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Abstract — Software Defined Networking (SDN) is a 

recent networking technology that promises important 

advantages in IP networking, related to flexibility at 

network and application level, together with powerful 

management and control. However, the SDN specific 

centralization creates scalability problems in large network 

environments. Multi-controller implementation of the SDN 

control plane for large networks can solve the scalability and 

reliability issues introduced by the SDN centralized logical 

control principle. There are still open research issues related 

to controllers placement, static or dynamic assignment of the 

network forwarding nodes to controllers, especially when 

network nodes/links and/or controllers failures appear or 

some  constraints are imposed. This paper contains an 

analysis of some solutions proposed in the literature followed 

by a work in progress, on multi-criteria optimization 

methods applicable to the controller placement problem. 

Keywords — Software Defined Networking; Distributed 

Control Plane; Controller placement; Reliability; Multi-

criteria optimizations. 

 

I. INTRODUCTION 

The recently proposed Software Defined Networking 

(SDN) technology offers significant advantages to cloud 

data centers and also to Service Provider Wide Area 

Networks (WAN)[1]. The basic principles of the SDN 

architecture are [2][3][4]: clear decoupling of the control 

and forwarding (data) planes; logically centralized 

control; exposure of abstract vision on network resources 

and state to external applications. Thus, SDN offers an 

important advantage of independency of the control 

software w.r.t. forwarding boxes implementations offered 

by different vendors. Higher degree of programmability 

of the network control and also of applications is 

important consequences of the above principles.  

This paper considers the case when SDN–type of 

control is applied in a WAN, owned by an operator and/or 

a Service Provider (SP). 

Open research issues are related to the fact that the 

control-data plane separation can generate performance 

limitations and also reliability issues of the SDN 

controlled network [5][6] (note that in the subsequent text, 

by “controller” it is understood a geographically distinct 

controller location):  

(a) The forwarder nodes (called subsequently 

“forwarders” or simply “nodes”) must be continuously 

controlled, in a proactive or reactive way.  The forwarders 

have to ask their master controllers and then be instructed 

by the latter, on how to process various new flows 

arriving to the forwarders. The result of instructions 

issued by the controller is filling appropriately the flow 

tables in the forwarder [2]. Such tables show what 

sequence of processing actions should be applied to a 

given data flow (identified by some specific parameters). 

The control communication overhead (and its inherent 

delay), between several forwarders and a single controller, 

can significantly increase the response time of the overall 

system. This happens because any type of controller 

would have eventually a limited processing capacity [5], 

w.r.t. the number of flow-related queries, or equivalently, 

the number of forwarders assigned to a controller could be 

too high. Therefore, the problem is: how to distribute the 

controllers as to minimize the controller-forwarder delay 

for a given network? 

(b) The SDN control plane computes a single logical 

view upon the network; to this aim the controllers must 

inter-communicate and update/synchronize their data 

bases, in order to support the logical view construction 

and continuously updating of this unique vision upon the 

network [7][8][9]. One possible solution for inter-

controller communication is to create an overlay network 

linking the controllers on top of the same infrastructure 

used by the data plane flows [10]. The problem is: how to 

distribute the controllers as to minimize the controller-to-

controller communication delay, for a given set of 

controllers? 

(c) Asynchronous events, such as controller failures or 

network disconnections between the control and data 

planes, may also lead to packet loss and performance 

degradation [5][11]. One can suppose that some 

forwarders are still alive (i.e., they can continue to 

forward the traffic flows, conforming their current flow 

table content). However, if the forwarders can no longer 

communicate with some controller, then they will have no 

knowledge on how to process the newly (in the future) 
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arrived flows. The problem is: how to distribute the 

controllers as to minimize the controllers and/or network 

links failures consequences? 

There is a need to optimally place the controllers in 

the network. The overall objective will be an attempt to 

solve as much as possible of (a), (b), and (c) problems. 

However, this is a multi-criteria optimization problem and 

it was recognized as being a NP-hard one [11]. 

Consequently, different solutions have been proposed, 

targeting performance (problem (a), (b)), and performance 

plus reliability (problem (c)).  
The paper [1] presented at The International 

Symposium on Advances in Software Defined Networks 
SOFTNETWORKING 2015, in  Barcelona, Spain,  
contained an analysis of some solutions for (a), (b), (c) and 
then proposed a preliminary contribution on how multi-
criteria optimization algorithms can be applicable to the 
controller placement problem. The study target was not to 
develop specific algorithms, dedicated to find an optimum 
solution for a single given criterion (several studies did 
that), but to achieve an overall optimization of the 
controller placement, by applying multi-criteria decision 
algorithms (MCDA) [12] [13]. The input data of the 
MCDA is a set of candidates (here an instance of 
controller placement is called a candidate solution).  

This work is an extension of the paper [1], by refining 
more deeply some subjects and also by adding a novel 
section dedicated to simulation experiments and results. 

 
The material is organized as follows. Section II is an 

overview of related work. Section III outlines several 
metrics and algorithms used in optimizations and present 
some of their limitations. Section IV develops the 
framework for MCDA usage as a tool for final selection of 
the control placement solution. Section V (which is new in 
this paper w.r.t. [1]) presents simulation model and a set of 
simulation experiments performed by the authors and 
results. Section VI presents conclusions and outlines the 
future work. 

II. RELATED WORK ON SDN CONTROLLER 

PLACEMENT  

This section is a short overview on some previously 
published work on controller placement in SDN - managed   
WANs. It is supposed that network topology and some 
metrics are known. The basic problems to be solved (in an 
optimum way) are:  (1) how many SDN controllers are 
needed for that network and (2) where the controllers 
should be placed in the network. The goal is to provide 
enough performance (e.g., low delay for controller-to-
forwarder communications) and also robustly preserve the 
performance level, when some controllers and/or network 
failures occur. Intuitively, it can be seen that some trade-
off will be necessary.  

In the cases of WANs having significant path delays, 
the controller placement determines the control plane 
convergence time. In other words, the placement affects 

the controller’s response to real-time events sensed by the 
forwarders, or, in case of proactive controller-initiated 
actions, how fast the controllers can push (in advance) the 
required actions to forwarding nodes. 

Actually, it has been shown in [10][14] that such a 
problem is theoretically not new. If latency is taken as a 
metric, the problem is similar to the known one, as facility 
or warehouse location problem, solved, e.g., by using 
Mixed Integer Linear Program (MILP) tools.  

The Heller et al. early work [11] motivates the 
controller placement problem and then quantifies the 
placement impact on real topologies like Internet2 [5] and 
different cases taken from Internet Topology Zoo [16]. 
Actually, their main goal was not to find optimal 
minimum-latency placements (they observed that 
generally, such a problem has been previously solved) – 
but to present an initial analysis of a fundamental design 
problem, still  open for further study. It has been shown 
that it is possible to find optimal solutions for realistic 
network instances, in failure-free scenarios, by analyzing 
the entire solution space, with off-line computations. This 
work also emphasized the fact (apparently surprising) that 
in most topologies, one single controller is enough to 
fulfill existing reaction-time requirements for some, 
reasonable size networks. However, resiliency aspects 
have not been considered in the above study. 

Several works [10][14][17][18][19] have shown that 
resilience is important in the context of SDN and 
especially in the cases where additionally Network 
Function Virtualization (NFV) is wanted. Some resiliency-
related issues have been considered in [14]:  

(1) Controller failures: in case of a primary controller 
failure, it should be possible to reassign all its previously 
controlled nodes to a secondary closest controller, by using 
a backup assignment or via signaling, based on normal 
shortest path routing. Extreme case scenarios have been 
also considered, e.g., if at least one controller is still 
reachable; in such a case all nodes should keep functioning 
by communicating with it.  

(2) Network Disruption: the failure of network links/ 
nodes may appear, altering the topology. The routing paths 
(and their associated latencies) will change; a novel 
reassignment of nodes (forwarders) to other reachable 
controllers is needed. In the worst case, some parts of the 
network can be completely cut off, having no access to 
controllers. On short term this problem has no solution: 
such separated nodes can still forward traffic based on 
existing flow tables content, but they would have no more 
a controller to which send their request and from whom  
receive new instructions.  

(3) Controller overload (load imbalance): shortest 
path–based assignment of the forwarders to controllers is 
natural. However, one should avoid that one controller 
have too many nodes to manage; otherwise its average 
response time will increase. Therefore, a well-balanced 
assignment of nodes to the different controllers is needed.  

(4) Inter-Controller Latency: the SDN concepts ask for 
a centralized logic view of the network; therefore, inter—
controller communications are necessary to synchronize 
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their data bases. No matter if a single flat level of 
controllers (e.g., like in Onix [8]) or a hierarchical 
topology (e.g., like in Kandoo [9]) of controllers is used, it 
is clear that inter-controller latency should be minimized. 
Therefore, an optimized controller placement should meet 
such a requirement.  

The works [10][18] present a metric to characterize the 
reliability of SDN control networks. Several placement 
algorithms are developed and applied to some real 
topologies, claiming to improve the reliability of SDN 
control, but still keep acceptable latencies. The controller 
instances are chosen such that the chance of connectivity 
loss is minimized; connections are defined according to 
the shortest path between controllers and forwarding 
devices. 

The work [19] identifies several limitations of 

previous studies:  

(1) forwarder-to-controller connectivity is modeled 

using single paths; yet, in practice, multiple concurrent 

connections may be available;  

(2) peaks in the arrival of new flows are considered to 

be only handled on-demand, assuming that the network 

itself can sustain high request rates;  

(3) failover mechanisms require predefined 

information which, in turn, has been overlooked.  

The paper proposes the Survivor, i.e., a controller 

placement strategy that explicitly considers for network 

design the following elements: path diversity, controller 

capacity awareness, and failover mechanisms. Specific 

contributions consist in: significant reduction of the  

connectivity loss by exploring the path diversity (i.e., 

connectivity-awareness), which is shown to reduce the 

probability of connectivity loss in around 66% for single 

link failures; considering capacity-awareness proactively, 

while  previous work handled requests churn on demand 

(it is shown that capacity planning is essential to avoid 

controller overload, especially during failover); smarter 

recovery mechanisms by proposing heuristics for defining 

a list of backup controllers (a methodology for composing 

such lists is developed; as a result, the converging state of 

the network can improve significantly, depending on the 

selected heuristic). 

As stated previously, this paper does not aim to 

develop a new optimized placement algorithm based on a 

given particular metric, but to consider the multi-criteria 

aspect of the problem and attempt to find an overall 

optimization. 

III. METRICS AND ALGORITHMS- SUMMARY 

This section summarizes some typical metrics and 
objectives of the optimization algorithms for controller 
placement. The overall goal is to optimize the Control 
Plane performance. Note that, given the problem 
complexity, the set of metrics and algorithms discussed 
below is not representing an exhaustive view. Considering 
a particular metric (criterion) an optimization algorithm 

can be applied, [10][11][14][19]. The goal of this paper is 
not to discuss details of such particular algorithms but 
searching a global optimization method. We only outline 
here their objectives and emphasize limitations of some 
particular cases. 

A. Performance-only related metrics (failure-free 

scenarios) 

The network is represented by an undirected graph 
G(V, E) where V is the set of nodes,  n=|V| is the number 
of nodes and E is the set of edges. The edges weights 
represent an additive metric (e.g., propagation latency 
[11]). It is assumed that controller’s locations are the same 
as some of the network forwarding nodes.   

A simple metric is d(v, c): shortest path distance from 

a forwarder node vV to a controller cV. In [11], two 
kinds of latencies are defined, for a particular placement Ci 

of controllers, where Ci  V and |Ci| ≤|V|. The number of 

controllers is limited to |Ci|= k for any particular placement 
Ci. The set of all possible placements is denoted by C = 
{C1, C2, …}. One can define, for a given placement Ci: 

Average_latency:  

 






Vv
Cic

iavg cvd
n

CL ),(min
1

)( 

Worst_case_latency :  

  cvdL

iCcVv
wc ,minmax



 

The optimization algorithm should find a particular 
placement Copt, where either average latency or the worst 
case latency is minimal.  

 
Figure 1 shows a simple example of a network having 

six nodes. 
 

),(minmax
1

cvdL
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Figure 1. Simple network example of controller placement and nodes-to 

-controller assignment: v= forwarder node; c = controller; C1= { 

[cx_in_v5 (v5, v2, v4)],  [cy_in_v6(v6, v1, v3)]} 

Note that Figure 1 could represent not quite the real 
network infrastructure, but an overlay, in which only a 
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subset of the total number of real nodes appear. This 
assumption makes the model more general in the sense 
that a hybrid network could be supposed as being the 
infrastructure supporting the overlay. A subset of nodes 
(routers) can be SDN forwarders and in some of them 
SDN controllers could be hosted. Two controllers {cx, cy} 
can be placed in any location of the six nodes, e.g. in {v5, 
v6}. This placement instance is denoted by C1. The 
distances between different nodes (overlay paths) are 
marked on the graph. 

How to assign the forwarders to controllers? If one 
considers C1 and the “shortest path” as a criterion of 
selection, then the allocation of forwarders to controller 
will be: 

C1: cx =v5 (v5, v2, v4), cy=v6(v6, v1, v3) 
 
Note that a particular network node could play the both 

roles , as forwarder and controller. 
Some limitations of this optimization process are: 

 No reliability awareness: the metrics are pure 
distances, which in the simplest case are 
considered as being static values - despite that 
delay is usually a dynamic value in IP networks. 

 There is no upper limit on the number of v nodes 
assigned to a controller; too many forwarders 
controlled by the same controller could exist, 
especially in large networks. 

 
Other metric possible to be considered in failure-free 

case is Maximum cover [11][20]. The algorithm should 
find a controller placement, as to maximize the number of 
nodes within a latency bound; i.e., to find a placement of k 
controllers such that they cover a maximum number of 
forwarder nodes, while each forwarder must have a limited 
latency bound to its controller.  

All metrics and algorithms described above do not take 
into account the inter-controller connectivity, so their 
associated optimizations can be seen as being partial. 

B. Reliability aware metrics  

Several studies consider more realistic scenarios in 
which controller failures or network links/nodes failures 
might exist. The optimization process aims now to find 
trade-offs (related to failure-free scenarios) in order to 
preserve a convenient behavior of the overall system in 
failure cases. 

 
(1) Controller failures (cf) 
 The work [14] observes that the node-to-controller 

mapping can change in case of controller outages. So, a 
realistic latency-based metric should consider both the 
distance to the (primary) controller and the distance to 
other (backup) controllers. For a placement of a total 
number of k controllers, in [14] the failures are modeled 
by constructing a set C of scenarios, including all possible 
combinations of faulty controller number, from 0 of up to 
k - 1. The resulting maximum latency will be: 
 

Worst_case_latency_cf :  

  cvdL

ii CcCCVv
cfwc ,minmaxmax


  

The optimization algorithm should find a placement 
which minimizes the expression (3).  

Commenting the placement results based on the metric 
(1) or (2), one can observe that in failure-free case, the 
optimization algorithm tends to rather equally spread the 
controllers in the network, among the forwarders nodes. 
However, when attempting to minimize the expression (3) 
(and considering worst case failure), the controllers tend to 
be placed in the centre of the network. Thus, even if all 
controllers (except for one) fail, the latencies are still 
satisfactory (numeric examples are given in [14]).On the 
other side, one  can criticize such an approach if applied to 
large networks; the scenario supposed by the expression 
(3) is very pessimistic; it is more realistic that a large 
network will be split in some regions/areas, each served by 
a primary controller; then some lists of possible backup 
controllers can be constructed for each area, as proposed in 
[19]. 

The conclusion is that a trade-off exists, between the 
placements optimized for the failure free case and those 
including controller failures. It is a matter of operator 
policies to assign weights to different criteria, before 
deciding (based on multiple criteria) the final selection of 
placement solution. 

 
(2) Nodes/links failures (Nlf) 
 Links or nodes failures might produce network 

disruptions; some forwarders could have no more access to 
any controller. Therefore, an optimization objective could 
be to find a controller placement, which minimizes the 
number of nodes possible to enter into controller-less 
situations, in various scenarios of link/node failures. A 
realistic assumption is to limit the number of simultaneous 
failures at only a few (e.g., two [14]). If more than two 
arbitrary link/node failures happen simultaneously, then 
the topology can be totally disconnected and optimization 
of controller placement would be no more efficient. 

For any given placement Ci of the controllers, an 
additive integer value metric Nlf(Ci) could be defined,  as 
below:  

 consider a failure scenario denoted by fk, with 

fkF, where F is  the set of all network failure 
scenarios (suppose that in any instance scenario, at 
most two link/nodes are down); 

 initialize  Nlfk(Ci) =0; then for each node vV, 
add one to Nlfk(Ci) if the node v has no path to any 

controller cCi and add zero otherwise; 

 compute the maximum value (i.e., consider the 
worst failure scenario). We get: 

    iki CNlfCNlf max 

where k covers all scenarios of F. 
The optimization algorithm should find that placement 

which minimizes (4). It is naturally expected that 

163

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



  

 

increasing the number of controllers, will decrease the Nlf 
value. We also observe that the optimum solution based on 
the metric (4) could be very different from those provided 
by the algorithms using the metrics (1) or (2). 
 

(3) Load balancing for controllers  
A well designed system would require roughly equal 

load on all controllers, i.e., a good balance of the node-to-
controller distribution. A metric can be defined to measure 
the degree of imbalance Ib(Ci) of a given placement Ci as 
the difference between the maximum and minimum number 
of forwarders nodes assigned to a controller. If the failure 
scenarios set S is considered, then the worst case should 
evaluate the maximum imbalance as: 

 }minmax{max)(
s
c

Cc

s
c

CcSs
i nnCIb

ii 

 

where 
s

c
n  is the number of forwarder nodes assigned to a 

controller c. Equation (5) takes into account that in case of 
failures, the forwarders can be reassigned to other 
controllers than the primary ones and, therefore, the load 
of those controllers will increase. An optimization 
algorithm should find that placement which minimizes the 
expression (5). 
 

(4) Multiple-path connectivity metrics  
One can exploit the possible multiple paths between a 

forwarder node and a controller [19], hoping to reduce the 
frequency of controller-less events, in cases of failures of 
nodes/links. The goal is to maximize connectivity between 
forwarding nodes and controller instances. The metric is 
defined  as: 

 




VvCc

i cvndp
V

CM

i

),(
||

1
)( 

In (6), ndp(v,c) is the number of disjoint paths between 
a node v and a controller c, for an instance placement Ci. 
An optimization algorithm should find the placement Copt 
which maximizes M(Ci). 

C. Inter-controller latency (Icl)  

The inter-controller latency has impact on the response 
time of the inter-controller mutual updating. For a given 
placement Ci, the Icl can be given by the maximum latency 
between two controllers: 

 ), cd(c)Icl(C nki max  =  

Minimizing (7) will lead to a placement with 
controllers close to each other. However, this can increase 
the forwarder-to-controller distance (latency) given by (1) 
or (2). Therefore, a trade-off is necessary, thus justifying 
the necessity to apply some multi-criteria optimization 
algorithms, e.g., like Pareto frontier - based ones. 

D. Constraints  

Apart from defining the metrics, the controller 
placement problem can be subject to different constraints. 
For instance, in [19], the input data for the optimal 
controller placement algorithm consists in the graph 
G(V,E) information, set of possible controller instances C, 
request demand of a network device, each controller 
capacity, and a backup capacity for each controller. Integer 
Linear Programming (ILP) – based algorithm is applied; 
here the constraints can be split into three classes: 
placement-related, capacity related and connectivity-
related. In general other limits can be defined, e.g., on 
maximum admissible latency, ratio number 
controller/trivial nodes, pre-defined regions for controllers, 
etc. They should be included in the respective algorithms.   

 

IV. MULTI-CITERIA OPTIMIZATION ALGORITHM 

Sections II and III have shown that several criteria of 
optimum can be envisaged when selecting the best 
controller placement in a WAN. While particular metrics 
and optimization algorithms can be applied (see Section 
III), we note that some criteria lead to partially 
contradictory placement solutions. What approach can be 
adopted? The answer can be given by adopting a multi-
objective optimization based on Multi-Criteria Decision 
Algorithms (MCDA). The good property of MCDA is that 
it allows selection of a trade-off solution, based on several 
criteria. Note that, partially, such an approach has been 
already applied in [14], for some combinations of the 
metrics defined there (e.g., max. latency and controller 
load imbalance for failure-free and respectively failure 
cases). 

A. Reference  level MCDA 

This paper proposes to apply MCDA, as a general way 
to optimize the controller placement, while considering not 
only a single metric but an arbitrary number of them. 

The multi-objective optimization problem [12][13] is  

to minimize {f1(x), f2(x), . . . , fm(x)}, where x ∈ S ( set of 

feasible solutions), S ⊂ R
n
. The decision vector is x = (x1, 

x2, . . . ,xn)
T
. There are (m ≥  2) possibly conflicting 

objective functions fi : R
n
 → R , i = 1, ..m, and we would 

want to minimize them simultaneously (if possible). In 
controller placement problem we might have indeed some 
partially conflicting objectives (e.g., to minimize the inter-
controller latency and the forwarder-controller latency).  

 
One can define Objective vectors as  images of 

decision vectors. The objective (function) values are given 
by z = f (x) = (f1(x), f2(x), ..., fm(x))

T
. We denote as 

feasible objective region W = f (S) = image of S in the 
objective space.   

Objective vectors are optimal if none of their 
components can be improved without deterioration to at 
least one of the other components.  
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A decision vector x_ ∈ S is named Pareto optimal 

[12] if it does not exist another x ∈ S such that fi(x) ≤ 

fi(x_) for all i = 1, . . . , m and fi(x) < fj(x_) for at least one 
index j.   

 
We adopt here the MCDA variant called reference 

level decision algorithm [13]. It has the advantage to allow 
selection of the optimal solution while considering 
normalized values of different criteria (metrics).  

We use a simplified notation:  

 identify the solutions directly by their images in 
the objectives space R

m
,  

 decision parameters/variables are: vi, i = 1, ..m,  

with i, vi ≥ 0, 

 image of a candidate solution is Sls=(vs1,vs2,...,vsm), 
represented as a point in R

m
 , 

S = number of candidate solutions. 
Note that the value ranges of decision variables may be 
bounded by given constrains. The optimization process 
consists in selecting a solution satisfying a given objective 
functions and conforming a particular metric. 

The basic reference level algorithm [13], defines two 
reference parameters: 

 ri =reservation level=the upper limit for a decision 
variable, which the decision variable vi of a 
solution should not cross; 

 ai=aspiration level=the lower bound beyond which 
the decision variable (and therefore the associate 
solutions) are seen as similar. 

Without loss of generality one may apply the 
definitions of [13], where for each decision variable vi 
there are defined two values named ri and ai, by computing 
among all solutions s = 1, 2, ..S: 


, ..S, , s = v  = a

, ..S, s = v r

isi

isi

21][min

21 ],[max  = 

In [13], modifications of the decision variables are 
proposed: replace each variable with distance from it to 
the reservation level: vi  ri-vi; (increasing vi will decrease 
the distance); normalization is also introduced, in order to 
get non-dimensional values, which can be numerically 
compared. For each variable vsi, a ratio is computed: 

 is)-a)/(r-v' = (rv iisiisi ,,  

The factor 1/(ri-ai) - plays also the role of a weight. The 
variable having high dispersion of values (max – min) will 
have lower weights, and so, greater chances to determine 
the minimum in the next relation (10). In other words, less 
preference is given to those decision variables having close 
values to each other (among different candidate solutions), 
i.e., if the values min, max are close enough, then it does 
not matter which solution is chosen by considering the 
respective decision variable. 

 
The basic algorithm steps are: 

 

Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m 

 

Step 1. Compute for each candidate solution s, the 

minimum among all its normalized variables vsi': 

 ...m'}; i={v = sis 1minmin 

Step 2. Make selection among solutions by computing: 

 , ..S}, s= {  = v sopt 1minmax 

Note that the formula (10) selects for each candidate 

solution s, the worst case, i.e., that solution being closest 

to the reservation level (after searching among all 

decision variables). Then the formula (11) selects among 

the solutions, the best one, i.e., that having the highest 

value of the normalized parameter. 

 

This vopt is the optimum solution, i.e., the MCDA  

selects the best value among those produced by the Step 

1. In the case that several equal values exist in the Step 2, 

a random selection can be adopted or some other 

additional discrimination criterion. Note also, that it is no 

problem for the Step 2, to consider more than one 

solution, i.e., a set of several quasi-optimum solutions can 

be selected. 

 

B. MCDA- Controller placement optimization  

In this section, we apply the reference level algorithm 
to the controller placement problem. However, we modify 
the basic algorithm to be better adapted to controller 
placement problem, due to following remarks:  
 (1) The step 2 compares values coming from different 
types of parameters/metrics (e.g., max. latency, load 
imbalance, etc.) having different nature and being 
independent or dependent on each other. The 
normalization still allows them to be compared in the 
max{ } formula. This is an inherent property of the basic 
algorithm. 
 (2) However, the network provider might want to 
apply different policies when deciding the controller 
placement. In such policies, some decision variables (or 
metrics) could be “more important” than others. For 
instance, in some cases, the performance is more 
important, in others high resilience is the major objective.  

A simple modification of the algorithm can support a 
variety of provider policies. We propose a modified 
formula: 

 )-a)/(r-v(r' = wv iisiiisi 

where the factor wi  (0,1] represents a weight (priority) 
that can be established from network provider policy 
considerations, and can significantly influence the final 

165

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



  

 

selection. Note that a lower value of wi actually represents 
a higher priority of that parameter in the selection process. 
 

The controller placement problem solving (given the 
graph, link costs/capacities, constraints, desired number of 
controllers, etc.) is composed of two macro-steps:  

 
(1) Macro-step1: Identify the parameters of interest, 

and compute the values of the metrics for all possible 
controller placements, using specialized algorithms and 
metrics (1) - (7). In other word this step will produce the 
set of candidate solutions (i.e., placement instances). 

This procedure could be time consuming (depending 
on network size) and, therefore, performed off-line [11].  

 
(2) Macro-step2: MCDA 

 define reservation and aspiration levels for each 
decision variable; 

 eliminate those candidates having out of range 
parameter values defined by the reservation level; 

 define appropriate weights (see formula (12)) for 
different decision variables - depending on the 
high level policies applied by the operator; 

 compute the normalized variables (formula (12)) 

 run the Step 0, 1 and 2 of the MCDA algorithm 
(formulas (10) and (11)). 

 

The decision variables can be among those of Section 

III, i.e.:  

Average (1) or worst (2) case latency (failure-free 

case);   

Worst_case_latency_cf (3);  

Nodes/links failures (Nlf) (4); 

Controller Load imbalance (5); 

Multi-path connectivity metric (6); 

Inter-controller latency (7).   
 
For a particular problem, a selection of relevant 

variables should be done. For instance, in a high reliable 
network environment one could consider only failure free 
metrics. 

 

C. Numerical example – MCDA optimization  

A simple but relevant example is exposed to illustrate 
the MCDA power, based on the network in Figure 1. 
Suppose that for this network the metrics of interest and 
decision variables are (see Section III) on:  

d1: Average latency (1), (failure-free case);    
d2: worst latency (2,) (failure-free case);   
d3: Inter-controller latency (7).  

 
The reference levels are defined as in formula (8) and 

we propose: r1=3, a1=0; r2=6, a2=0; r3=6, a3=0.  
Several placement samples can be considered: 
C1= {[cx_in_v5 (v5, v2, v4)], [cy_in_v6(v6, v1, v3)]} 
C2= {[cx_in_v5 (v5, v1, v2, v4)], [cy_in_v3(v3, v6)]} 
C3= {[cx_in_v3 (v3,v2)],           [cy_in_v6(v6, v1, v4, v5,)]} 

C4= { [cx_in_v4 (v4,v2, v5)], [cy_in_v6(v6, v1, v3,)]} 

1. MCDA with equal priorities for d1=1, d2=1, d3=1, 
The values of the metrics are computed using equations 
(1), (2) and respectively (7) for each placement:  C1, ..C4. 

A matrix M(3x4) is computed using the formulas (9). 
MCDA is applied by using formulas (10), (11). The final 
result is: C1 = the best placement. Looking at Figure 1, we 
indeed can see that this placement is a good trade-off 
between node-controller latency and inter-controller 
latency. 

 
2. MCDA with different priorities for i.e. d1=1, 

d2=0.5, d3=1, i.e., the worst case latency d2 has highest 
priority, i.e., the solution minimizing the worst case 
controller - forwarder latency with high priority is desired.  
After re-computing the matrix M and applying MCDA 
equations (1), (11), we find C4 = the best placement. 
Indeed, we see in Figure 1 that worst case latency (node-
controller) is minimized, however, the inter-controller 
latency is higher than in C1.  

These examples proved how different provider policies 
can bias the algorithm results. 
 

V. USE CASE STUDIES 

A proof of concept simulation software program has 
been constructed to validate the above MCDA – based 
controller assignment procedure. This preliminary version 
of the program has been written in Python language [21] 
and uses the NetworkX software package [22] for the 
creation, manipulation and study of network graphs. The 
program has two running modes. 

 
Static: in these modes the inputs are:  
- the network (overlay) topology graph and link costs 

(it is supposed an additive metric representing the 
estimated delays on overlay network links);  

-  the number of controllers wanted;  
- decision parameters – e.g., d1, d2, d3 of the previous 

section;  
- priorities/weights assigned to the decision variables 

that comply with the network provider policy; 
- the possible placement of the controllers (i.e., 

candidate solutions of the MCDA) (considering them as 
results of some other algorithms) 

Dynamic: in this mode the following parameters can be 
selected: 

-  total number of network nodes (N)  
-  desired number of controllers 
-  the link costs (e.g., randomly assigned).  
The program computes all possible placements and 

then selects the best solution based on weighted MCDA 
algorithm. 

 
The program parses user arguments, constructs the 

weighted graph and associated candidate solutions, 
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computes Dijkstra’s shortest path lengths between all 
nodes in the graph, and then applies the MCDA controller 
placement optimization algorithm. The flowchart of the 
program is depicted in Figure 2. 

 

 
 
Figure 2. Flowchart for MCDA controller placement simulation program. 
 

Generally the order of complexity of an algorithm 
is an important issue  to be considered if its  
implementation is targeted. In our case the following 
particular characteristics of the optimization problem  are 
valid : 

(a) - this optimization computation has no real time 
requirements; it could be performed offline for a given 
fixed network (topology and costs are known or 
estimated). 

(b) - the complexity order of the Dijkstra part of the 
algorithm is the well known to be  O(|V|

2
), or  O(|E| +|V| 

log|V|), if a more efficient implementation is chosen,  
where |V | is the number of nodes and |E| is the number of 
edges. 

(c)  the evaluation of the metrics (1) –(7) supposes that 
for every particular mono-criteria algorithm, all possible 
placements should be considered. For large networks this 
is given in the worst case by the number of combinations 
Cn

k
, ( n= number of nodes; k = number of controllers) 

which increases very much with the number n of network 
nodes (usually it is true that k<<n). However this problem 
is common to all algorithms and  it is not particular to the 
algorithm developed in this paper. 

(d)  the MCDA algorithm itself, has to construct a 
matrix having the dimension NL*NC, where:  

-NL is the number of lines - equal to the number 
of decision variables ( e.g. three in the example given in 
the Section IV.C); 

- NC is the number of columns – equal to the 
number of candidates’ solutions (variants of controller 
placements). 

The number NL is usually small (e.g., NL=7 in this 
study). The number  NC could be large,  given by Cn

k
,  

which is the number of possible combinations of controller 
placements.  The Stirling formula n! ≈ (2πn)

1/2
 (n/e)

n
 

shows a strong increase of the number of controller 
placements  Cn

k
 with n. However, some practical 

considerations and/or policies could reduce significantly 
the actual number of combinations to be  considered. It is 
expected that large networks will be split in some disjoint 
regions having  significantly less than n nodes and a 
number of reduced number kR controllers will be allocated 
for a given region. In the work [11] the authors even say 
that “…in many medium-size networks, the latency from 
every node to a single controller can meet the response-
time goals of existing technologies, such as SONET ring 
protection…”. If the number of regions is R, with  R > 
1then the number of nodes n will be reduced at n/R, 
strongly decreasing the number of combinations. Some 
other restrictions imposed from policy considerations 
could  also  reduce the total number of nodes to be 
considered in the formulas (1) – (7). 

The interface for running the simulation program is 
presented below. 

 

 

 
Some samples of simulation results are given below. 
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Figure 3 shows the results obtained for the network 
presented in Figure 1, while decision variables are d1, d2, 
d3 defined in Section IV. In this use case, the highest 
priority is given to the worst case latency parameter (d2 = 
0.5), while the two others have d1=d3=1. One can see that 
the best solution selection is the setup C4, i.e., the same 
results as analytically estimated in Section IV. 

 
 

 

 

Figure 3. Simulation results for Figure 1 network; d1=1, d2=0.5, d3=1. 

Figure 4 shows another instance of use case, where the 
graph is dynamically generated, with N= 7 nodes and k=2 
controllers. The decision parameters have equal priorities: 
d1 = 1, d2 = 1, d3 = 1. The best placement is denoted by 
C3 and places the controllers in the nodes having the 
number 0 and 4 respectively. Note that the network of 
Figure 4 is a full mesh one. This is the effect of 
considering the overlay of paths. However, the algorithm 
and the program can work as well with partial mesh 
overlay graph. 

 
Figure 5 shows a quantitative extension for a larger 

graph – dynamically generated with N=14 nodes and k = 5 
controllers. The picture exposes a symmetrical figure due 
to full mesh connectivity between nodes. The link costs 
are randomly generated. The total number of possible 
placements is  CN

k
. The MCDA selects the placement no. 

55,  indicated in the text associated to the figure. 
 

 

 
   

 

Figure 4. Simulation results for  a network having N= 7, network; d1=1, 

d2=1, d3=1. 

 

VI. CONCLUSIONS 

This paper presented a study on using multi-criteria 
decision algorithms (MCDA) for final selection among 
several controller placements solutions in WAN SDN, 
while considering several weighted criteria. The MCDA 
quality is that it can produce a tradeoff (optimum) result, 
while considering several criteria, part of them even being 
partially contradictory. 

A simulation program has been created to demonstrate 
the validity of results. The topology and link costs are 
generally overlay ones, and can be introduced in a 
particular way or randomly generated. 

The method proposed is generic enough to be applied 
in various scenarios (including failure-free assumption 
ones or reliability aware), given that it achieves an overall 
optimization, based on multiple metrics supported by the 
reference model MCDA. Different network/service 
provider biases can be introduced in the selection process, 
by assigning policy-related weights to the decision 
variables. This simple algorithm modification creates a 
rather powerful tool to bias the selected solution, as to 
respond to the provider policy. 

 
Future work will be done to apply the method 

proposed to very large networks - real life case studies 
(e.g., from Internet Topology zoo, [16]) and comparing the 
quality of trade-offs when defining different weights to 
decision variables. 
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Figure 5. MCDA for a dynamic graph with 14 nodes ( 5 controllers) and equal priorities; d1=1, d2=1, d3=1. 
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