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Abstract—In previous work, we concluded that container tech-
nologies and overlay networks typically have negative perfor-
mance impacts, mainly due to an additional layer to networking.
This is what everybody would expect, only the degree of impact
might be questionable. These negative performance impacts can
be accepted (if they stay moderate), due to a better flexibility and
manageability of the resulting systems. However, we draw our
conclusion only on data covering small core machine types. This
extended work additionally analyzed the impact of various (high
core) machine types of different public cloud service providers
(Amazon Web Services, AWS and Google Compute Engine, GCE)
and comes to a more differentiated view and some astonishing
results for high core machine types. Our findings stand to reason
that a simple and cost effective strategy is to operate container
cluster with highly similar high core machine types (even across
different cloud service providers). This strategy should cover
major relevant and complex data transfer rate reducing effects
of containers, container clusters and software-defined-networks
appropriately.
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SDN; HTTP; REST; Microservice; Overlay Network; Performance;
Docker; Weave.

I. INTRODUCTION
In previous work [1], we investigated the performance

impacts of container technologies like Docker [2] and overlay
network solutions like Weave [3]. Both systems are typical type
representants for container or overlay network solutions.

Container technologies and overlay network solutions are
often mentioned in the same breath with the popular mi-
croservice approach [4]. The microservice architectural style
is applied successfully by companies like Amazon, Netflix,
or SoundCloud [4], [5]. This architecture pattern is used to
build very large, complex and horizontally scalable applica-
tions composed of small, independent and highly decoupled
processes communicating with each other using language-
agnostic application programming interfaces (API). Therefore,
microservice approaches and container-based operating system
virtualization experience a renaissance in cloud computing.
Especially, container-based virtualization approaches are often
mentioned to be a high-performance alternative to hypervisors
[6]. Docker [2] is such a container solution, and it is based
on operating system virtualization. Recent performance studies
show only little performance impacts to processing, memory,

network or I/O [7]. That is why Docker proclaims itself a
”lightweight virtualization platform” providing a standard run-
time, image format, and build system for containers deployable
to any Infrastructure as a Service (IaaS) environment.

Furthermore, container technologies and overlay network
solutions are often used under the hood by popular container
cluster platforms like Mesos [8], CoreOS [9] or Kubernetes
[10]. The reader is referred to more detailed analysis of such
kind of platforms [11], [12]. These cluster solutions are often
the technological backbone of microservice based and highly
scalable systems of cloud deployed systems. Nevertheless,
corresponding performance impacts of the underlying tech-
nologies have been hardly investigated so far. Additionally,
distributed cloud based microservice systems of typical com-
plexity often use hypertext transfer protocol (HTTP) based
and representational state transfer (REST) styled protocols to
enable horizontally scalable system designs [13].

Beside this, container clusters often rely on so called
overlay networks under the hood. Because overlay networks
are often reduced to distributed hashtable (DHT) or peer-to-
peer approaches, this paper uses the term software-defined-
networks (SDN). SDNs, in the understanding of this paper,
are used to provide a logical internet protocol (IP) network
for containers on top of IaaS infrastructures.

This study investigates the performance impact of one
representative SDN solution called Weave [3] for Docker [2]
and it is outlined as follows. Section II presents related work
about state-of-the-art network benchmarking of container and
container cluster approaches and SDN solutions. If container
clusters are to be distributed across multiple cloud infras-
tructures, the selection of appropriate machines is not trivial.
Section III focuses on this problem and shows how and why
we have selected exactly six virtual machine types of two
different cloud service providers (AWS and GCE) to do our
benchmarking. Section IV explains the experiment design to
identify performance impacts of containers and SDNs. The
used benchmark tooling is provided online [14]. Resulting
performance impacts are analyzed and discussed in Section
V. Derived conclusions and insights to minimize performance
impacts on application, overlay network and IaaS infrastructure
layer are presented in concluding Section VI.
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II. RELATED WORK
To handle complexity of common microservice approaches,

software developers often have to design, use or adapt existing
SDN software, that will run on commodity hardware. One of
the main challenges of SDN is to reach the performance known
from proprietary software running on purpose-built hardware.
This contribution will provide some insights into this gap, deal-
ing with influences of popular container technologies, cluster
approaches and software-defined-networks focusing HTTP and
REST-based network performance often used in microservice
architectures.

A. Container technologies
Although container based operating system virtualization

is postulated to be a scalable and high-performance alternative
to hypervisors. Hypervisors are still the standard approach
for IaaS cloud computing [6]. Felter et al. provided a very
detailed analysis on CPU, memory, storage and networking
resources to explore the performance of traditional virtual
machine deployments, and contrast them with the use of Linux
containers provided via Docker [7]. Their results indicate that
benchmarks that have been run in a Docker container show
almost the same performance (floating point processing, mem-
ory transfers, network bandwidth and latencies, block I/O and
database performances) like benchmarks run on ”bare metal”
systems. Nevertheless, Felter et al. did not analyze the impact
of containers on top of hypervisors like this contribution does.

Furthermore, the reader should be aware that Docker is not
the only container solution. Almost all operating systems pro-
vide some lightweight virtualization mechanisms like Docker
does for the Linux and further operating systems. So to some
degree, all of our conclusions can be transferred to lightweight
virtualization approaches shown in Table I.

If more than one container has to be operated with high
availability and scalability requirements in mind, so called
container clusters come into play. We will discuss these
technologies in Section II-B.

B. Container Cluster
Container clusters are similar to compute clusters. But

container clusters run containers instead of processing jobs.
It is up to the container cluster (to some definable degree) to
decide which resource is allocated to run a container. Container
clusters like Mesos [8], CoreOS [9] or Kubernetes [10] can be
deployed on thousands of machines (nodes). These nodes can
be hosted on ”real hardware” machines but also on virtual ma-
chine instances in private or public clouds. A container cluster
can be even deployed across different cloud service providers
and different IaaS infrastructures. This results in some positive
benefits for operation. (Regional) failures can be compensated,
overload can be distributed and vendor lock-in can be avoided
[11], [15]. However, all provided machines for such kind
of cluster should show similar performance characteristics
to enable fine-grained resource allocation capabilities of a
container cluster [16]. This can be tricky to achieve in multi-
provider scenarios and we will show in Section III how this
was considered for our machine type selection.

Furthermore, container clusters often use SDN solutions
under the hood to hide networking specifics from IaaS cloud
service provider infrastructures. This will be discussed in
following Section II-C.

C. Software-Defined-Networking
Software-defined-networking (SDN) is a paradigm where

a software program dictates the overall network. SDN brings
benefits, especially in cloud computing. Because it is easier
to change and manipulate than using a fixed set of commands
in proprietary network devices, SDN enables a high degree
of flexibility. Cloud computing enables to launch or terminate
instances very fast and on demand. In this context, accom-
panying scalability, elasticity and flexibility requirements are
hard to handle with legacy network platforms [17].

Although there exist several SDN solutions for Docker.
Pure virtual local area network (VLAN) solutions like Open
vSwitch (OVS) [18] are not considered, because OVS is not to
be designed for operating system virtualization. Two common
SDN solutions are Weave [3] and Flannel [19]. Weave and
Flannel are using a similar technique to build an overlay
network. Flannel is developed by CoreOS [9] and optimized
for the same named operating system. It turned out that
Flannel can not be installed frictionless on another operating
system without far-reaching modifications to the system. So we
decided to use Weave as representative SDN solution. Calico
[20] is a pure layer 3 approach to virtual networking for
highly scalable data centers but was out of our focus because
it requires Docker 1.9 to work seamlessly. Docker 1.9 had
been released after our benchmark analysis. However, Calico is
promising and will be extended to our here presented solution
in ongoing work.

Weave creates a network bridge on Docker hosts to enable
SDN for Docker containers. Each container on a host is
connected to that bridge. A Weave router captures Ethernet
packets from its bridge-connected interface in promiscuous
mode. Captured packets are forwarded over the user datagram
protocol (UDP) to Weave router peers running on other hosts.
These UDP ”connections” are duplex and can traverse fire-
walls.

D. Benchmarking network performances in containerized en-
vironments

To analyze the performance impact of containers, software-
defined-networks and machine types, this paper considered
several contributions on cloud related network performance
analysis [21], [22], [23], [24], [25], [26], [27]. So far, there
exist little papers focusing container technologies (only [7]
provide some data). But none of these contributions focused
explicitly on horizontally scalable systems with HTTP-based
and REST-like protocols. To address this common use case
for microservice architectures, this paper proposes a special
experiment design being described in Section IV.

So, there exist almost no special network benchmarks
focusing containerized environments and microservice related
system design questions. But of course, there exist several well
established TCP/UDP networking benchmarks like iperf
[28], uperf [29], netperf [30] and so on. [24] provide a much
more complete and comparative analysis of network bench-
marking tools. [31] present a detailled list on cloud computing
related (network) benchmarks. Most of these benchmarks focus
pure TCP/UDP performance [24] and rely on one end on
a specific server component used to generate network load.
These benchmarks are valuable to compare principal network
performance of different (cloud) infrastructures by comparing
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TABLE I. Lightweight virtualization mechanisms on various operating systems

Operating system Virtualization mechanism Further links (last access 9th Nov. 2015)
Linux Docker http://www.docker.io

LXC http://linuxcontainers.org
OpenVZ http://openvz.org

Solaris Solaris Zones http://docs.oracle.com/cd/E26502 01/html/E29024/toc.html

FreeBSD FreeBSD Jails http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/jails.html

AIX AIX Workload Partitions http://www.ibm.com/developerworks/aix/library/au-workload/index.html

HP-UX HP-UX Containers (SRP) https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HP-UX-SRP

Windows Sandboxie http://www.sandboxie.com
Hyper-V Container (planned) http://azure.microsoft.com/de-de/blog/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/

what maximum network performances can be expected for spe-
cific (cloud) infrastructures. But maximum expectable network
performances are in most cases not very realistic for REST-
based protocols.

Other HTTP related benchmarks like httperf [32] or
ab [33] are obviously much more relevant for REST-based
microservice approaches. These tools can benchmark arbitrary
web applications. But because the applications under test are
not under direct control of the benchmark, these tools can
hardly define precise loads within a specific frame of interest.
Therefore, HTTP related benchmarks are mainly used to run
benchmarks against specific test resources (e.g., a HTML
test page). But this makes it hard to identify trends or non-
continuous network behavior.

Our presented approach is more a mix of above mentionend
benchmarking strategies of pure TCP/UDP benchmarks and
HTTP benchmarks. Section IV will show that we use a bench-
mark frontend (which is conceptually similar to httperf or
apachebench) and a reference implementation under test (ping-
pong system, which is conceptually similar to a iperf server
but designed to measure HTTP performance). Furthermore,
most of the above mentioned benchmarks concentrate on data
measurement and do not provide appropriate visualizations of
collected data. This may hide trends or even non-continuous
network behavior. To cover this, our presented benchmarking
approach focus data visualization as well. Often cloud service
provider specific influences are not considered systematically
in recent studies. To consider such cloud service provider spe-
cific influences on network performance, we performed a very
systematic virtual machine type selection for our experiments
(see Section III).

III. VIRTUAL MACHINE TYPE SELECTION

Selecting virtual machine types can be complex in its
details. The underlying decision making problem makes it
difficult to model it appropriately. There exist several com-
plex mathematical models like analytic hierarchy processes
[34], utility function based methodologies [35], outranking
approaches [36], simple additive weighting approaches [37],
cloud feature models [38], dynamic programming approaches
[39], cloud service indexing [40], ranking approaches [41],
Markov decision process [42] or even astonishing combina-
tions of Fuzzy logic, evidence theory and game theory [43] to
support this task. However, in order to establish a container
cluster across multiple providers, it is necessary to select
most similar machines [16]. None of the above mentioned
approaches focuses similarity. All mentioned approaches try

to identify a best resource in terms of performance or cost
effectiveness. Furthermore, very often cloud service selection
is not done very systematically in practice. Often, the decision
for a specific cloud service provider infrastructure is more an
evolutionary process than a conscious selection. At some point
in time, there might arise the need to change a cloud service
provider or to diverse a deployment across several cloud
service providers. There exist several technologies to support
this. One approach is to use container cluster technologies
like introduced in Section II-B. Well known companies like
Google, Netflix, Twitter are doing this very successful to
handle regional workloads, to provide failover and overflow
capacities. Small and medium sized companies can benefit as
well. Nevertheless, these type of clusters rely on homogeneous
nodes (nodes with similar performance characteristics). Other-
wise, the intended fine-grained resource allocation of container
clusters gets limited.

EasyCompare [31] is a tool with the focus on identifying
most similar (not best performing or most cost effective) ma-
chine types across different IaaS cloud service providers. The
suite uses a feature vector shown in equation (1) to describe
the performance of a virtual machine type. EasyCompare
uses several different benchmarks. Processing performance
is determined by the Taychon benchmark [44]. The Stream
benchmark is used to measure the memory performance [45].
With the IOZone benchmark [46] the read and write disk
performance can be measured. iperf [28] is used to measure
network transfer rates of intra cloud data transfers.

i =



i1
i2

i3
i4

i5

i6

i7



Processing: Amount of simultaneous executable threads

Processing: Processing time in seconds

(Median of all Tachyon benchmark runs)

Memory: Memory size in MB

Memory: Memory transfer in MB/s

(Median of all Stream Triad benchmark runs)

Disk: Data transfer in MB/s for disk reads

(Median of all IOZone read stress benchmark runs)

Disk: Data transfer in MB/s for disk writes

(Median of all IOZone write stress benchmark runs)

Network: Data transfer in MB/s via network

(Median of all iperf benchmark runs)

(1)

The similarity s(i, j) of two virtual machine types i and j
can be analyzed by calculating their vector similarity. Although
this approach is mostly used in domains like information
retrieval, text and data mining, vector similarities can be used
to determine the similarity of virtual machine types as well. A
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Figure 1. Boxplots of measured network performances using iperf on
selected virtual machine types, taken from [31]

good similarity measure has to fulfill three similarity intuitions
[47]:

• Intuition 1: ”The similarity between A and B is
related to their commonality. The more commonality
they share, the more similar they are.”

• Intuition 2: ”The similarity between A and B is
related to the differences between them. The more
differences they have, the less similar they are.”

• Intuition 3: ”The maximum similarity between A and
B is reached when A and B are identical.”

According to [31], it turned out that the normalized eu-
clidian distance based shown in equation (2) measure fulfills
Lin’s intuitions [47] of a good similarity measure for the
intended purpose of identifying most similar cloud resources
across different providers. This variant of the Euclidian dis-
tance metric measures the relative performance relations of
performance components (i1, i2, . . . , im) and (j1, j2, . . . , jm)
and normalizes the result s(i, j) to a similarity value between
0.0 (i and j are not similar at all) and 1.0 (i and j are
completely similar).

∀i, j s(i, j) = 1− 1

m

m∑
n=1

(
1− min(in, jn)

max(in, jn)

)2

∀i, j s(i, j) = s(j, i)

∀i, j 0 ≤ s(i, j) ≤ 1

∀i s(i, i) = 1

(2)

The reader is referred to Appendix Table IV. This compares
machine types provided by two major and representative
public cloud service providers: Amazon Web Services and
Google Compute Engine. Finally, in over 500 different possible
counterpart pairings (see Table IV) only three machine pairings
have a strong similarity of almost 1. These pairings are
reasonable choices for container clusters, and that is why we
chose them as objects of investigation. So the AWS instance
types m3.2xlarge, m3.xlarge, m3.large and GCE machine types
n1-standard-8, n1-standard-4 and n1-standard-2 are used for
the determination of performance impacts when using Docker
and SDN technologies. Their measured network performance
is shown in Figure 1.

(a) Bare experiment to identify reference performance

(b) Docker experiment to identify impact of container

(c) Weave experiment to identify impact of SDN

Figure 2. Experiment setups

IV. EXPERIMENT DESIGN

To analyze the network performance impact of container,
SDN layers and machine types on the performance impact
of distributed cloud based systems using HTTP-based REST-
based protocols, several experiments have been designed (see
Figure 2). The analyzed ping-pong system provides a REST-
like and HTTP-based protocol to exchange data. This kind of
connections are commonly used in microservice architectures
and container based cloud systems. The ping and pong services
were developed using Googles Dart programming language
[48]. It is possible for the siege to send a request to the
ping-pong system. Via this request the inner message length
between pong and ping server can be defined. So, it is
possible to measure HTTP based transfer rates and answer
times between ping and pong for a specific message size.

In our initial contribution [1] we installed Apachebench
on the siege server [49] to collect performance data of the
ping-pong system. But with high-core virtual machines we
identified several network connection problems, which almost
did not occur on low core machines like (AWS m3.medium
and m3.large, GCE n1-standard-2). Especially in the range
of message sizes of about 250kB we identified a lot of
network connection errors between ping and pong host on
high core machines (the effect was less severe or did not
occur at all with smaller and bigger message sizes). While
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(a) Plot of measurements
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(b) Plot of measurements with median line and 90%
and 50% confidence intervals
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(c) Plot of median line and confidence intervals
only, still enables to estimate skewness of distri-
bution while reducing jitter in presentation

Figure 3. Different visualizations of the same data by example transfer rates measured on a m3.2xlarge instance

it was not clear of first, what causes these phenomenon, it
turned out that this was due to flooding connection requests
at a critical point that relates with the standard TCP receive
window size configured on ping and pong host (see Section
V-B for analysis). This effect did not occur with single (like
m3.medium1) or even double core machines. But on high core
machines Apachebench pushed the system into oversaturated
network conditions producing useless benchmark data. That
is why we decided to adapt our experiment setting to some
degree.

Instead of Apachebench we decided to run our experiments
with a special developed benchmarking script (ppbench). Pp-
bench sends several HTTP request with a random message
size m between a minimum and maximum amount of bytes to
the ping server to analyze the answer and response behaviour
for different message sizes. For this contribution we covered
the message sizes between 1 byte and 500kB. Ppbench was
used to collect a 10% random sample of all possible message
sizes. The ping server relays each request to the pong server.
And the pong server answers the request with a m byte long
answer message (as requested by the HTTP request). The ping
server measures the time from request entry to the point in
time when the pong server answer hit the ping server again. If
there are connection problems the ping server retries to connect
the pong server for a specified amount of times. If the ping
server can not connect with the pong server it answers with
a HTTP 503 code. The ping server answers the request with
the measured time between ping and pong, the length of the
returned message, the HTTP status code send by pong and the
number of retries to establish a HTTP connection between ping
and pong. Ppbench repeats a request for a specified message
size m several times (in our case 10 times) to calculate a
mean transfer rate. Using this approach we got a much more
complete coverage and insight into our analyzed problem
domain.

The Bare experiment setup shown in Figure 2(a) was
used to collect reference performance data of the ping-pong

1This was the machine type we used for our initial publication [1]

system deployed to different virtual machines interacting with
a REST-like and HTTP based protocol. Further experiments
added a container and a SDN solution to measure their impact
on network performance. A ping host interacts with a pong
host to provide its service. Whenever the ping host is requested
by siege host, the ping host relays the original request to the
pong host. The pong host answers the request with a response
message.

The intent of the Docker experiment setup was to figure
out the impact of an additional container layer to network
performance (Figure 2(b)). So, the ping and pong services are
provided as containers to add an additional container layer to
the reference experiment. Every performance impact must be
due to this container layer.

The intent of the Weave experiment setup shown in
Figure 2(c) was to figure out the impact of an additional
SDN layer to network performance. Weave, a representative
SDN solution, connects the ping and the pong containers.
So, every data transfer must pass Weave between ping and
pong. Therefore, every performance impact must be due to
this additional networking layer.

V. DISCUSSION OF RESULTS
To generate statistical significant data, our benchmarking

tool generates for the analyzed space of message sizes (1
byte upto 500kB) something about 5000 data points. Each
benchmarked data point aggregates 10 single measurements.
And this was done for six machine types of two providers
several times. In other words, we have a lot of data points
to present (and to confuse the reader). We will explain our
presentation of this data in Section V-A. Section V-B describes
an astonishing non-continuous behavior of data transfer rates,
which will guide us contemplating about container impact in
Section V-C and SDN impact in Section V-D.

A. Presentation of data
All relevant statistical data processing and data presentation

has been done by statistical computing toolsuite R [50]. We
decided to present the data per machine type as transfer plots
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(to visualize the changing data transfer rates of different mes-
sage sizes) and loss plots (to visualize the relative performance
change of a data series compared with a reference data series).
All transfer plots can be found in Figure 5, all loss plots can
be found in Figure 6. In the following subsections we explain
how these plots have been generated and how these plots have
to be read by the reader.

1) Transfer plots: If we would barely plot our measure-
ments, we would get a graphical result like in Figure 3(a). This
kind of presentation provides a good and realistic impression
about the distribution of measurements but without guiding
descriptive statistical data. To draw general conclusions, we
should not be interested in single data points but in trends
and confidence intervals. Figure 3(b) shows exactly the same
dataset but with a (spline smoothed) median line and 50%
(indicating all values between the 25% and 75% percentile)
and 90% confidence intervals (indicating the range of all
measured values between the 5% and 95% percentile) as
an overlay. This helps to reason about the skewness of a
distribution and to handle outliers statistical appropriate. So
Figure 3(b) provides the most information. But if we compare
two or three series of (partly overlaying) data, it should be
obvious for the reader that to plot all data points would mean
a lot of confusion. The reader would get lost in details of
thousands of data points. That is why we have decided to
plot only the descriptive statistical data (median, 50% and
90% confidence interval) if we compare two or more data
series. However, the reader should be aware that the reduced
presentation of data – like done exemplarily in Figure 3(c) –
still is based on a statistical significant amount of data points
like shown in Figure 3(a). This is true for all data presentations
shown in Figure 5. But for a better readability we decided not
to plot the data points in comparison plots.

2) Loss plots: Transfer plots as shown in Figure 4(a) enable
us to compare two or more data series by looking at their
descriptive statistics of their absolute values. But to compare
data series in a relative way is more useful, especially if
we consider that machine types can be provided by different
cloud services providers (in our case AWS and GCE). The
reader may consider Figure 1 to see that AWS and GCE
provide similar but not identical data transfer rates in their
infrastructures for specific virtual machine types. Even the
variances may differ substantially; AWS infrastructure shows
almost no variances (very small box plots), but GCE shows
substantial variances in data transfers). So, it is not helpful to
compare absolute values to reason about performance impacts
of container and SDN solutions in different IaaS infrastructures
and for different virtual machine types due to different absolute
levels of network performances and differing variances.

Therefore, we provide additional plots (see Figure 4(b)),
to visualize the relative performance impact of containers or
SDN compared with a reference experiment (in our case this
is always the bare experiment on a specific machine type). A
loss line is simply the division of two median lines (the two
median lines red/grey shown in Figure 4(a)).

lossexp,mach(m) =
transmach,exp(m)

transmach,bare(m)

mach ∈ {m3.large, ..., n1-standard-8}
exp ∈ {bare, docker,weave}

(3)

Data Transfer Rates
(bigger is better)

Message Size (kB)

Tr
an

sf
er

 R
at

e 
(M

B
/s

ec
)

0 kB 50 kB 150 kB 250 kB 350 kB 450 kB

0 
M

B
/s

ec
16

 M
B

/s
ec

32
 M

B
/s

ec
48

 M
B

/s
ec

64
 M

B
/s

ec
80

 M
B

/s
ec

●

●

bare on m3.2xlarge
weave on m3.2xlarge

(a) Exemplary absolute comparison of two data
series

Data transfer in relative comparison
(bigger is better)

Message Size (kB)

R
at

io
 (

%
)

0kB 50kB 150kB 250kB 350kB 450kB

0%
20

%
40

%
60

%
80

%
11

0%
14

0%
17

0%
20

0% ●

●

Reference: bare on m3.2xlarge
weave on m3.2xlarge

(b) Exemplary relative comparison of two data
series (same data set as above)

Figure 4. Absolute and relative comparison of two datasets by example of
m3.2xlarge bare and Weave experiment data

And of course the loss of lossbare,mach(m) = 1. That is
the grey reference line in Figure 4(b). All loss plots of all
analyzed machine types are presented in Figure 6.

B. TCP receive windows define small and big messages
While transfer plots and loss plots are helpful to identify

general trends, it is worth to come back to the bare plots like
shown in Figure 3(a) exemplarily. The reader can identify a
sharp break of transfer rates at about 250kB. This is exactly
the same range where Apachebench produced a lot of network
errors for high core machine types. We can measure transfer
rates up to a specific transfer rate for messages smaller 250
kB. But these transfer rates are almost halfed abruptly for
message sizes greater than 250 kB for a substantial amount
of measurements (but not for all). It turned out that this
effect could be measured for all analyzed machine types (see
Appendix Figure 7) and in both IaaS infrastructures (AWS,
GCE). So, it is not due to some traffic shaping caused by the
IaaS infrastructure. Furthermore, the effect occurred exactly
at three times the standard TCP receive window size (87380
bytes) of the used Ubuntu Linux 14.04 systems under test.
The reader is referred to RFC 1323/7323 [51], [52] if being
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unfamiliar with TCP window sizes. That is why we plot all
multiples of the TCP standard receive window in our plots
(dashed lines) to provide the reader some visual guidance of
this effect.

We are quite sure that this has to do with the TCP protocol
stack and/or a combination with the used Dart language and
its HTTP library. For investigation and cross-checking we im-
plemented the ping-pong system in Java as well and used the
standard Java HTTP library (com.sun.net.httpserver). It turned
out that the Java implementation of the ping-pong system does
not show exactly the same effect but something similar. The
Java curve reached its peak (and stayed on that level) at about
three times the TCP standard receive window size, it stays
below the Dart curve in the second and third TCP standard
receive window but showed slightly better results in the first,
fourth and fifth receive window. Finally, in the six window
it showed the same performance as the Dart implementation.
Furthermore, the Java implementation showed some significant
outliers to the bottom exactly around the TCP standard receive
window. In total (from first to sixth TCP standard receive
window) the Dart implementation showed better results than
the Java implementation. So Google seemed to optimized its
Dart HTTP library at the cost of non-linear behavior. So,
whatever the cause for this effect is, it seems have something
to do with the TCP stack. However, the effect enables us to
define a clear criterion to define small and big message sizes
(for Dart and other languages as well). And the reader will
see that containers and SDNs behave different for small and
big messages sizes.

Thus, we define small messages and big messages as
messages smaller/bigger than three times (for Dart, for
Java and other languages this would be another value)
the TCP standard receive window size of a system.

In other words, small and big messages are operating
system and virtual machine specific but configurable. The TCP
standard receive window size is configurable on Linux systems
for instance.

C. Container impact
The container impact for all machines can be seen in Figure

6 (all red lines). Table II summarizes these figures to some
handsome guidance levels (and, therefore, not exact numbers).
We see that the container impact is responsible to reduce the
network transfer rates down to about 90% for small message
sizes. But we although notice an astonishing effect. Transfer
rates are increasing for big message sizes. The transfer rates
are increased up to 120% to 130% for 4 and 8 core machines.
That means an additional layer improves the overall data
transfer performance (for big messages). This effect is hardly
measurable for small core machines. Containers enlarge the
network stack and therefore introduce more buffering capaci-
ties. This is obviously of minor relevance for small messages
but seems to be positive for big messages.

D. SDN impact
The impact of SDNs for all machines can be seen in Figure

6 (all blue lines). Table III summarizes these figures to some
handsome guidance levels (and, therefore, not exact numbers).

The SDN impact can be much more severe than the container
impact. This is especially true for small core virtual machine
types like m3.large (AWS), n1-standard-2 (GCE). This has to
do with the fact that SDN software routers contend for the
same (and very limited) CPU with processing services. The
worst case we have measured is for the n1-standard-2 GCE
virtual machine type, where this effect is responsible to reduce
the network transfer rates to about 25% of the bare reference
system.

For 4-core machine types this effect is getting minimized
and transfer rates are going down to about 60% of the bare
reference system. For 8-core machine types this loss can
be reduced to 70% of the bare reference system for small
messages.

And again we see an astonishing effect for big messages.
Transfer rates are recovering for big message sizes. On the
AWS infrastructure the data transfer performance of m3.xlarge
and m3.2xlarge instances is hardly distinguishable from the
bare reference experiment for big messages. The GCE infras-
tructure seems to be more susceptible and is recovering less
extensive for big messages. However, it is recovering! This
might have to do with a general higher data transfer variance,
which can be observed in the GCE infrastructure (see Figure
1). Like containers, SDNs enlarge the network stack and,
therefore, introducing much more buffering capacities. This
results in negative performance impacts for small messages
but seems to be positive for big messages on high core virtual
machine types.

E. Summary
In our initial publication, we concluded that container and

SDN solutions reduce network performance due to enlarging
network stacks (this effect could be measured on single core
machines very well). But these solutions are inducing more
buffering capacities along an extended network stack as well.
So, containers and SDNs are accompanied by positive and
negative effects at the same time. In fact, it turned out, that
an additional container layer can even improve the overall net-
work performance for high core machine types. SDN solutions
can have severe impacts. This is especially true for low core
virtual machine types. However, on high core machines, the
impact is moderate and for big message sizes SDN solutions
might be even hardly measurable in data transfer rates (see
Figure 6(c,e)).

VI. CONCLUSION AND OUTLOOK
To use HTTP-based, REST-like containerized services is a

common approach for modern horizontally scalable and cloud

TABLE II. Relative performance impacts of an additional container layer
(Docker) to data transfer rates; just guidance levels; please check Figure 6

(red lines) for more details

Machine type cores Small messages Big messages
AWS m3.large 2 90% - 100% 100% - 110%
GCE n1-standard-2 2 95% 95% - 100%

AWS m3.xlarge 4 90% 120% - 130%
GCE n1-standard-4 4 95% 120% - 130%

AWS m3.2xlarge 8 90% 110% - 130%
GCE n1-standard-8 8 90% 110% - 120%
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Figure 5. Median transfer rates with 90% confidence bands (5% and 95% percentile) and TCP standard receive window of 83780 bytes (dotted lines)

TABLE III. Relative performance impacts of an additional SDN layer
(Weave) to data transfer rates; just guidance levels; please check Figure 6

(blue lines) for more details

Machine type cores Small messages Big messages
AWS m3.large 2 45% 60%
GCE n1-standard-2 2 25% - 80% 25%

AWS m3.xlarge 4 60% 90% - 100%
GCE n1-standard-4 4 40% - 100% 60%

AWS m3.2xlarge 8 70% - 80% 90% - 100%
GCE n1-standard-8 8 55% - 80% 70%

deployed microservice based systems. These technologies are
not intentionally used to make cloud systems more performant
but to make their operations and deployment more manage-
able. Astonishingly, we identified several cases where these
technologies could even improve data transfer performances.

The impact of containers and SDNs on data transfer rates
seems related with TCP standard receive windows (see RFC
1323/7323 [51], [52]). The window size allows a precise
criterion what small and big messages are. Furthermore, we
identified that small and big messages can show substantial
differing transfer rates. This insight might be valuable for
network optimizations of container clusters due to the fact,
that TCP standard receive windows sizes can be configured
by an operating system. However, this point stays open for
ongoing research. In ongoing research we investigate further
programming languages like Go, Ruby and Java to cover
more programming languages and language specific behaviors

because we identified that non-continuous network behavior
seems to be deeply language (or library) specific. According
to our preliminary results, almost every analyzed programming
language (or their standard HTTP libraries) showed such non-
continuous points.

For five of six analyzed machine types from AWS and
GCE, we even identified a positive effect of containers on
data transfer rates for big messages (see Table II) and we even
identified a recovering effect on transfer rates for big messages
due to SDN (see Table III). Furthermore, it is interesting to
know that the performance loss of SDN for small messages
is much more intensive on low core machines (in worst case
on a GCE n1-standard-2 machine we only measured 25% of
the reference performance) than on high core machines (about
80% of the reference performance).

So far, the presented data has some shortcomings. We only
presented data transfer rates, but the used benchmarking solu-
tion is able to generate other metrics like round trip latencies
or requests per second as well. However, the derived insights
are basically the same. So, we did not present these metrics
here. Our systematic virtual machine type selection has been
only applied to AWS and GCE but can be easily extended to
other public cloud service infrastructures like Microsoft Azure
or private cloud infrastructures like OpenStack or Eucalyptus.
This is up for ongoing work. For pure pragmatic reasons, we
only covered message sizes up to 500kB. Modern NoSQL
databases can easily return much larger messages. However,
we pushed our system under test into a saturated network
condition. So we think, it is unlikely to get new insights
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Figure 6. Relative transfer rates and TCP standard receive window of 83780 bytes (dotted lines)
< 100% means performance loss, 100% means no loss, > 100% means performance improvement

beyond 500kB messages. But of course, it might be possible
that there exist further non-continuous network behavior points
like we have seen for the Dart implementation of the ping-pong
system. Furthermore, we only covered one SDN solution so
far. Our ongoing efforts concentrate on extending the bench-
marking solution ppbench by additional overlay networks like
Flannel [19] (often used for Kubernetes), Calico [20] (a pure
layer 3 approach to virtual networking for highly scalable
data centers) or the recently released built-in overlay network
feature of Docker 1.9 (libnetwork) to harden and eliminate
possible solution specific conclusions.

So far, all of our study results indicate that our collected
data can be used to do a systematic virtual machine type selec-
tion for cloud deployed HTTP-based and REST-like systems
of general applicability. This is especially true for microservice
based systems being deployed on container clusters like Mesos,
Kubernetes or Docker Swarm.

It seems to be a simple and cost effective strategy to
operate container clusters with most similar high core
machine types across different providers.

This strategy should cover all relevant and complex per-
formance related implications of containers, container clusters
and SDNs appropriately. So, container and SDN technologies
must not be avoided in general due to performance apprehen-
sions. Under special circumstances and deployed on high core

machine types, containers can even show better performances!
Furthermore, container and SDN technologies provide more
flexibility and manageability in designing complex horizontally
scalable distributed cloud systems. But they should be always
used with the above mentioned performance implications in
mind.

Taking all together, a similarity-based virtual machine type
selection can be used easily to optimize network performance
for container cluster based cloud computing. Finally, the reader
might be pleased to hear, that the selected machine types
for this contribution fulfilled the criterion to be the most
similar machine types across AWS and GCE, but these selected
machine types are far from the most expensive machine types
provided by both providers. Thus, a similarity-based virtual
machine type selection seems to be a cost effective strategy as
well.
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APPENDIX

TABLE IV. Similarity of AWS and GCE virtual machines types (sorted on both axis by descending amount of simultaneous executable threads).
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m4.10xlarge 0.67 0.70 0.68 0.56 0.50 0.52 0.51 0.46 0.48 0.40 0.41 0.43 0.36 0.37 0.40 0.35 0.30 0.13
c4.8xlarge 0.66 0.66 0.70 0.59 0.65 0.54 0.55 0.47 0.50 0.41 0.43 0.46 0.37 0.39 0.43 0.38 0.32 0.14
c3.8xlarge 0.81 0.82 0.81 0.56 0.64 0.51 0.52 0.45 0.47 0.39 0.40 0.42 0.34 0.35 0.39 0.33 0.27 0.13
i2.4xlarge 0.61 0.57 0.60 0.84 0.77 0.80 0.66 0.60 0.64 0.52 0.54 0.59 0.46 0.48 0.53 0.47 0.40 0.22
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Figure 7. Bare and Docker experiments and TCP standard receive window of 83780 bytes (dotted lines). Weave data is not plotted for readability reasons.
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