
A Passive Traffic Algorithm for Detecting Unavailable Periods in TCP Services

Iria Prieto, Mikel Izal, Eduardo Magaña and Daniel Morato

Public University of Navarre

Navarre, Spain

Email: iria.prieto, mikel.izal, eduardo.magana, daniel.morato @unavarra.com

Abstract—This paper presents a simple passive algorithm to mon-
itor service availability. The algorithm is based on packet counting
over a passive traffic trace of a population of clients accessing
servers of interest. The major advantage of the algorithm is that it
is passive and thus not invasive while usual monitor systems that
can be found on Internet are active probing agents. The proposed
system does not communicate to actual servers. It is easy to build
as an online monitoring system with no big constraints in software
or hardware. It does not relay on a distributed number of network
placements for probing agents but works on a single network
observing point near network edge. Initial proof of work of the
algorithm is presented by studying the influence of different kinds
of disruptions on packet level traffic and analyzing unavailability
problems for popular servers at an academic network at Public
University of Navarre.

Keywords–Availability service; network; traffic

I. INTRODUCTION

As networks constantly evolve, network application servers
are improved in software and hardware in order to cope
with the growth of client’s demand. In spite of this rapid
development, sometimes, clients can not gain access to the
servers due to communication problems or server saturation,
due to flash crowd demands, human errors, updates, routing
failures, etc.

Nowadays, even few minutes unavailability can be critical.
For an enterprise offering products to clients through a web
server, an interruption of this service means loss sales. Another
example, which shows the threat of service interruption is the
use of an antivirus update server. In case of banks, or other
organization where security is a priority, an interruption of the
update server entails possible infection problems.

As a result of the importance of being online all the time,
several monitoring systems have been developed along the
time. The target of these system is to detect as soon as possible
when a network was experiencing problems. Typically, these
kinds of systems are based on active probing. The main
disadvantage of active probing is that sometimes, depending
on the network condition, it will not be able to be applied. In
high-loaded networks the methods of active probing, although
it will try to be as simple as possible, is not always desired
since an slight increment of the traffic may causes more packet
delays and losses.

Nowadays, the vast majority of the services offered on
Internet use as the application layer the Transport Control
Protocol (TCP). The target of this work is to consider a passive
method to detect service disruptions based on the study of the
TCP packets. In [1] the algorithm was introduced showing
the results for real services. In this work, the study has been

extended to analyze how the unavailable periods caused by
different problems can be distinguished using the proposal
algorithm.

The paper is organized as follows. First of all, Section
II describes the State of the art about the problem to face
up. After that, the algorithm and configuration parameters are
introduced in Section III. Section IV analyzes how the nature
of the disruptions can affect the observed traffic and how it
will be detected by applying the algorithm on the captured
traffic. Section V describes the network scenario used to
check the proposed algorithm. Section VI presents the results,
comparing it to active detection of popular public services.
Finally, Sections VII and VIII present conclusions and future
work.

II. STATE OF THE ART

In order to detect when the clients of a network are not
being able to successfully use a server application, a wide
range of monitoring clients, such as Nagios [2], Zabbix [3],
Cacti [4], Munin [5], have been developed. These systems
warn the network administrator that a given server of interest
is unavailable. These kind of systems work based on active
probes, such as ICMP (Internet Control Message Protocol)
ping or automatically requesting a server web page in case of
monitoring HTTP (Hypertext Transfer Protocol) server. They
are required to be installed and configured in monitoring client
machines or at the server.

In cases where problems need to be detected at different
client networks, at least one client has to be installed on each
network. Otherwise, some problems will not be detected, like
cases of routing problems in the path from clients to the servers
of interest, if the monitoring client may use other route to reach
the server.

As it is shown by Liu et al. [6], depending on the location
of the system resources the application will achieve more
effectiveness. Therefore, depending on where our monitoring
clients will be located we would have only the vision of this
location. Also, checking the configuration of these monitoring
clients can be a problem for multi-tier system where the
number of them will be high. In the literature, some papers
explore how to face up testing the configuration in these
scenes, [7]. Another problem of taking active measurement
across an entire network is that for wide area networks it will
not be scalable and some paths should be chosen and the rest
of statistics inferred through predictive algorithms [8].

On the other hand, active probing can be a problem in high
loaded systems or when monitoring third party servers, which
may not react well to external continuous requests. Nowadays,

182

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



more and more enterprises rely on public services on Internet
that would need to be monitored. In these cases, firewalls and
intrusion detectors may deny probes or even ban future normal
requests as response to continuous monitoring.

Configuring and using these kinds of distributed monitoring
systems is not trivial as shown by different studies on how to
approach the problem of monitoring for distributed programs
[9]–[15].

Another disadvantage of active availability monitoring
comes from cases where the clients access servers through
proxy-caches. In that case, the monitoring client may be
requesting a webpage from the server and receiving a response
just because it is cached at the proxy system even if the final
server is unreachable or has some problem. Thus, the active
measurement does not actually check for server availability
and other clients in different networks or served by different
proxies may be experiencing access problems for the same
server. In these cases the system would not detect the problem
until the timeout of the cached object. This situation can
be addressed by proxy configuration (may not be an option
depending on proxy ownership) or crafting requests so they
are not cached.

In some cases, due to misconfiguration or network issues,
the monitoring client may experience problems to reach the
server while actual client access is working, thus giving rise
to false positive alerts to the network administrator. The cause
of this failures may be things as memory problems or CPU or
network overload of the monitoring client. This is often due
to the fact that the same agent is probing a large number of
servers. Therefore, the dimensioning of these clients has to be
considered carefully.

Another issue to consider is the reaction time of the
monitoring system. The minimum and maximum acceptable
time for problem detection has to be decided. Longer times
imply slower reaction, smaller times may generate higher
overhead and interference to normal clients.

Currently, the majority of cloud services available on the
Internet offer services over TCP protocol for communications
with clients [16], [17]. It has been observed that some servers,
due to overload, start refusing new TCP connections by
answering with RST packets to clients for some time. In many
cases the observed time of these kind of events is on the order
of seconds, but usually less than half a minute. After this event
the server recovers its normal behaviour and accepts again
new clients. As stated before, even if it only lasts for seconds
this problem may be critical for some businesses, causing user
complaints and bad server reputation.

There have been proposals to cope with the downsides
of active monitoring. Schatzmann et al. [18] proposed a
method to detect temporary unreachability based on flow-level
analysis by capturing traces from different routes. Although
their method was able to work online the main disadvantage
was the need to monitor in different points of a network.
Besides, it should be taken into account that the setup of these
kinds of measurements is not an easy task [19].

Others works have compared the advantages and disadvan-
tages of using active probing or passive monitoring to service
discovery [20]. This work was based on service discoveries and
not in detecting disruptions so for passive traffic only observed
the connection establishments and abrupt finalisation.

The goal in this work is the development of a simple
online disruption detection method for TCP servers. It has been
noticed how the disruptions affect packet level network traffic.
This analysis of packet level traffic allows to distinguish when
clients are having problems with one service. The proposed
method avoids active measurement and works just by passive
observing network traffic. This method is based on simple
packet level counting such as the number of RST and data
packet received. It does not require large amounts of memory
or CPU power and it is able to detect problems for clients
in different networks and for different services without using
distributed agents. It will be shown that it is able to detect
micro-access-failures with a configurable granularity in the
reaction time.

III. PROPOSED ALGORITHM

As stated in the introduction, the method is based on
passive traffic capture. By capturing traffic close to the clients
in a given network it will detect when some services will
not be available to this community (in this work, the sample
community will be the clients at Public University of Navarre
network). The main target of the proposed algorithm is to
find when a service disruption event has occurred, that means
that the clients on the monitored network can not successfully
use the service. The server may be down or may just be
unreachable from this point due to network or some other
problem. In any case this local unavailability is what the
network administrator wants to detect more than the global
server state. The objective is to detect availability problems,
including the case where clients are able to reach the servers
but not to use their services. To achieve this, a simple algorithm
has been proposed, which does not require big hardware or
software constraints.

The flow of traffic from the clients to the servers of interest
is captured and some simple counters are evaluated every
fixed time interval. The counters used are the number of data
packets and reset packets sent by the full group of clients
and target servers seen during a given (i.e., 5 seconds) time
interval. Reset packets are TCP protocol packets with RST flag
activated. They are used by a TCP endpoint to reject incoming
connections and also whenever an abnormal packet is received
by a TCP endpoint, to signal to the other side that it should
abort the connection. The algorithm bases on the fact that a
server sending just TCP RST packets and not any other valid
packet to a group of clients during even a small period of
time is an indicator of unavailability. Although sometimes it
has been observed that the servers finish their connections in an
unexpected way such as, sending RST packets to the clients
after a client has sent a FIN packet, the algorithm will not
show false positives since it will have a high probability that
another client will be sending or receiving data packets in the
same period. The mechanism consists on dividing time in fixed
sized intervals. On every interval the number of packets seen
from clients and servers are considered and related to previous
interval. When a client sends packets to servers, which do not
send anything back to it, a server issue is suspected.

If in subsequent seconds the servers keep silent but send
reset packets the servers are confirmed as not working. Also,
if the client keep sending packets and the servers keep silent
it is confirmed as not working. The previous identification
idea is built with two simple filters for every interval. On

183

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



each time interval, counters for clients and servers are updated
in order to describe the situations explained before. On the
side of the client, the counter is the number of packets sent
to the servers, regardless if they are data packets or not,
packet cli. On the other hand, on the side of the server, two
counters are taken into account: The number of data bytes sent,
bytes servers, and the number of packets with the reset flag
activated, reset packets.

If during a given interval the counters show the client was
sending packets but the servers did not send any data packet
(even they may send reset packets) the result of the first filter
for that time slot is 1. Also, the result is 1 when there are
no packet sent by the client and the server only sends RST
packets. That indicates the server is not answering requests.
The second filter would be 1 whenever the result of the first
filter of the interval being analazying is 1 and the result of the
first filter of the previous interval was also 1. The process can
be easily explained through two membership functions, like
the ones used in fuzzy logic [21], which are applied in each
period. Firstly, the used variables are defined:

• x= Number of client packets sent in an interval.

• y= Server Bytes sent by the servers in an interval.

• z= Number of RST packets sent by the servers in an
interval.

• i = ith Interval to be analazyed.

• ψi(x, y, z)= First pass of the compound filter applied
in each interval i.

• ϕi(ψi, ψi−1)= Second pass of the compound filter
applied in each interval i, it takes into account the
result of the first pass.

The two membership functions are described in equation
1.

ψi(x, y, z) =











1 if ((x > 0) and (y = 0)) or
((x = 0) and (y = 0) and
(z > 0))

0 Otherwise

ϕi(ψi, ψi−1) =

{

1 if (ψi = 1) and (ψi−1 = 1)
0 Otherwise

(1)
Each period is labeled with the result of applying the two
membership functions, (ψi(x, y, z), ϕi(ψi, ψi−1)). When both
results are 1 an availability problem is considered for the
duration of both intervals. We define the unavailability period
since the first second of the interval labeled as (1, 1) until the
next interval labeled as (0, 0). An example of the algorithm
operation is shown in Table I.

In the second interval of Table I, there was one packet
sent by a client, but there was no data sent to him by servers
so the first flag is 1 and the second one is 0 because it was
the first suspected interval. After this first interval, the servers,
which belong to Hotmail service, sent 8 packets being all of
them TCP RST packets. As there were only reset packet we
label this second interval as (1, 1). During the next 5 seconds
the servers seem to have recovered because data packets from
servers are seen again.

The example is a real case disruption interval detected for
Hotmail server at the scenario. During that interval only reset
packets were captured from servers and the packet trace was
examined to show that servers were closing connections that
had been inactive for more than 30 seconds.

These resets were not a response to any observed packet, so
it seems reasonable that the server was experiencing problems
and thus this is the kind of event the algorithm addresses. The
main parameter of the algorithm is the time interval duration,
that can be chosen by the network administrator depending
on the desired reaction time. Smaller values will increase
resolution and will detect microfailures but will also increase
false positives.

From our experience, values between 5 and 15 seconds are
recommended.

IV. ANALAZYING THE EFFECT OF THE DISRUPTIONS ON

THE TRAFFIC OBSERVED

As it has been explained in the introduction, different
problems can affect the client network. In this section, the
effect of some of the most typical connection problems and
how these problems are revealed on the traffic at packet level
are studied.

For this purpose a testbed was set up, since the study of the
nature of the problems in a real network would mean to have
documented why each unavailable interval happened. In cases
where the network suffered a problem close to the sniffer, those
intervals could be labeled, but if the problems were outside our
university network it is not possible to know exactly the cause.

Using the testbed unavailable periods between clients and
servers were created intentionally. The duration of these con-
ditions can be decided at first and, after some minutes where
the clients will not able to gain normal access to the service
on the server, the problem will be solved. These periods are
labeled and compared to the values obtained by applying the
proposed algorithm.

The following subsections described de testbed scenario,
the effects of the disruptions on the traffic captured and how
the algorithm detects these intervals.

A. Testbed scenario

The testbed consists of two client networks where several
agents continuosly request a webpage to the server. Both
networks are connected to the servers networks by two routers
as seen in Figure 1. These routers perform also the role of
sniffers. All the scenario was emulated using a completely
virtual environment using Virtual Box. All the virtual networks
operate at 10Mbps with a loss rate of 1%. The purpose of the
loss rate is to make a more realistic environment. The whole
scenario is shown in Figure 1.

As the amount of traffic can influence the time when the
unavailable periods are detected by the algorithm, the requests
are made following exponentially distributed interarrival times
whose average load are different on both networks. The
network 1 had an average load higher than the network 2,
8 Mbps and 3 Mbps, respectively (Table II).

One of the most frequent problems that networks suffer
is due to link disconnections. Sometimes some link in the
path between the client network and the server falls down
by hardware problems on some interface or maybe the link

184

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. EXAMPLE OF THE DOUBLE CHECK ALGORITHM DEVELOPED FOR A INTERVAL OF THE DAY 2013/11/8 AND HOTMAIL SERVERS

Start End Bytes Serv (x) RST Serv (z) Packet Cli (y) ψ ϕ

9:24:55 9:25:00 7016 0 14473 0 0

9:25:00 9:25:05 0 0 1 1 0

9:25:05 9:25:10 0 8 0 1 1

9:25:10 9:25:15 1699 1 3288 0 0

Figure 1. Testbed used to study the effect of different disruptions

TABLE II. CHARACTERISTIC OF THE NETWORKS

Network 1 Network 2

Clients 2 2

Mean load 8 Mbps 3 Mbps

Losses (%) 1% 1%

is not disconnect but any packet is observed because the route
is being changed. This unreachability situation is emulated in
the testbed by switching off the outgoing interfaces on the
respectively routers, at different times. After a short period
the interfaces were switched on again. We will refer to these
disruptions as Disruption 1, when the link on the router 1
was switched down but the rest were working properly, and
Disruption 2 when the link on the second router was switched
down.

Another usual service problem is due to servers being
rebooted. Even if a service is being offered to clients based on
a pool of servers, a particular client network can be affected by
a single reboot on one server while the traffic of the clients is
not addressed by another server. The reboot can be provoked
by software updates, which require the reboot, by a hardware
problem or simply by bad working. In the testbed, as a unique
server was being emulating this error affected to both client
networks. The reboot was made by a command and it is the
time that took to recover the normal running wrote down; we
will refer to this interruption as Disruption 3.

Finally, another common problem is that suddenly the
actual service software falls down or does not respond. These
kind of problems are caused, for example, by misconfigura-
tions or changes on the services, for instance a port change,
or by software problems. They are different from the previous
one because in these cases the packets sent by the clients will
be received on the server but it will not answer their requests.
This problem was emulated by stopping the apache service on
the server during some minutes. It was labeled as Disruption
4 and again it affected to both client networks.

All the disruptions described are emulated and it can
be observed in the Table III. The estimated disruption time
is the time, which was written down when the disruption
started while, the estimated recovery time is the time that the
service was available again. The estimated times between the
disruptions and its recovery are approximated, in spite that
these times were carefully taken, because they were written
down by a human observer.

B. Effects on the passive captured traffic

The different problems emulated will not have the same
effect on the observed traffic. In fact, in the cases of the
disruptions 1 to 3, the packets sent by clients will not be able
to reach the server, so it will not be received any TCP server
packets. In the last case the clients will reach the server but
they will not establish the TCP connections, so the server will
likely answer with TCP Reset packets.

The traffic is analysed, at packet level, for each disruption
near the time of the disruption was writte down. As the
algorithm works on the TCP traffic, only this traffic was
considered. In the two first cases, disruption 1 and 2, the
clients suddenly did not receive any more packets sent from
the server. In addition, it could be observed a lot of client
connection attempts without any answer packet of the server.
The attempts are showed by SYN packets sent from the clients.
Both networks behaved identical for the disruptions 1 and
2 respectively. For this reason, only some packets, which
belonged to network 1 are shown:

17:56:31 IP 16.1.1.2.37011 > 16.1.4.3.80: Flags [S],

17:56:33 IP 16.1.1.3.41460 > 16.1.4.3.80: Flags [S],

17:56:37 IP 16.1.1.2.37012 > 16.1.4.3.80: Flags [S],

17:56:41 IP 16.1.1.2.37013 > 16.1.4.3.80: Flags [S],

17:56:41 IP 16.1.1.3.41461 > 16.1.4.3.80: Flags [S],

17:56:42 IP 16.1.1.2.37014 > 16.1.4.3.80: Flags [S],

17:56:44IP 16.1.1.3.41462 > 16.1.4.3.80: Flags [S],

The reboot of a server may affects the traffic observed at
packet level. Again, the traffic is studied close to the time,

185

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III. PROGRAMMED DISRUPTIONS

Name Type Network 1 Network 2 Estimated disruption time Estimated recovery time

Disruption 1 Network problem Affected Not Affected 17:45 17:47

Disruption 2 Network problem Not Affected Affected 17:56 17:59

Disruption 3 Reboot server Affected Affected 18:10 18:13

Disruption 4 Service not working Affected Affected 10:03 10:05

which was marked for the disruption 3 in the two networks.
As in the case before, the clients suddenly stopped receiving
packets from the server and the new requests did not find any
answer from the server. During these intervals a lot of SYN
packets were observed:

18:10:14 IP 16.1.1.2.37137 > 16.1.4.3.80: Flags [S],

18:10:15 IP 16.1.1.2.37137 > 16.1.4.3.80: Flags [S],

18:10:17 IP 16.1.1.2.37137 > 16.1.4.3.80: Flags [S],

18:10:21 IP 16.1.1.2.37138 > 16.1.4.3.80: Flags [S],

18:10:21 IP 16.1.1.2.37137 > 16.1.4.3.80: Flags [S],

18:10:21 IP 16.1.1.3.41681 > 16.1.4.3.80: Flags [S],

Observing the traffic at packet level of the previous disrup-
tion with the last one, an important difference can be observed.
While in the previous cases the clients did not receive packets
from the server, in the last one they were able to reach the
server but as the service was not running this one answered
them with Reset TCP packets. In the case of the last disruption,
if we were probing the availability of the service using ping
requests for instance, we would not realize of the problem
since the server would answer. The effect on the traffic of the
two networks was identical on both networks:

10:04:50 IP 16.1.4.3.80 > 16.1.1.3.59757: Flags [P.],

10:04:50 IP 16.1.1.3.59757 > 16.1.4.3.80: Flags [.],

10:04:50 IP 16.1.1.3.59757 > 16.1.4.3.80: Flags [R.],

10:04:55 IP 16.1.1.2.47925 > 16.1.4.3.80: Flags [S],

10:04:55 IP 16.1.4.3.80 > 16.1.1.2.47925: Flags [R.],

10:04:55 IP 16.1.1.3.59758 > 16.1.4.3.80: Flags [S],

10:04:55 IP 16.1.4.3.80 > 16.1.1.3.59758: Flags [R.],

10:04:57 IP 16.1.1.2.47926 > 16.1.4.3.80: Flags [S],

Therefore, once analysed all the cases, each of them will
have little or any traffic towards the client from the server. The
two functions used by the algorithm will adapt with the real
scenarios since the server will not reply to clients or it will
send reset packets until the problem is solved.

C. Detecting the unavailable periods

During the experiments shown on a real scenario, the time
interval duration chosen was 10 seconds. The intention is that
it is large enough to detect minute intervals with problems
and at the same time, it is not too much small to rise false
positives. Again, we used this value to define the durations of
the intervals on the testbed. The target was to check if this
amount of time was valid for the network with a high load
and for the low one.

The unavailable periods showed by applying the algorithm
to the sniffed traffic are shown in Figure 2. The periods
corresponds quite accurately with the estimated time estimated
(Table III). No false positive was showed up.

Comparing the full volume of traffic sent by the clients of
each network with the server, again the difference between
the different kind of the disruptions can be seen. For the
disruptions where a link will be down for an interval of period,
as the disruptions 1 and 2 any packet sent by the server will be
observed but in contrast, a little amount of traffic sent by clients

U
na

va
ila

bl
e 

se
rv

ic
e

17:39h 17:42h 17:45h 17:48h 17:51h 17:54h 17:57h 18:00h 18:03h 18:06h 18:09h 18:12h 18:15h

Disruption 1, network 1
Disruption 2, network 2
Disruption 3, network 1
Disruption 3, network 2

U
na

va
ila

bl
e 

se
rv

ic
e

10:00h 10:01h 10:02h 10:03h 10:04h 10:05h 10:06h 10:07h 10:08h 10:09h 10:10h 10:11h 10:12h

Disruption 4, network 1
Disruption 4, network 2

Figure 2. Unavailable periods detected on the testbed

trying to gain access to the server will be shown (Figure 3).
In Figure 3, it is drawn the amount of Bps seen by the clients
or servers addresses and the intervals of disruptions.

However, when the server is the one that suffers a problem,
because it is being reboot or the service has fallen down, the
effect on the traffic is quite different as it can be observed for
the disruption 3 in Figure 2 and for the disruption 4 in Figure
4. While the first one the server will not send any packet,
the last one will answer the requests with Reset packets. This
means that in the last case it will observe traffic although it
will be slightly lowest than before suffering the problem.

Another consequence of comparing the volume of traffic
with the unavailable periods detected, is that in case of the
second network the intervals are detected a little later than the
network one, as it is shown in Figure 4. This is due to the
clients on the second network do not request so frequently for
the web page, so the problem is detected when they try to
establish the connection with the server, which was later than
the clients on the network 1. Similarly, the algorithm decides
that the network 2 has recovered completely later than in the
case of the network 1. On the second case, due to the clients

186

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G
17:39 17:42 17:45 17:48 17:51 17:54 17:57 18:00 18:03 18:06 18:09 18:12 18:15

B
ps

Upstream
Disruption 2
Disruption 3

Disruption 2 (int 5)
Disruption 3 (int 5)

100.0 

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G
B

ps

Network 1

Downstream

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G
17:39 17:42 17:45 17:48 17:51 17:54 17:57 18:00 18:03 18:06 18:09 18:12 18:15

B
ps

Upstream
Disruption 1
Disruption 3

100.0 

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G

B
ps

Network 2

Downstream

Figure 3. Bps for the use of Web service by the clients on the testbed at
disruptions 1 to 3

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G
10:00 10:01 10:02 10:03 10:04 10:05 10:06 10:07 10:08 10:09 10:10 10:11 10:12

B
ps

Upstream
Disruption 4

100.0 

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G

B
ps

Network 1

Downstream

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G
10:00 10:01 10:02 10:03 10:04 10:05 10:06 10:07 10:08 10:09 10:10 10:11 10:12

B
ps

Upstream
Disruption 4

100.0 

1.0k

10.0k

100.0k

1.0M

10.0M

100.0M

1.0G

B
ps

Network 2

Downstream

Figure 4. Bps for the use of Web service by the clients on the testbed at
disruption 4

Figure 5. Traffic capturing from a University link

send less packets, the algorithm is not able to distinguish
when the server is answering properly again. However, these
difference between the unavailable periods detected for each
network, are minimal, as can be seen in Table IV.

Another issue addressed in this section is the analysis of
the impact of the time interval chosen in the algorithm. With
a time interval of 10s it was checked as the results were
quite accurate. Nevertheless the algorithm is applied using an
interval smaller, exactly 5s. The main problem of using values
for time intervals small is that the number of false positives
could be increased since if the period is too small maybe the
server had no time to reply at the same interval. However, in
the testbed a period of 5 seconds was viable since the number
of false positives was zero. The differences between using
10s and 5s were not big (Table IV). As the intervals were
smaller the algorithm detected problems some seconds earlier.
Moreover, the recovery times for each disruption were earlier
detected also.

In spite of the fact that a value of 5 seconds behaves a little
better in this scenario, in real scenarios where maybe the traffic
is bursty or almost non existing at some hours, for instance
at nights, we strongly recommend values of 10s instead of 5s.
This value will decrease the possible numbers of false positives
and still will be able to detect short intervals, in which clients
were having problems to use the services properly.

V. NETWORK SCENARIO

The algorithm has been developed and tested, detecting
availability problems of public internet servers for clients
at Public University of Navarre. Captured data comes from
author’s research group infrastructure who has access to a
sniffer with its own software between university main access
and academic internet provider (Rediris) as seen in Figure 5.
The group has an ongoing packet trace collection campaign
since 2004 providing 1Gbps traces from the access of an
academic community.

In this work, results are presented from captured data of the
week of November 7th to 11th, 2013, checking the availability
of popular servers at this community such as Facebook, Yahoo,
BBC and Hotmail. In order to compare the algorithm against
an active monitor (like Nagios [2]), a very basic probing
system is implemented. The active monitor tests the availability
of selected servers by requesting the site favicon.ico file.
This file provides an icon to be displayed at browser window
and is widely used by web servers. The program requests
the favicon file every 5 seconds for every service considered
in the experiment and thus provides a ground truth value of
availability for comparison purposes.

The active requests are performed from a desktop computer
at the university network. The number of servers probed is

187

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV. COMPARISON OF THE UNAVAILABLE PERIODS DETECTED APPLYING DIFFERENT TIME INTERVALS, 10S AND 5S

Network Disruption Estimated disruption period Unavailable interval (t=10s) Unavailable interval (t=5)

Network 1

2 17:56 - 17:59 17:56:33 - 17:59:03 17:56:23 - 17:59:03

3 18:10 - 18:13 18:10:15 - 18:13:05 18:10:10 - 18:13:00

4 10:03 - 10:05 10:04:51 - 10:04:51 10:04:46 - 10:05:16

Network 2

1 17:45 - 17:47 17:45:44 - 17:47:14 17:45:39 - 17:47:09

3 18:10 - 18:13 18:10:18 - 18:13:18 18:10:13 - 18:13:13

4 10:03 - 10:05 10:04:59 - 10:05:29 10:04:54 - 10:05:24

not very large so the probing computer is not loaded and
no request failures can be attributed to machine overloading.
The proposed passive algorithm operates on traces obtained
at network edge as seen above. It is evaluated offline for the
results of this work, but may be easily programmed as an
online system.

As servers used are very popular, there are other sources
of availability information that were considered. Several web
pages provide down times and real time user complaints of
public servers but usually this information has not enough time
granularity to test less than ten minute disruption events.

VI. RESULTS

In this section, results of unavailability detection with a
week trace of traffic are presented (November 7th to 11th,
2013). Public servers addressed are: “Yahoo”, “Facebook”,
“BBC”, “Hotmail” and also a local newspaper “Diario de
Navarra”, which are frequently visited by users at the Uni-
versity. Those servers, except the local newspaper, are also
used by a large mass of users around the world and they are
served by a pool of different IP addresses. They are probably
distributed over large server farms or content distribution
networks.

But even if those farms are probably designed to balance
load and support peaks of demand, sometimes, the clients of
the University are not able to reach these services.

Experiments with the basic active monitor that request
favicon.ico file show the results in Table V for the servers
under analysis. Figure 6 shows the events of unavailability with
time. The service with more suspected intervals detected was
Hotmail.

U
na

va
ila

bl
e 

se
rv

ic
e

00:00h
07-11

00:00h
08-11

00:00h
09-11

00:00h
10-11

00:00h
11-11

00:00h
12-11

00:00h
13-11

00:00h
14-11

00:00h
15-11

00:00h
16-11

Facebook
Yahoo

Hotmail

Figure 6. Events of time where the favicon was not be obtained

To test the proposed algorithm the packet trace of a full
day is processed and the algorithm is applied on the traffic.

TABLE V. UNAVAILABLE SERVICE INTERVALS DETECTED BY

REQUESTING THE FAVICON

Start End Day Service

0:15:49 00:16:58 07/11/2013 Facebook

3:10:01 03:10:06 07/11/2013 Facebook

13:36:35 13:36:51 08/11/2013 Hotmail

16:08:12 16:25:40 11/11/2013 Facebook

10:34:59 10:35:21 11/11/2013 Hotmail

10:10:23 10:10:29 13/11/2013 Yahoo

23:08:21 23:08:27 13/11/2013 Yahoo

11:08:54 11:09:06 14/11/2013 Hotmail

11:39:18 11:39:36 14/11/2013 Hotmail

22:43:00 22:43:05 14/11/2013 Hotmail

8:40:31 08:40:44 15/11/2013 Facebook

20:30:03 20:30:13 15/11/2013 Hotmail

4:22:29 04:22:34 15/11/2013 Facebook

The rest of the results are for day 08/11/2013 although other
days are similar.

First, the network traffic is filtered to select packets from
the probing agent and selected servers of interest. Although
this is not the target of this work, addresses of these servers
have first to be identified. To solve this, the payload of packets
is examined to search for these server names in HTTP requests.

Both methods active and proposed algorithm show some
unavailability issues for the Hotmail service, see Figure 7.
The plot shows the volume of traffic from client machine
to Hotmail as well as the time events identified by the
passive algorithm and active favicon requester. Both algorithms
identified the same event. Packet level examination of the event
showed a single connection, which suffered an unexpected
reset from the server. The comparison also revealed that the
time difference is due to the monitor client, which was not
NTP synchronized as the passive sniffer is. This shows a point
to take into account in a distributed monitoring system when
monitor clients are distributed time synchronization plays a
critical role. The passive sniffer has a unique clock source so
the problem of synchronization is simplified.

Packet level analysis of previous event showed the dialog
of the packets below. The x.x.x.x represents the IP of the client
and the y.y.y.y the IP of a Hotmail server. After the connection
is established, the client sent the request through a push packet
of 176 bytes. Usually, after this packet was sent by the client
the server answered with the favicon.ico. However, in
this case the server sent an ACK packet without data and after
some seconds, around 11, closed the connection sending a reset
packet. This kind of behaviour is unexpected and during these
seconds the client would have noticed a malfunction using the
service.

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: S

13:36:02 IP y.y.y.y.http > x.x.x.x.59133: S

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: . ack 1

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: P 176

188

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0 

5k

10k

15k

20k
13:30h 13:32h 13:34h 13:36h 13:38h 13:40h

U
na

va
ila

bl
e 

Se
rv

ic
e

B
ps

Bps Upstream

Passive measurement

Simple active probing
(Getting favicon.ico)

5k

10k

15k

20k

B
ps

Bps Downstream

Figure 7. Intervals of time in, which the monitoring client had problems for
day Nov 8th

13:36:02 IP y.y.y.y.http > x.x.x.x.59133: . ack 177

13:36:13 IP y.y.y.y.http > x.x.x.x.59133: R 1 ack 177

Others cases of non-typical reset packets were also ob-
served in the intervals of unavailability studied. In many cases,
before a server went down it did not answer to the clients,
and after some time it started to send them reset packets to
clients since they did not reconignize the previous established
connections.

A. Comparison between active probing vs passive analysis
unavailability detection method

The total traffic from all the clients using services that
previously have been identified to have unavailability periods
is analysed. The objective is to distinguish the periods of time
where all the users experience service access problems of the
periods of time of isolated problems for individual clients.

To achieve this for each service, all the requested servers
are joined together to study if in some period the clients
were active but the servers were not working properly. The
proposed algorithm is applied to the aggregated network traffic.
The algorithm is configured using the IP addresses of all the
servers as an unique service to be monitored and a time interval
duration of 5 seconds. The unavailability events detected are
shown in Figure 8. Interestingly, there are more unavailable
periods detected that way than the issues detected by using
the favicon requester alone.

The previous event, which was observed through the fav-
icon.ico requests and observing the traffic for a single client
who requests the favicon.ico (Figure 7), now is not labeled as
problematic because at the same time other clients were able
to use Hotmail. This interval was a problem of one server
giving service to an individual client but it was not a problem
of availability for the observed server since other clients were
using the same service (other IP addresses of the same service).
Thus, this is revealed as a false positive warning that shows
the risk of using only the monitoring client as a method to
detect service failures.

But this experiment shows other more important fact. By
using the service as an aggregation of individual IP address of
servers we are able to identify some unavailability intervals of
a few seconds where the clients were suffering access problems
but were not detected by active monitoring clients. These

U
na

va
ila

bl
e

00:00h 04:00h 09:00h 14:00h 19:00h 00:00h

Simple active probing (Getting favicon.ico)
Passive Measurement by a known PC

Passive Measurement by all clients

Figure 8. Comparison of the events of unavailable Hotmail service detected
from request client for day Nov 8th

TABLE VI. UNAVAILABLE HOTMAIL SERVICE INTERVALS

Start End

09:25:05 09:25:15

10:50:00 10:50:10

14:22:40 14:22:50

14:59:40 14:59:50

15:35:00 15:35:10

15:47:15 15:47:25

16:22:05 16:22:15

17:21:10 17:21:30

19:06:50 19:07:00

19:07:20 19:07:35

19:13:35 19:14:05

19:16:10 19:16:30

periods were not observed by the monitoring client because
the favicon.ico was served by a proxy cache. Table VI shows
all the final disruption events detected.

These periods correspond to the sending of unexpected
resets by the severs to the clients. The study of the traffic
did not reveal any previously wrong behaviour of the clients,
which could provoke the send of resets packets by the server.
During this seconds, suddenly one or more servers decide to
abort the established connections with one or more different
clients. As the duration of the intervals were short, these were
not actually critical disruptions since the next connections were
established. In case that this kind of periods had to be ignored
it may be done by just increasing the time interval duration,
for example, to 10 seconds.

TABLE VII. UNAVAILABLE HOTMAIL SERVICE INTERVALS

Start End

15:34:50 15:35:10

19:13:40 19:14:10

Table VII shows events detected from the same traffic by
using an interval duration of 10 seconds. Two cases detected
correspond to two intervals of 20 and 30 seconds. During
this time there were only reset packets sent from the servers
to clients, which have previously completed a connection
establishment. Other intervals of 10 seconds are not detected
since as the service recovered faster the reset packets sent in
order to abort client connections felt inside the same interval

189

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



as the data packets sent by the servers once that they had
recovered. Also, the intervals may not coincide exactly due to
interval and event synchronization. The maximum error will
be given by the minimum interval of time considered. For
example, in the examples presented in this paper, the time
of the disruption would be more or less 5 seconds since the
interval is said, or 10 seconds when this is the used time
interval.

We have checked also the rest of services whose some
intervals were detected as unavailable by the monitoring client.
The study of the traffic did not reveal any period with pro-
blems, there were not any interval of time where the server
did not answer to the clients. The periods showed by the
monitoring client were due to problems of the own client with
the proxy cache or a particular server but not with the service.

B. Traffic profiling of the requested services

As a sanity check the full volume of traffic from the scenery
network to the servers is observed to check that the amount
of traffic was significant. Traffic for the 8th of November to
Hotmail service is shown in Figure 9. The first image in the
figure shows the whole day traffic, while the second one is a
zoom to some of the main intervals detected. Hotmail is shown
since it is the service with more disruption events detected by
the algorithms. The intervals of unavailability detected by the
algorithm are drawn also. The first plot shows a full day of
traffic and the second one zooms to 1 hour around the previous
discussed event.

It can be seen that the amount of traffic suggests the service
is working and the gap around 15:35:10 is clearly visible. After
these period without traffic the service seems to reestablish
normally, creating a traffic peak after the detected problem
that reaches almost 5 MBps.

VII. CONCLUSIONS

In this paper, a simple algorithm to detect periods of
unavailability services has been presented. It is based only on
passive capture of traffic.

Although there are more service monitoring software avail-
able, to the authors best knowledge, they are based on active
probing systems. Active monitoring presents some disadvan-
tages, which may discourage network administrators of its use
in scenarios where the impact of the monitoring needs to be
minimized. First, because it requires to check if a service
is available it would imply to make periodically requests to
different servers. In some scenarios, like high loaded servers or
monitoring third party services it is not possible to make these
requests as frequently as needed, in order to avoid overhead or
security alarms. Apart from that, the probing requests should
be chosen carefully in order to avoid problems with proxy
caches, which could give the impression that the service is
working properly while other clients would not be able to
use the service. Another problem is the difficulty to select a
location for monitoring clients in multiple subnet scenarios. In
these cases, at least a pair of clients should be placed in each
subnet in order to detect possible problems inside. Moreover,
every client should be clock synchronized in order to report
coherent times with the rest of monitoring clients.

As the proposed model is passive and based only on the
study of packet counts between servers and clients it will

2M
4M
6M
8M

10M
12M
14M

03:00h 06:00h 09:00h 12:00h 15:00h 18:00h 21:00h 00:00h

U
na

va
ila

bl
e 

Se
rv

ic
e

B
ps

Bps Upstream
Unavailable interval detected

0 
2M
4M
6M
8M

10M
12M
14M

B
ps

Bps Downstream

1M

2M

3M

4M

5M

6M
15:00h 15:10h 15:20h 15:30h 15:40h 15:50h 16:00h

U
na

va
ila

bl
e 

Se
rv

ic
e

B
ps

Bps Upstream
Unavailable interval detected

0 

1M

2M

3M

4M

5M

6M

B
ps

Bps Downstream

Figure 9. Bps for the use of Hotmail service by the university community

not interfere with the traffic on the network. Therefore, any
problem of interference, monitoring client overload, network
problems with measured server availability is avoided.

Although the algorithm is based on the expected behaviour
of the transfers between client and servers seen at packet level,
it has been shown how different kinds of disruptions, as for
instance, an unexpected server reboot has an influence on the
network traffic at packet level captured at client’s side.

Another advantage of using the proposed model is that it
is based in a single location. That means the measure is not
dependent on the location of multiple monitoring agents. The
network administrator has just to select an appropriate passive
observing location, where it can see the traffic between the
population of clients to monitor and the servers of interest.
This is a much simpler decision that can be typically solved
by placing the sniffer at organization’s network’s edge.

VIII. FUTURE WORK

Currently, we are working to extend the algorithm to detect
service failures without focusing on specific servers, just by
analyzing sniffed traffic and applying the current algorithm to
every connection seen. In this manner, the algorithm can work
as an service anomaly detection system that warns administra-
tor of service issues. This is useful in large organizations that
may not have a clear list of services accessed by users but,
nevertheless, need to react to service unavailability problems.

An improvement that can be implemented in order to
reduce the number of false positives, is to use the two mem-
bership functions described in the algorithm to apply some
method of fuzzy logic.

190

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Sci-
ence and Innovation through the research project INSTINCT
(TEC-2010-21178-C02-01). Also, the authors want to thank
Public University of Navarra for funding through PIF grant.

REFERENCES

[1] I. Prieto, M. Izal, E. Magana, and D. Morato, “Detecting disruption pe-
riods on tcp servers with passive packet traffic analysis,” in SOFTENG
2015, The First International Conference on Advances and Trends in
Software Engineering, April 2015, pp. 34–40.

[2] “NAGIOS, a commercial-grade network flow data analysis solution,”
2009-2015. [Online]. Available: http://www.nagios.com/ [accessed:
2015-01-30]

[3] “ZABBIX, the ultimate enterprise-level software designed for
monitoring availability and performance of it infrastructure
components,” 2001-2014. [Online]. Available: http://www.zabbix.com
[accessed: 2015-02-02]

[4] “CACTI, a complete network graphing solution.” 2004-2012. [Online].
Available: http://www.cacti.net/ [accessed: 2014-12-29]

[5] “MUNIN, networked resource monitoring tool,” 2003-2013. [Online].
Available: http://munin-monitoring.org/ [accessed: 2015-01-15]

[6] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi-tiered
web applications using queueing predictor,” in Network Operations and
Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, 2006,
pp. 106–114.

[7] D.-J. Lan, P. N. Liu, J. Hou, M. Ye, and L. Liu, “Service-enabled
automatic framework for testing and tuning multi-tier system,” in e-
Business Engineering, 2008. ICEBE ’08. IEEE International Conference
on, 2008, pp. 79–86.

[8] D. Chua, E. Kolaczyk, and M. Crovella, “Efficient monitoring of end-
to-end network properties,” in INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, 2005, pp. 1701–1711.

[9] Y. Park, “Systems monitoring using petri nets,” in Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and Simulation., 1997
IEEE International Conference on, vol. 4, 1997, pp. 3245–3248.

[10] C. H. Choi, M. G. Choi, and S. D. Kim, “CSMonitor: a visual clien-
t/server monitor for corba-based distributed applications,” in Software
Engineering Conference, 1998. Proceedings. 1998 Asia Pacific, 1998,
pp. 338–345.

[11] C. Steigner, J. Wilke, and I. Wulff, “Integrated performance monitoring
of client/server software,” in Universal Multiservice Networks, 2000.
ECUMN 2000. 1st European Conference on, 2000, pp. 395–402.

[12] G. Song, “The study and design of network traffic monitoring based
on socket,” in Computational and Information Sciences (ICCIS), 2012
Fourth International Conference on, 2012, pp. 845–848.

[13] G. Fang, Z. Deng, and H. Ma, “Network traffic monitoring based on
mining frequent patterns,” in Fuzzy Systems and Knowledge Discovery,
2009. FSKD ’09. Sixth International Conference on, vol. 7, 2009, pp.
571–575.

[14] A. Tachibana, S. Ano, and M. Tsuru, “Selecting measurement paths
for efficient network monitoring and diagnosis under operational con-
straints,” in Intelligent Networking and Collaborative Systems (INCoS),
2011 Third International Conference on, 2011, pp. 621–626.

[15] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and
faults in IP networks,” in INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications. IEEE
Societies, vol. 1, 2003, pp. 134–144.

[16] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Recent
traffic measurements from an Internet backbone,” in International Net-
working Conference (INET) ’98. Geneva, Switzerland: The Internet
Society, Jul 1998, pp. 1–1.

[17] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” in Proceedings of the 2011
31st International Conference on Distributed Computing Systems, ser.
ICDCS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
310–321. [Online]. Available: http://dx.doi.org/10.1109/ICDCS.2011.27

[18] D. Schatzmann, S. Leinen, J. Kgel, and W. Mhlbauer, “FACT: Flow-
based approach for connectivity tracking,” in Passive and Active Mea-
surement, ser. Lecture Notes in Computer Science, N. Spring and
G. Riley, Eds. Springer Berlin Heidelberg, 2011, vol. 6579, pp. 214–
223.

[19] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” vol. PP, no. 99, 2014, pp. 1–1.

[20] G. Bartlett, J. Heidemann, and C. Papadopoulos, “Understanding
passive and active service discovery,” in Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’07.
New York, NY, USA: ACM, 2007, pp. 57–70. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298314

[21] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice Hall New
Jersey, 1995, vol. 4.

191

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


