights of
the successors of v, and g′n+m ∈ γ′(v) are the evaluation
functions associated with the node.

The evaluation in a non-leaf node is depicted in the Figure
5, where the blue oblong represents a non-leaf. In this figure it
is possible to observe the a posteriori node-weights from the
lower level elements being “transmitted” through the edges.
The proximity of node-weights with edges do not represent the
association between them, but the transmission of one through
the other. Into the node is depicted the vector of evaluation
functions, which will receive: the a priori node-weight of
the node itself and the a posteriori node-weights from the
lower elements; and produce single values which are grouped,
in order to compose a posteriori node-weight tuple for the
node itself. This a posteriori node-weight is propagated for
the upper elements through the edges. The node-weight in the
superior edges have the same value, the computed a posteriori
node-weight, for all edges. Also, the arrows do not represent
the direction of the edges, but the information flow.

The complete evaluation process is detailed in Figure 6,
where a stack is used to perform a depth-first computation.
The first non-visited child of a current node is placed into the
stack and will be used as current node. When all children of a
node are evaluated, then the node is evaluated. If the node is a
leaf node the g functions are used to compute the evaluations,
otherwise, the g′ functions are used instead.

These mathematical structures and algorithms provide a
general framework for modelling and evaluation of clouds’
elements behaviour in different abstraction levels. They can
express and compute how service level loads are decomposed
and converted, through the systems, till become resource level
loads. In resource level, on concrete elements, the loads can
be evaluated according to performance, availability and other
objective metrics. At end, the same structures and algorithms
can be used to compute objective metrics for abstract elements.
The whole model serves to simulate and compare the impact of
configuration’s changes in any point of the cloud, supporting

(node-weight') (node-weight') (node-weight') (node-weight')

(node-weight') (node-weight') (node-weight') (node-weight')

(node-weight')

(node-weight)

(g'(...),...,g'(...))

Figure 5: Illustration of evaluations in non-leaf nodes.

the managerial decision making.

IV. EXPERIMENTS AND RESULTS
This section presents numerical experiments with the C2LP

model, based on a service modelling. These experiments serve
to: (i) test the applicability of the model; (ii) illustrate the
modelling with our formalism with an example; and (iii)
demonstrate the model capacity to generate quantitative be-
haviours to manage loads, combining variations of propagation
and evaluation functions.

To perform these experiments, we have implemented a
use case using our model. This use case exemplifies the
model’s usage and serves to test its feasibility. The example of
model’s usage was made using hypothetical functions, since
its objective is to prove the generation of simulations, the
propagation and the evaluation. Nevertheless, our model can
be used for modelling real-world clouds, provided that the
propagation and evaluation functions are adjusted to the cloud
instance.

As use case, we defined an IaaS service where consumers
perform five operation: deploy VM, undeploy VM, start VM,
stop VM, and execute tasks. To meet the demand for these
services, we designed a hypothetical cloud infrastructure with
which is possible to generate quantitative scenarios of propaga-
tion and evaluation – in a combinatorial fashion. Using this hy-
pothetical infrastructure, we have tested some managerial con-
figurations related to load distribution over the cloud elements,
in order to evaluate the average utility for all quantitative
scenarios. At the end, the configurations which achieve the best
average utility for all quantitative scenarios were highlighted,
depicting the ability of the model to simulate configuration
consequences for the purpose of selecting configurations.

A. Use Case Modelling
To deal with the consumers’ loads (deploy, undeploy,

start, stop and execute) at service abstraction level, the in-
frastructure manages: the service interface; systems, such as
load balancers, cloud managers and cloud platforms; and
resources, such as servers, storages and physical networks.
All operations invoked by consumers represent an incoming



90

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1: procedure DEPTHFIRSTEVALUATION(C,WV ,WE) .
The same input described in Figure 3.

2: β ← ∅ . initializes the set of visited nodes.
3: stack ← ∅ . initializes the stack.
4: push(∗) . starts from the hypothetical node.
5: while stack 6= ∅ do
6: v ← peek() . gets a node without to remove it.
7: for each u ∈ successorSet(v) do
8: if u /∈ β then
9: push(u)

10: continue while
11: end if
12: end for. if the for loop ends, all successors have

been evaluated.
13: wconf ← configurationPart(wv) . gets the

config. part for v.
14: wi

v ← (w1, w2, . . . , wu,v) . builds the n-tuple
with the incomings of v.

15: if isLeaf(v) then
16: w′v ← (wconf

v , gn+1(wconf
v , wi

v), . . . ,
gn+m(wconf

v , wi
v)),∀gn+m ∈ γ(v)

. computes the partial states and builds
the new node-weight.

17: else
18: w′uv

← (w′u1
, w′u2

, . . . , w′uo
) .

builds the computed node-weights for all
u|∃ev,u ∈ E.

19: w′v ← (wconf
v , g′n+1(wconf

v , wi
v, w

′
uv

), . . . ,
g′n+m(wconf

v , wi
v, w

′
uv

)),∀g′n+m ∈ γ′(v) .
computes the partial states and builds the
new node-weight.

20: end if
21: WV ←WV ⊕ w′v . replaces the old state of v

into the node-weights.
22: if v /∈ β then
23: β ← β ∪ v
24: end if . puts v in the visited set if it is not there.
25: v ← pop() . gets and removes v from the stack.
26: end while

return WV

27: end procedure

Figure 6: Depth-first algorithm to evaluate in specific metrics the
impact of the load in each node.

load on the service interface, which is propagated to resources.
In the resources the loads are evaluated to provide measures
about performance, availability, accounting, security and CO2
emissions. Once computed these measures for resource level
elements it is possible to compute they also for systems and,
at the end, for the service interfaces, getting service level
measures.

The modelling of the use case was devised considering
21 components: 1 service, 9 systems, and 11 resources. The
services represent the interface with customers. In this use
case, the systems are: a load balancer; two cloud manager
systems; and six cloud platforms. Also, between the resources
there are: 8 physical computing servers (6 work servers and 2
managerial), 2 storages (1 work storage and 1 managerial), and
1 physical network. A detailed list of components is presented
in Appendix I.

Regarding the edges and loads, each consumer’s operation

is modelled as an incoming edge in a service interface node
– with the respective loads in the edge-weights. The service
node forwards the loads for a load balancer system, where
the propagation function decides to which cloud manager the
load will be sent, whereas the manager servers, the manager
storage and the physical network receive the loads by its
operation. In the cloud mangers, the propagation function must
decide to which cloud platform the loads will be sent and, at
the same time, generate loads for the managerial resources. The
cloud platform system effectively converts its loads into simple
resource loads when uses the work server, work storage and
physical network. The complete relation of load propagation
paths is presented in Appendix I, where an element at the left
side of an arrow can propagate loads for an element at the right.
Furthermore, a graphical representation of these tables, which
depicts the graph as a whole, is also presented in Appendix I.

Besides the node and the edges, the use case model
required the definition of: • 4 types of propagation functions
– one for the service and tree for each type of system; • 6
types of leaf evaluation functions – two specific performance
evaluations, one for computing resources and another for stor-
age and networking; plus, four common evaluation functions
(availability, accounting, security and CO2 emissions) for each
type of resource; • 5 types of non-leaf evaluations functions.

We have modelled the possible combinations to dis-
tribute the loads {1-deployVM, 2-undeployVM, 3-startVM, 4-
stopVM, 5-compute} as a partition set problem [25], resulting
in 52 distinct possibilities of load propagation. Also, we intro-
duced 2 possible configurations into each evaluation function
for leaf nodes. These configurations are related to the choice
of constants into the function. For example, the performance
of a computing resource depends on its capacity, that can
be: a = 50GFLOPs or b = 70GFLOPs. Considering 5
distinct evaluation functions over 11 leaf nodes, we have got
(25)11 = 255 possible distinct configurations to test.

B. Evaluations
The numerical experiments were performed running the

propagation procedure, followed by the evaluation of every
simulation. For each possible propagation, we tested and
summarised the 255 configurations for evaluation functions.
Then, we analysed the average time (p, in seconds), average
availability (av, in %), average accounting (ac, in currency
units), average security (s, in % of risk of data exposition),
and average of CO2 emissions (c, in grammes). Each value
was normalised according to the average for all propagations,
tested and summarised in a global utility function, described
in (1) – where the overlined variables represent the normalised
values.

Such results can be used by cloud managers to choose
the best scenario according to the priorities of the policy or
to provide as input for a decision-making process, such as
Markov Chains.

u = −(av + s− (p+ ac+ c)) (1)

The four best results of the fifty two numerical experiments
are presented in Table II in ascending order. The configuration
that achieves the best average utility is highlighted in bold. The
code line in the table represents the propagation configuration,
whereas the other lines contain the values obtained for each
distinct evaluation type. The last row present the average utility



91

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: SUMMARY OF AVERAGE EVALUATIONS FOR EACH
CONFIGURATION.

Criteria Configuration
Code 11221 11231 11232 11212
Time 180.59976 180.5999 180.60004 180.59991

Availability 0.9979606 0.99795955 0.9979587 0.99795926
Accounting 78.69924 78.69926 78.699234 78.699265

Security 0.9979606 0.99795955 0.9979587 0.99795926
Emissions 82848.31 82848.14 82848.51 82848.74

Utility 1.0526400204 1.0526410547 1.0526477776 1.0526491889

defined in Equation 1. To represent configuration we have
adopted a set partition notation to express the propagation
paths, such that each position in the code represents a type
of load: 1-deploy, 2-undeploy, 3-start, 4-stop, and 5-compute.
Considering that at leaves of the propagation graph there are
6 cloud platforms, a code 11212 indicates that the loads of
type 1,2 and 4 were allocated on cloud platform 1, whereas
the loads 3 and 5 ware allocated in the cloud platform 2.

These experiments present evidences that our model works
as an engine to simulate and measure the impact of the
propagation of loads through the several elements in the cloud.
With the distribution of simple functions on a graph, we have
demonstrated the capacity to compute a model that is rather
complex,when treated purely with function composition and
arithmetic. These experiments also shows that the metrics of
behaviour can be simulated with the combinatorial representa-
tion of the parameters settings which generated the behaviour.

The breadth-first algorithm ensures that the nodes compute
all loads before estimating their outputs. On the other hand,
the model and the depth-first algorithm ensure that the com-
puted measures generated by the actual resource consumption,
which occurs in the leaves of the modelled cloud, can be
composed. The loads are converted into different types (and
units), according to the elements and specified functions. Also,
the adjusts in the parameters in the node-weight allow the
testing of several computed loads and measures, in different
configuration scenarios. These parameters can be treated with
combinatorics instead of programmatic simulators, since the
total set of possible configurations becomes a well defined
combinatorial problem.

V. CONCLUSION AND FUTURE WORKS
Several solutions have been proposed to model clouds.

However, to the best of our knowledge, none is general and
has mathematical formalism at the same time, which are
essential characteristics for evaluation of decision making and
autonomic management.

In this study, we have presented an approach with these
characteristics to model clouds based in Directed Acyclic
Multigraph, which has the flexibility of general models and
the formalism of the specifics. Therefore, C2LP is a flexible
well-formed modelling tool to express flows of loads through
the cloud components. This model supports the specification
of elements in distinct abstraction levels, the generation of
combinatorial variations in a use case modelling and the
evaluation of the consequences of different configuration in
the load propagation.

We developed a simulation software tool for the modelling
of IaaS services and demonstrated the applicability of our
approach through a use case. In this use case, we simulated
several graph network theoretic analysis, evaluated and com-

pared different configurations and, as a result, supplied the
cloud managers with a numeric comparison of cost and benefits
of each configuration. These experiments, demonstrated that
this tools provides an essential support for the management of
cloud.

In the future works we intent to develop a description
language to specify the rules of association between cloud
elements in order to compose de graph. Yet, we intent to study
the fractal phenomena in cloud structures, in order to improve
the managerial view about the relation between abstract and
concrete elements, and the model’s granularity. Also, is our
desire to investigate how the different models – among the
possible aggregations of metrics and parameters – impact the
planning and decision making in management of cloud at
runtime. At last, we intent to improve the C2LP adding order
relations between the states, attached to nodes, in order to
enable the model to encompass policies and SLAs.

ACKNOWLEDGEMENT
The present work was done with the support of CNPq

agency, through the program Ciência sem Fronteiras (CsF), and
the company Eletrosul Centrais Elétricas S.A. – in Brazil. The
authors also would like to thank professor Rocco De Nicola
and the group of SysMA research unit in Institute for advanced
studies Lucca (IMT).

REFERENCES
[1] Rafael de S. Mendes, Rafael B. Uriarte, and Carlos B. Westphall,

“C2LP: Modelling Load Propagation and Evaluation through the Cloud
Components,” In ICN 2016, The Fifteenth International Conference on
Network, IARIA XPS Press, 2016, pages 28–36.

[2] Sekharipuram S. Ravi and Sandeep K. Shukla, “Fundamental Problems
in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz,”
Springer Netherlands, 2009.

[3] Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li, “Autonomic
cloud computing: Open challenges and architectural elements,” In
Emerging Applications of Information Technology (EAIT), 2012 Third
International Conference on. IEEE, 2012, pp. 3–10.

[4] Rafael de S. Mendes et al., “Decision-theoretic planning for cloud
computing,” In ICN 2014, The Thirteenth International Conference on
Networks, Iaria, vol. 7, no. 3 & 4, 2014, pages 191–197.

[5] Itzhak Gilboa, “Theory of Decision under Uncertainty,” Cambridge
University Press, 2009.

[6] Cliff Ragsdale, “Modeling & Decision Analysis,” Thomson, 2008.
[7] Alexandre A. Flores, Rafael de S. Mendes, Gabriel B. Bräscher, Carlos

B. Westphall, and Maria E. Villareal, “Decision-theoretic model to
support autonomic cloud computing,” In ICN 2015, The Fourteenth
International Conference on Networks, Iaria, vol. 8, no. 1 & 2, 2015,
pages 218–223.

[8] Rafael B. Uriarte, “Supporting Autonomic Management of Clouds:
Service-Level-Agreement, Cloud Monitoring and Similarity Learning,”
PhD thesis, IMT Lucca, 2015.

[9] Rafael B. Uriarte, Francesco Tiezzi, and Rocco De Nicola, “SLAC:
A formal service-level-agreement language for cloud computing,” In
Proceedings of the 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing, IEEE Computer Society, 2014, pages
419–426.

[10] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Csar A. F. De
Rose, and Rajkumar Buyya, “Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, Wiley
Online Library, vol. 41, no. 1, 2011, pages 23–50.

[11] Rajkumar Buyya and Manzur Murshed, “Gridsim: A toolkit for
the modeling and simulation of distributed resource management and
scheduling for grid computing,” Concurrency and computation: practice
and experience, Wiley Online Library, vol. 14.no. 1315, 2002, pages
1175–1220.



92

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan, “Green-
Cloud: a packet-level simulator of energy-aware cloud computing data
centers,” The Journal of Supercomputing, Springer, 2012, page 1263–
1283.

[13] Teerawat Issariyakul and Ekram Hossain, “Introduction to network
simulator NS2,” Springer Science & Business Media, 2011.

[14] Alberto Núñez et al., “iCanCloud: A flexible and scalable cloud
infrastructure simulator,” Journal of Grid Computing, Springer, vol.
10, no. 1, 2012, pages 185–209.

[15] Rodrigo N. Calheiros, Marco A.S. Netto, César A.F. De Rose, and
Rajkumar Buyya, “EMUSIM: an integrated emulation and simulation
environment for modeling, evaluation, and validation of performance
of cloud computing applications,” Software: Practice and Experience,
Wiley Online Library, vol. 43, no. 5, 2013, pages 595–612.

[16] Rodrigo N. Calheiros, Rajkumar Buyya, and Csar A. F. De Rose,
“Building an automated and self-configurable emulation testbed for grid
applications,” Software: Practice and Experience, Wiley Online Library,
vol. 40, no. 5, 2010, pages 405–429.

[17] Seung-Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun Kyoung Kim,
and Chita R. Das, “MDCSim: A multi-tier data center simulation,
platform,” In Cluster Computing and Workshops, 2009. CLUSTER’09.
IEEE International Conference on, IEEE, 2009, pages 1–9.

[18] Jordi Vilaplana, Francesc Solsona, and Ivan Teixidó, “A performance
model for scalable cloud computing,” In 13th Australasian Symposium
on Parallel and Distributed Computing (AusPDC 2015), ACS, vol. 163,
2015, pages 51–60.

[19] James R. Jackson “Networks of Waiting Lines,” Operations Research,
vol 5, no. 4, 1957, pages 518–521.

[20] Paulo F. Silva, Carlos B. Westphall, and Carla M. Westphall, “Model
for cloud computing risk analysis,” ICN 2015, Iaria, vol. 8, no. 1 & 2,
2015, page 152.

[21] Nada Ahmed and Ajith Abraham, “Modeling cloud computing risk
assessment using machine learning,” In Afro-European Conference for
Industrial Advancement, Springer, 2015, pages 315–325.

[22] Sergio Nesmachnow, Santiago Iturriaga, and Bernabe Dorronsoro,
“Efficient heuristics for profit optimization of virtual cloud brokers,”
Computational Intelligence Magazine, IEEE, vol. 10, no. 1, 2015, pages
33–43.

[23] Tim Püschel, Guido Schryen, Diana Hristova, and Dirk Neumann,
“Revenue management for cloud computing providers: Decision mod-
els for service admission control under non-probabilistic uncertainty,”
European Journal of Operational Research, Elsevier, vol. 244, no. 2,
2015, pages 637–647.

[24] Chunling Cheng, Jun Li, and Ying Wang, “An energy-saving task
scheduling strategy based on vacation queuing theory in cloud com-
puting,” Tsinghua Science and Technology, IEEE, vol. 20, no. 1, 2015,
pages 28–39.

[25] Toufik Mansour, “Combinatorics of Set Partitions,” CRC Press, 2012.



93

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX I: IMPLEMENTATION DETAILS

TABLE III: THE CLOUD ELEMENTS – NODES OF THE GRAPH.

CS - computing service CP21 - platform 21 WS12 - work server 12
LB - load balancer CP22 - platform 22 WS13 - work server 13
CM1 - cloud manager 1 CP23 - platform 23 WS21 - work server 21
CM2 - cloud manager 2 MS1 - manager server 1 WS22 - work server 22
CP11 - platform 11 MS2 - manager server 2 WS23 - work server 23
CP12 - platform 12 MSTO - manager storage WSTO - work storage
CP13 - platform 13 WS11 - work server 11 PN - physical network

TABLE IV: THE LOAD PROPAGATION RELATIONS – EDGES OF THE GRAPH.

5−→CS CM1 5−→CP11 CP11 → WS11 CP21 → PN

CS 5−→LB CM1 5−→CP12 CP11→PN CP21→WSTO

LB 5−→CM1 CM1 5−→CP13 CP11→WSTO CP22→W22

LB 5−→CM2 CM1 → PN CP12→WS12 CP22 → PN
LB → MS1 CM2 → MS2 CP12 → PN CP22 → WSTO
LB → MS2 CM2 → MSTO CP12 → WSTO CP23 → W23

LB → WSTO CM2 5−→ CP21 CP13→ W13 CP23 → PN

LB → PN CM2 5−→ CP22 CP13→ PN CP23 → WSTO

CM1 → MS1 CM2 5−→ CP23 CP13 → WSTO
CM1 → MSTO CM2 → PN CP21 → W21

Computing
Service

Load
Balancer Cloud

Manager 2
Cloud

Manager 1

Manager
Server 1

Platform
11

Manager
Server 2

Phisical
Network

Platform
12

Platform
13

Platform
21

Platform
22

Platform
23

Work
Server 11

Work
Server 12

Work
Server 13

Work
Server 21

Work
Server 22

Work
Server 23

Work
Storage

Manager
Storage

Figure 7: Graphical representation of structural arrangement for the modelling use case.



94

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V: PROPAGATION FUNCTIONS.

Types Declarations Definitions

service (w1, · · · , w5)
fCS

7−−−→ (w′1, · · · , w′5) . wn is the weight for n−→ CS).
w′n is the weight for (CS

n−→ LB).
w′n = wn|∀w′n ∈ fCS .

balancer (c1, . . . , c5, w1, · · · , w5)
fLB

7−−−→.
(w′1, . . . , w

′
14)

cn ∈ {CM1, CM2}, are the configurations which
represent the targets of each load wn|1 6 n 6 5.

w′n =

{
wn if cn = CM1
0 otherwise

∣∣∣∣ 1 6 n 6 5

.

w′n+5 =

{
wn if cn = CM2
0 otherwise

∣∣∣∣ 1 6 n 6 5

.
w′1>n>5, are the weights in the edges LB 5−→CM1.

w′6>n>10, are the weights in the edges LB 5−→CM2.
w′11 = 1Gflop, is the a constant computing load in
LB→MS1.
w′12 = 1Gflop, is the a constant computing load in
LB→MS2.
w′13 = 50GB, is the a constant storage load in
LB→MSTO.
w′14 = w1 + 40, is the load over LB→PN, such that
w1 is the VM image size in GB, comes from deploy
VM operation, and 40 is a constant value in GB for the
another operations.

cloud manager (c1, . . . , c5, w1, · · · , w5)
fCMn

7−−−−→
(w′1, . . . , w

′
18)

cn ∈ {CPm1, CPm2, CPm3}, are the configurations
which represent the targets of each load wn|1 6 n 6 5.

w′n =

{
wn if cn = CPm1
0 otherwise

∣∣∣∣ 1 6 n 6 5

.

w′n+5 =

{
wn if cn = CPm2
0 otherwise

∣∣∣∣ 1 6 n 6 5

.

w′n+10 =

{
wn if cn = CPm3
0 otherwise

∣∣∣∣ 1 6 n 6 5

.
w′16 = 1Gflop, is the a constant computing load in
CMn→MSn.
w′17 = 50GB, is the a constant storage load in
CMn→MSTO.
w′18 = w1 + 40, is the load over CMn→PN, such that
w1 is the VM image size in GB, comes from deploy
VM operation, and 40 is a constant value in GB for the
another operations.

cloud platform (w1, · · · , w5)
fCPnn

7−−−−→
(w′1, w

′
2, w

′
3).

w1, · · · , w5, are the main loads come from the service,
associatively, w1 – deploy VM, w2 – undeploy VM, w3

– start VM, w4 – stop VM, and w5 – compute tasks.
w′1, w′2 and w′3 are, respectively, the edge-weight for
the arcs CPnn→WSnn, CPnn→WSTO and CPnn→PN,
where:
w′1 = w1 − w2 + w3 − w4 + w5;
w′2 = w1 − w2 + 1MB;
w′3 = w1 + w3 − w4 + 1MB.



95

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI: EVALUATION FUNCTIONS FOR LEAF NODES.
Types Functions

computing specific functions performance (duration): d(load) = load
capacity , where load is expressed in GFlop, capacity

is a constant of 70GFLOPs and d is the total time to resolve the load.

energy increment (kWh): energyincrement(load) here is considered a linear function which
returns the amount of energy necessary to process the load above the average consumption
of standby state. For computing have been considered 0.001kW per GFLOP.

storage and network specific functions performance (duration): d(load) = load
capacity , where load is expressed in GByte, capacity

is a constant of 1GBps and d is the total time to resolve the load. For the networking
resources this concept is intuitively associated with the network throughput, however,
for storage is necessary to explain that the performance refers to throughput of the data bus.

energy increment (kW): energyincrement(load) for data transmission is assumed as linear,
and was here considered 0.001kW per GB transferred.

common functions availability: av(load) = 1− pfault(d(load)), where pfault is the probability which a fault
occurs during the load processing. Here will be considered a linear naive probability, such
that pfault(d) = d× 0.01.

accounting: ac(load) = priceenergy × energytotal, where priceenergy is a
constant of 0.38US$/kW or 0.58US$/kW , depending on node configuration;
and energytotal = energyincrement(load) + energyaverage(d(load)), such that
energyaverage(d(load)) = d(load) × 0.1kW is the shared energy spent by the cloud
by time slot, and energyincrement(load) is the increment of energy result of resource usage.

security (risk of data exposition): s(load) = 1 − pexposure(load), where pexposure(load)
is the probability that the load processing results in data exposure and s(load) is the
trustability of the operation. The pexposure(load) is calculated as 0.001 for each second
of operation.

CO2 emission: c = energytotal × 400, where energytotal was defined in the accounting
evaluation function and 400 is a constant which represents the grammes of CO2 per kW .

TABLE VII: EVALUATION FUNCTIONS FOR NON-LEAF NODES.
Types Declarations Definitions

performance maximum duration of loads sent
for successor nodes.

pv(w1, . . . , w5, w
′
1, . . . , w

′
n) = max(w′1[p], . . . , w′n[p]),

where pv represents the total time to process the incom-
ing loads, and w′n[p] represents the specific part of in
the node-weight of n successor nodes, regards to the
duration to process the loads sent by the node v.

availability the product of the availability of
successor nodes according to the
sent loads.

avv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∏
w′n[av], where avv

represents the total availability of a node v according
its dependencies, and w′n[av] represents the availability
part in node-weights of the successors of v, related to
the loads sent.

accounting the sum of costs relative to the sent
loads for successor nodes.

acv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∑
w′n[ac], where acv

is the total cost related to v and regards to the loads
processed in the successors, and w′n[ac] is the accounting
part of the successors’ node-weight.

security the product of security (regards to
data exposition) of successor nodes
according to the sent loads.

sv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∏
w′n[s], where sv rep-

resents the total security measure of a node v, and w′n[s]
represents the security measure part in node-weights of
the successors of v, related to the loads sent.

CO2 emission the sum of total emissions relative
to the loads sent to the successor
nodes.

cv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∑
w′n[ac], where cv is

the total CO2 emission associated with a node v, and
w′n[ac] is the node-weight part associated with the
emissions caused by the loads sent from v.


