

On Multi-controller Placement Optimization in Software Defined Networking -

based WANs

Eugen Borcoci, Tudor Ambarus, Marius Vochin

University POLITEHNICA of Bucharest - UPB

Bucharest, Romania

eugen.borcoci@elcom.pub.ro, tudorambarus@yahoo.com, mvochin@elcom.pub.ro

Abstract — Software Defined Networking (SDN) is a

recent networking technology that promises important

advantages in IP networking, related to flexibility at

network and application level, together with powerful

management and control. However, the SDN specific

centralization creates scalability problems in large network

environments. Multi-controller implementation of the SDN

control plane for large networks can solve the scalability and

reliability issues introduced by the SDN centralized logical

control principle. There are still open research issues related

to controllers placement, static or dynamic assignment of the

network forwarding nodes to controllers, especially when

network nodes/links and/or controllers failures appear or

some constraints are imposed. This paper contains an

analysis of some solutions proposed in the literature followed

by a work in progress, on multi-criteria optimization

methods applicable to the controller placement problem.

Keywords — Software Defined Networking; Distributed

Control Plane; Controller placement; Reliability; Multi-

criteria optimizations.

I. INTRODUCTION

The recently proposed Software Defined Networking

(SDN) technology offers significant advantages to cloud

data centers and also to Service Provider Wide Area

Networks (WAN)[1]. The basic principles of the SDN

architecture are [2][3][4]: clear decoupling of the control

and forwarding (data) planes; logically centralized

control; exposure of abstract vision on network resources

and state to external applications. Thus, SDN offers an

important advantage of independency of the control

software w.r.t. forwarding boxes implementations offered

by different vendors. Higher degree of programmability

of the network control and also of applications is

important consequences of the above principles.

This paper considers the case when SDN–type of

control is applied in a WAN, owned by an operator and/or

a Service Provider (SP).

Open research issues are related to the fact that the

control-data plane separation can generate performance

limitations and also reliability issues of the SDN

controlled network [5][6] (note that in the subsequent text,

by “controller” it is understood a geographically distinct

controller location):

(a) The forwarder nodes (called subsequently

“forwarders” or simply “nodes”) must be continuously

controlled, in a proactive or reactive way. The forwarders

have to ask their master controllers and then be instructed

by the latter, on how to process various new flows

arriving to the forwarders. The result of instructions

issued by the controller is filling appropriately the flow

tables in the forwarder [2]. Such tables show what

sequence of processing actions should be applied to a

given data flow (identified by some specific parameters).

The control communication overhead (and its inherent

delay), between several forwarders and a single controller,

can significantly increase the response time of the overall

system. This happens because any type of controller

would have eventually a limited processing capacity [5],

w.r.t. the number of flow-related queries, or equivalently,

the number of forwarders assigned to a controller could be

too high. Therefore, the problem is: how to distribute the

controllers as to minimize the controller-forwarder delay

for a given network?

(b) The SDN control plane computes a single logical

view upon the network; to this aim the controllers must

inter-communicate and update/synchronize their data

bases, in order to support the logical view construction

and continuously updating of this unique vision upon the

network [7][8][9]. One possible solution for inter-

controller communication is to create an overlay network

linking the controllers on top of the same infrastructure

used by the data plane flows [10]. The problem is: how to

distribute the controllers as to minimize the controller-to-

controller communication delay, for a given set of

controllers?

(c) Asynchronous events, such as controller failures or

network disconnections between the control and data

planes, may also lead to packet loss and performance

degradation [5][11]. One can suppose that some

forwarders are still alive (i.e., they can continue to

forward the traffic flows, conforming their current flow

table content). However, if the forwarders can no longer

communicate with some controller, then they will have no

knowledge on how to process the newly (in the future)

160

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

arrived flows. The problem is: how to distribute the

controllers as to minimize the controllers and/or network

links failures consequences?

There is a need to optimally place the controllers in

the network. The overall objective will be an attempt to

solve as much as possible of (a), (b), and (c) problems.

However, this is a multi-criteria optimization problem and

it was recognized as being a NP-hard one [11].

Consequently, different solutions have been proposed,

targeting performance (problem (a), (b)), and performance

plus reliability (problem (c)).
The paper [1] presented at The International

Symposium on Advances in Software Defined Networks
SOFTNETWORKING 2015, in Barcelona, Spain,
contained an analysis of some solutions for (a), (b), (c) and
then proposed a preliminary contribution on how multi-
criteria optimization algorithms can be applicable to the
controller placement problem. The study target was not to
develop specific algorithms, dedicated to find an optimum
solution for a single given criterion (several studies did
that), but to achieve an overall optimization of the
controller placement, by applying multi-criteria decision
algorithms (MCDA) [12] [13]. The input data of the
MCDA is a set of candidates (here an instance of
controller placement is called a candidate solution).

This work is an extension of the paper [1], by refining
more deeply some subjects and also by adding a novel
section dedicated to simulation experiments and results.

The material is organized as follows. Section II is an

overview of related work. Section III outlines several
metrics and algorithms used in optimizations and present
some of their limitations. Section IV develops the
framework for MCDA usage as a tool for final selection of
the control placement solution. Section V (which is new in
this paper w.r.t. [1]) presents simulation model and a set of
simulation experiments performed by the authors and
results. Section VI presents conclusions and outlines the
future work.

II. RELATED WORK ON SDN CONTROLLER

PLACEMENT

This section is a short overview on some previously
published work on controller placement in SDN - managed
WANs. It is supposed that network topology and some
metrics are known. The basic problems to be solved (in an
optimum way) are: (1) how many SDN controllers are
needed for that network and (2) where the controllers
should be placed in the network. The goal is to provide
enough performance (e.g., low delay for controller-to-
forwarder communications) and also robustly preserve the
performance level, when some controllers and/or network
failures occur. Intuitively, it can be seen that some trade-
off will be necessary.

In the cases of WANs having significant path delays,
the controller placement determines the control plane
convergence time. In other words, the placement affects

the controller’s response to real-time events sensed by the
forwarders, or, in case of proactive controller-initiated
actions, how fast the controllers can push (in advance) the
required actions to forwarding nodes.

Actually, it has been shown in [10][14] that such a
problem is theoretically not new. If latency is taken as a
metric, the problem is similar to the known one, as facility
or warehouse location problem, solved, e.g., by using
Mixed Integer Linear Program (MILP) tools.

The Heller et al. early work [11] motivates the
controller placement problem and then quantifies the
placement impact on real topologies like Internet2 [5] and
different cases taken from Internet Topology Zoo [16].
Actually, their main goal was not to find optimal
minimum-latency placements (they observed that
generally, such a problem has been previously solved) –
but to present an initial analysis of a fundamental design
problem, still open for further study. It has been shown
that it is possible to find optimal solutions for realistic
network instances, in failure-free scenarios, by analyzing
the entire solution space, with off-line computations. This
work also emphasized the fact (apparently surprising) that
in most topologies, one single controller is enough to
fulfill existing reaction-time requirements for some,
reasonable size networks. However, resiliency aspects
have not been considered in the above study.

Several works [10][14][17][18][19] have shown that
resilience is important in the context of SDN and
especially in the cases where additionally Network
Function Virtualization (NFV) is wanted. Some resiliency-
related issues have been considered in [14]:

(1) Controller failures: in case of a primary controller
failure, it should be possible to reassign all its previously
controlled nodes to a secondary closest controller, by using
a backup assignment or via signaling, based on normal
shortest path routing. Extreme case scenarios have been
also considered, e.g., if at least one controller is still
reachable; in such a case all nodes should keep functioning
by communicating with it.

(2) Network Disruption: the failure of network links/
nodes may appear, altering the topology. The routing paths
(and their associated latencies) will change; a novel
reassignment of nodes (forwarders) to other reachable
controllers is needed. In the worst case, some parts of the
network can be completely cut off, having no access to
controllers. On short term this problem has no solution:
such separated nodes can still forward traffic based on
existing flow tables content, but they would have no more
a controller to which send their request and from whom
receive new instructions.

(3) Controller overload (load imbalance): shortest
path–based assignment of the forwarders to controllers is
natural. However, one should avoid that one controller
have too many nodes to manage; otherwise its average
response time will increase. Therefore, a well-balanced
assignment of nodes to the different controllers is needed.

(4) Inter-Controller Latency: the SDN concepts ask for
a centralized logic view of the network; therefore, inter—
controller communications are necessary to synchronize

161

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

their data bases. No matter if a single flat level of
controllers (e.g., like in Onix [8]) or a hierarchical
topology (e.g., like in Kandoo [9]) of controllers is used, it
is clear that inter-controller latency should be minimized.
Therefore, an optimized controller placement should meet
such a requirement.

The works [10][18] present a metric to characterize the
reliability of SDN control networks. Several placement
algorithms are developed and applied to some real
topologies, claiming to improve the reliability of SDN
control, but still keep acceptable latencies. The controller
instances are chosen such that the chance of connectivity
loss is minimized; connections are defined according to
the shortest path between controllers and forwarding
devices.

The work [19] identifies several limitations of

previous studies:

(1) forwarder-to-controller connectivity is modeled

using single paths; yet, in practice, multiple concurrent

connections may be available;

(2) peaks in the arrival of new flows are considered to

be only handled on-demand, assuming that the network

itself can sustain high request rates;

(3) failover mechanisms require predefined

information which, in turn, has been overlooked.

The paper proposes the Survivor, i.e., a controller

placement strategy that explicitly considers for network

design the following elements: path diversity, controller

capacity awareness, and failover mechanisms. Specific

contributions consist in: significant reduction of the

connectivity loss by exploring the path diversity (i.e.,

connectivity-awareness), which is shown to reduce the

probability of connectivity loss in around 66% for single

link failures; considering capacity-awareness proactively,

while previous work handled requests churn on demand

(it is shown that capacity planning is essential to avoid

controller overload, especially during failover); smarter

recovery mechanisms by proposing heuristics for defining

a list of backup controllers (a methodology for composing

such lists is developed; as a result, the converging state of

the network can improve significantly, depending on the

selected heuristic).

As stated previously, this paper does not aim to

develop a new optimized placement algorithm based on a

given particular metric, but to consider the multi-criteria

aspect of the problem and attempt to find an overall

optimization.

III. METRICS AND ALGORITHMS- SUMMARY

This section summarizes some typical metrics and
objectives of the optimization algorithms for controller
placement. The overall goal is to optimize the Control
Plane performance. Note that, given the problem
complexity, the set of metrics and algorithms discussed
below is not representing an exhaustive view. Considering
a particular metric (criterion) an optimization algorithm

can be applied, [10][11][14][19]. The goal of this paper is
not to discuss details of such particular algorithms but
searching a global optimization method. We only outline
here their objectives and emphasize limitations of some
particular cases.

A. Performance-only related metrics (failure-free

scenarios)

The network is represented by an undirected graph
G(V, E) where V is the set of nodes, n=|V| is the number
of nodes and E is the set of edges. The edges weights
represent an additive metric (e.g., propagation latency
[11]). It is assumed that controller’s locations are the same
as some of the network forwarding nodes.

A simple metric is d(v, c): shortest path distance from

a forwarder node vV to a controller cV. In [11], two
kinds of latencies are defined, for a particular placement Ci

of controllers, where Ci  V and |Ci| ≤|V|. The number of

controllers is limited to |Ci|= k for any particular placement
Ci. The set of all possible placements is denoted by C =
{C1, C2, …}. One can define, for a given placement Ci:

Average_latency:

 






Vv
Cic

iavg cvd
n

CL),(min
1

)(

Worst_case_latency :

  cvdL

iCcVv
wc ,minmax



 

The optimization algorithm should find a particular
placement Copt, where either average latency or the worst
case latency is minimal.

Figure 1 shows a simple example of a network having

six nodes.

),(minmax
1

cvdL
CcVv

wc




v2

v5, cx

v1

v6,cy

v4

v3

Shortest path (e.g., latency) from a

forwarder node to a controller

Ci 3

2

1

4

2

3

4

5

6

5

2

Figure 1. Simple network example of controller placement and nodes-to

-controller assignment: v= forwarder node; c = controller; C1= {

[cx_in_v5 (v5, v2, v4)], [cy_in_v6(v6, v1, v3)]}

Note that Figure 1 could represent not quite the real
network infrastructure, but an overlay, in which only a

162

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subset of the total number of real nodes appear. This
assumption makes the model more general in the sense
that a hybrid network could be supposed as being the
infrastructure supporting the overlay. A subset of nodes
(routers) can be SDN forwarders and in some of them
SDN controllers could be hosted. Two controllers {cx, cy}
can be placed in any location of the six nodes, e.g. in {v5,
v6}. This placement instance is denoted by C1. The
distances between different nodes (overlay paths) are
marked on the graph.

How to assign the forwarders to controllers? If one
considers C1 and the “shortest path” as a criterion of
selection, then the allocation of forwarders to controller
will be:

C1: cx =v5 (v5, v2, v4), cy=v6(v6, v1, v3)

Note that a particular network node could play the both

roles , as forwarder and controller.
Some limitations of this optimization process are:

 No reliability awareness: the metrics are pure
distances, which in the simplest case are
considered as being static values - despite that
delay is usually a dynamic value in IP networks.

 There is no upper limit on the number of v nodes
assigned to a controller; too many forwarders
controlled by the same controller could exist,
especially in large networks.

Other metric possible to be considered in failure-free

case is Maximum cover [11][20]. The algorithm should
find a controller placement, as to maximize the number of
nodes within a latency bound; i.e., to find a placement of k
controllers such that they cover a maximum number of
forwarder nodes, while each forwarder must have a limited
latency bound to its controller.

All metrics and algorithms described above do not take
into account the inter-controller connectivity, so their
associated optimizations can be seen as being partial.

B. Reliability aware metrics

Several studies consider more realistic scenarios in
which controller failures or network links/nodes failures
might exist. The optimization process aims now to find
trade-offs (related to failure-free scenarios) in order to
preserve a convenient behavior of the overall system in
failure cases.

(1) Controller failures (cf)
 The work [14] observes that the node-to-controller

mapping can change in case of controller outages. So, a
realistic latency-based metric should consider both the
distance to the (primary) controller and the distance to
other (backup) controllers. For a placement of a total
number of k controllers, in [14] the failures are modeled
by constructing a set C of scenarios, including all possible
combinations of faulty controller number, from 0 of up to
k - 1. The resulting maximum latency will be:

Worst_case_latency_cf :

  cvdL

ii CcCCVv
cfwc ,minmaxmax


  

The optimization algorithm should find a placement
which minimizes the expression (3).

Commenting the placement results based on the metric
(1) or (2), one can observe that in failure-free case, the
optimization algorithm tends to rather equally spread the
controllers in the network, among the forwarders nodes.
However, when attempting to minimize the expression (3)
(and considering worst case failure), the controllers tend to
be placed in the centre of the network. Thus, even if all
controllers (except for one) fail, the latencies are still
satisfactory (numeric examples are given in [14]).On the
other side, one can criticize such an approach if applied to
large networks; the scenario supposed by the expression
(3) is very pessimistic; it is more realistic that a large
network will be split in some regions/areas, each served by
a primary controller; then some lists of possible backup
controllers can be constructed for each area, as proposed in
[19].

The conclusion is that a trade-off exists, between the
placements optimized for the failure free case and those
including controller failures. It is a matter of operator
policies to assign weights to different criteria, before
deciding (based on multiple criteria) the final selection of
placement solution.

(2) Nodes/links failures (Nlf)
 Links or nodes failures might produce network

disruptions; some forwarders could have no more access to
any controller. Therefore, an optimization objective could
be to find a controller placement, which minimizes the
number of nodes possible to enter into controller-less
situations, in various scenarios of link/node failures. A
realistic assumption is to limit the number of simultaneous
failures at only a few (e.g., two [14]). If more than two
arbitrary link/node failures happen simultaneously, then
the topology can be totally disconnected and optimization
of controller placement would be no more efficient.

For any given placement Ci of the controllers, an
additive integer value metric Nlf(Ci) could be defined, as
below:

 consider a failure scenario denoted by fk, with

fkF, where F is the set of all network failure
scenarios (suppose that in any instance scenario, at
most two link/nodes are down);

 initialize Nlfk(Ci) =0; then for each node vV,
add one to Nlfk(Ci) if the node v has no path to any

controller cCi and add zero otherwise;

 compute the maximum value (i.e., consider the
worst failure scenario). We get:

    iki CNlfCNlf max 

where k covers all scenarios of F.
The optimization algorithm should find that placement

which minimizes (4). It is naturally expected that

163

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

increasing the number of controllers, will decrease the Nlf
value. We also observe that the optimum solution based on
the metric (4) could be very different from those provided
by the algorithms using the metrics (1) or (2).

(3) Load balancing for controllers
A well designed system would require roughly equal

load on all controllers, i.e., a good balance of the node-to-
controller distribution. A metric can be defined to measure
the degree of imbalance Ib(Ci) of a given placement Ci as
the difference between the maximum and minimum number
of forwarders nodes assigned to a controller. If the failure
scenarios set S is considered, then the worst case should
evaluate the maximum imbalance as:

 }minmax{max)(
s
c

Cc

s
c

CcSs
i nnCIb

ii 

 

where
s

c
n is the number of forwarder nodes assigned to a

controller c. Equation (5) takes into account that in case of
failures, the forwarders can be reassigned to other
controllers than the primary ones and, therefore, the load
of those controllers will increase. An optimization
algorithm should find that placement which minimizes the
expression (5).

(4) Multiple-path connectivity metrics
One can exploit the possible multiple paths between a

forwarder node and a controller [19], hoping to reduce the
frequency of controller-less events, in cases of failures of
nodes/links. The goal is to maximize connectivity between
forwarding nodes and controller instances. The metric is
defined as:

 




VvCc

i cvndp
V

CM

i

),(
||

1
)(

In (6), ndp(v,c) is the number of disjoint paths between
a node v and a controller c, for an instance placement Ci.
An optimization algorithm should find the placement Copt
which maximizes M(Ci).

C. Inter-controller latency (Icl)

The inter-controller latency has impact on the response
time of the inter-controller mutual updating. For a given
placement Ci, the Icl can be given by the maximum latency
between two controllers:

), cd(c)Icl(C nki max = 

Minimizing (7) will lead to a placement with
controllers close to each other. However, this can increase
the forwarder-to-controller distance (latency) given by (1)
or (2). Therefore, a trade-off is necessary, thus justifying
the necessity to apply some multi-criteria optimization
algorithms, e.g., like Pareto frontier - based ones.

D. Constraints

Apart from defining the metrics, the controller
placement problem can be subject to different constraints.
For instance, in [19], the input data for the optimal
controller placement algorithm consists in the graph
G(V,E) information, set of possible controller instances C,
request demand of a network device, each controller
capacity, and a backup capacity for each controller. Integer
Linear Programming (ILP) – based algorithm is applied;
here the constraints can be split into three classes:
placement-related, capacity related and connectivity-
related. In general other limits can be defined, e.g., on
maximum admissible latency, ratio number
controller/trivial nodes, pre-defined regions for controllers,
etc. They should be included in the respective algorithms.

IV. MULTI-CITERIA OPTIMIZATION ALGORITHM

Sections II and III have shown that several criteria of
optimum can be envisaged when selecting the best
controller placement in a WAN. While particular metrics
and optimization algorithms can be applied (see Section
III), we note that some criteria lead to partially
contradictory placement solutions. What approach can be
adopted? The answer can be given by adopting a multi-
objective optimization based on Multi-Criteria Decision
Algorithms (MCDA). The good property of MCDA is that
it allows selection of a trade-off solution, based on several
criteria. Note that, partially, such an approach has been
already applied in [14], for some combinations of the
metrics defined there (e.g., max. latency and controller
load imbalance for failure-free and respectively failure
cases).

A. Reference level MCDA

This paper proposes to apply MCDA, as a general way
to optimize the controller placement, while considering not
only a single metric but an arbitrary number of them.

The multi-objective optimization problem [12][13] is

to minimize {f1(x), f2(x), . . . , fm(x)}, where x ∈ S (set of

feasible solutions), S ⊂ R
n
. The decision vector is x = (x1,

x2, . . . ,xn)
T
. There are (m ≥ 2) possibly conflicting

objective functions fi : R
n
 → R , i = 1, ..m, and we would

want to minimize them simultaneously (if possible). In
controller placement problem we might have indeed some
partially conflicting objectives (e.g., to minimize the inter-
controller latency and the forwarder-controller latency).

One can define Objective vectors as images of

decision vectors. The objective (function) values are given
by z = f (x) = (f1(x), f2(x), ..., fm(x))

T
. We denote as

feasible objective region W = f (S) = image of S in the
objective space.

Objective vectors are optimal if none of their
components can be improved without deterioration to at
least one of the other components.

164

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A decision vector x_ ∈ S is named Pareto optimal

[12] if it does not exist another x ∈ S such that fi(x) ≤

fi(x_) for all i = 1, . . . , m and fi(x) < fj(x_) for at least one
index j.

We adopt here the MCDA variant called reference

level decision algorithm [13]. It has the advantage to allow
selection of the optimal solution while considering
normalized values of different criteria (metrics).

We use a simplified notation:

 identify the solutions directly by their images in
the objectives space R

m
,

 decision parameters/variables are: vi, i = 1, ..m,

with i, vi ≥ 0,

 image of a candidate solution is Sls=(vs1,vs2,...,vsm),
represented as a point in R

m
 ,

S = number of candidate solutions.
Note that the value ranges of decision variables may be
bounded by given constrains. The optimization process
consists in selecting a solution satisfying a given objective
functions and conforming a particular metric.

The basic reference level algorithm [13], defines two
reference parameters:

 ri =reservation level=the upper limit for a decision
variable, which the decision variable vi of a
solution should not cross;

 ai=aspiration level=the lower bound beyond which
the decision variable (and therefore the associate
solutions) are seen as similar.

Without loss of generality one may apply the
definitions of [13], where for each decision variable vi
there are defined two values named ri and ai, by computing
among all solutions s = 1, 2, ..S:


, ..S, , s = v = a

, ..S, s = v r

isi

isi

21][min

21],[max = 

In [13], modifications of the decision variables are
proposed: replace each variable with distance from it to
the reservation level: vi  ri-vi; (increasing vi will decrease
the distance); normalization is also introduced, in order to
get non-dimensional values, which can be numerically
compared. For each variable vsi, a ratio is computed:

 is)-a)/(r-v' = (rv iisiisi ,,  

The factor 1/(ri-ai) - plays also the role of a weight. The
variable having high dispersion of values (max – min) will
have lower weights, and so, greater chances to determine
the minimum in the next relation (10). In other words, less
preference is given to those decision variables having close
values to each other (among different candidate solutions),
i.e., if the values min, max are close enough, then it does
not matter which solution is chosen by considering the
respective decision variable.

The basic algorithm steps are:

Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m

Step 1. Compute for each candidate solution s, the

minimum among all its normalized variables vsi':

 ...m'}; i={v = sis 1minmin 

Step 2. Make selection among solutions by computing:

 , ..S}, s= { = v sopt 1minmax 

Note that the formula (10) selects for each candidate

solution s, the worst case, i.e., that solution being closest

to the reservation level (after searching among all

decision variables). Then the formula (11) selects among

the solutions, the best one, i.e., that having the highest

value of the normalized parameter.

This vopt is the optimum solution, i.e., the MCDA

selects the best value among those produced by the Step

1. In the case that several equal values exist in the Step 2,

a random selection can be adopted or some other

additional discrimination criterion. Note also, that it is no

problem for the Step 2, to consider more than one

solution, i.e., a set of several quasi-optimum solutions can

be selected.

B. MCDA- Controller placement optimization

In this section, we apply the reference level algorithm
to the controller placement problem. However, we modify
the basic algorithm to be better adapted to controller
placement problem, due to following remarks:
 (1) The step 2 compares values coming from different
types of parameters/metrics (e.g., max. latency, load
imbalance, etc.) having different nature and being
independent or dependent on each other. The
normalization still allows them to be compared in the
max{ } formula. This is an inherent property of the basic
algorithm.
 (2) However, the network provider might want to
apply different policies when deciding the controller
placement. In such policies, some decision variables (or
metrics) could be “more important” than others. For
instance, in some cases, the performance is more
important, in others high resilience is the major objective.

A simple modification of the algorithm can support a
variety of provider policies. We propose a modified
formula:

)-a)/(r-v(r' = wv iisiiisi 

where the factor wi  (0,1] represents a weight (priority)
that can be established from network provider policy
considerations, and can significantly influence the final

165

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

selection. Note that a lower value of wi actually represents
a higher priority of that parameter in the selection process.

The controller placement problem solving (given the
graph, link costs/capacities, constraints, desired number of
controllers, etc.) is composed of two macro-steps:

(1) Macro-step1: Identify the parameters of interest,

and compute the values of the metrics for all possible
controller placements, using specialized algorithms and
metrics (1) - (7). In other word this step will produce the
set of candidate solutions (i.e., placement instances).

This procedure could be time consuming (depending
on network size) and, therefore, performed off-line [11].

(2) Macro-step2: MCDA

 define reservation and aspiration levels for each
decision variable;

 eliminate those candidates having out of range
parameter values defined by the reservation level;

 define appropriate weights (see formula (12)) for
different decision variables - depending on the
high level policies applied by the operator;

 compute the normalized variables (formula (12))

 run the Step 0, 1 and 2 of the MCDA algorithm
(formulas (10) and (11)).

The decision variables can be among those of Section

III, i.e.:

Average (1) or worst (2) case latency (failure-free

case);

Worst_case_latency_cf (3);

Nodes/links failures (Nlf) (4);

Controller Load imbalance (5);

Multi-path connectivity metric (6);

Inter-controller latency (7).

For a particular problem, a selection of relevant

variables should be done. For instance, in a high reliable
network environment one could consider only failure free
metrics.

C. Numerical example – MCDA optimization

A simple but relevant example is exposed to illustrate
the MCDA power, based on the network in Figure 1.
Suppose that for this network the metrics of interest and
decision variables are (see Section III) on:

d1: Average latency (1), (failure-free case);
d2: worst latency (2,) (failure-free case);
d3: Inter-controller latency (7).

The reference levels are defined as in formula (8) and

we propose: r1=3, a1=0; r2=6, a2=0; r3=6, a3=0.
Several placement samples can be considered:
C1= {[cx_in_v5 (v5, v2, v4)], [cy_in_v6(v6, v1, v3)]}
C2= {[cx_in_v5 (v5, v1, v2, v4)], [cy_in_v3(v3, v6)]}
C3= {[cx_in_v3 (v3,v2)], [cy_in_v6(v6, v1, v4, v5,)]}

C4= { [cx_in_v4 (v4,v2, v5)], [cy_in_v6(v6, v1, v3,)]}

1. MCDA with equal priorities for d1=1, d2=1, d3=1,
The values of the metrics are computed using equations
(1), (2) and respectively (7) for each placement: C1, ..C4.

A matrix M(3x4) is computed using the formulas (9).
MCDA is applied by using formulas (10), (11). The final
result is: C1 = the best placement. Looking at Figure 1, we
indeed can see that this placement is a good trade-off
between node-controller latency and inter-controller
latency.

2. MCDA with different priorities for i.e. d1=1,

d2=0.5, d3=1, i.e., the worst case latency d2 has highest
priority, i.e., the solution minimizing the worst case
controller - forwarder latency with high priority is desired.
After re-computing the matrix M and applying MCDA
equations (1), (11), we find C4 = the best placement.
Indeed, we see in Figure 1 that worst case latency (node-
controller) is minimized, however, the inter-controller
latency is higher than in C1.

These examples proved how different provider policies
can bias the algorithm results.

V. USE CASE STUDIES

A proof of concept simulation software program has
been constructed to validate the above MCDA – based
controller assignment procedure. This preliminary version
of the program has been written in Python language [21]
and uses the NetworkX software package [22] for the
creation, manipulation and study of network graphs. The
program has two running modes.

Static: in these modes the inputs are:
- the network (overlay) topology graph and link costs

(it is supposed an additive metric representing the
estimated delays on overlay network links);

- the number of controllers wanted;
- decision parameters – e.g., d1, d2, d3 of the previous

section;
- priorities/weights assigned to the decision variables

that comply with the network provider policy;
- the possible placement of the controllers (i.e.,

candidate solutions of the MCDA) (considering them as
results of some other algorithms)

Dynamic: in this mode the following parameters can be
selected:

- total number of network nodes (N)
- desired number of controllers
- the link costs (e.g., randomly assigned).
The program computes all possible placements and

then selects the best solution based on weighted MCDA
algorithm.

The program parses user arguments, constructs the

weighted graph and associated candidate solutions,

166

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computes Dijkstra’s shortest path lengths between all
nodes in the graph, and then applies the MCDA controller
placement optimization algorithm. The flowchart of the
program is depicted in Figure 2.

Figure 2. Flowchart for MCDA controller placement simulation program.

Generally the order of complexity of an algorithm
is an important issue to be considered if its
implementation is targeted. In our case the following
particular characteristics of the optimization problem are
valid :

(a) - this optimization computation has no real time
requirements; it could be performed offline for a given
fixed network (topology and costs are known or
estimated).

(b) - the complexity order of the Dijkstra part of the
algorithm is the well known to be O(|V|

2
), or O(|E| +|V|

log|V|), if a more efficient implementation is chosen,
where |V | is the number of nodes and |E| is the number of
edges.

(c) the evaluation of the metrics (1) –(7) supposes that
for every particular mono-criteria algorithm, all possible
placements should be considered. For large networks this
is given in the worst case by the number of combinations
Cn

k
, (n= number of nodes; k = number of controllers)

which increases very much with the number n of network
nodes (usually it is true that k<<n). However this problem
is common to all algorithms and it is not particular to the
algorithm developed in this paper.

(d) the MCDA algorithm itself, has to construct a
matrix having the dimension NL*NC, where:

-NL is the number of lines - equal to the number
of decision variables (e.g. three in the example given in
the Section IV.C);

- NC is the number of columns – equal to the
number of candidates’ solutions (variants of controller
placements).

The number NL is usually small (e.g., NL=7 in this
study). The number NC could be large, given by Cn

k
,

which is the number of possible combinations of controller
placements. The Stirling formula n! ≈ (2πn)

1/2
 (n/e)

n

shows a strong increase of the number of controller
placements Cn

k
 with n. However, some practical

considerations and/or policies could reduce significantly
the actual number of combinations to be considered. It is
expected that large networks will be split in some disjoint
regions having significantly less than n nodes and a
number of reduced number kR controllers will be allocated
for a given region. In the work [11] the authors even say
that “…in many medium-size networks, the latency from
every node to a single controller can meet the response-
time goals of existing technologies, such as SONET ring
protection…”. If the number of regions is R, with R >
1then the number of nodes n will be reduced at n/R,
strongly decreasing the number of combinations. Some
other restrictions imposed from policy considerations
could also reduce the total number of nodes to be
considered in the formulas (1) – (7).

The interface for running the simulation program is
presented below.

Some samples of simulation results are given below.

167

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3 shows the results obtained for the network
presented in Figure 1, while decision variables are d1, d2,
d3 defined in Section IV. In this use case, the highest
priority is given to the worst case latency parameter (d2 =
0.5), while the two others have d1=d3=1. One can see that
the best solution selection is the setup C4, i.e., the same
results as analytically estimated in Section IV.

Figure 3. Simulation results for Figure 1 network; d1=1, d2=0.5, d3=1.

Figure 4 shows another instance of use case, where the
graph is dynamically generated, with N= 7 nodes and k=2
controllers. The decision parameters have equal priorities:
d1 = 1, d2 = 1, d3 = 1. The best placement is denoted by
C3 and places the controllers in the nodes having the
number 0 and 4 respectively. Note that the network of
Figure 4 is a full mesh one. This is the effect of
considering the overlay of paths. However, the algorithm
and the program can work as well with partial mesh
overlay graph.

Figure 5 shows a quantitative extension for a larger

graph – dynamically generated with N=14 nodes and k = 5
controllers. The picture exposes a symmetrical figure due
to full mesh connectivity between nodes. The link costs
are randomly generated. The total number of possible
placements is CN

k
. The MCDA selects the placement no.

55, indicated in the text associated to the figure.

Figure 4. Simulation results for a network having N= 7, network; d1=1,

d2=1, d3=1.

VI. CONCLUSIONS

This paper presented a study on using multi-criteria
decision algorithms (MCDA) for final selection among
several controller placements solutions in WAN SDN,
while considering several weighted criteria. The MCDA
quality is that it can produce a tradeoff (optimum) result,
while considering several criteria, part of them even being
partially contradictory.

A simulation program has been created to demonstrate
the validity of results. The topology and link costs are
generally overlay ones, and can be introduced in a
particular way or randomly generated.

The method proposed is generic enough to be applied
in various scenarios (including failure-free assumption
ones or reliability aware), given that it achieves an overall
optimization, based on multiple metrics supported by the
reference model MCDA. Different network/service
provider biases can be introduced in the selection process,
by assigning policy-related weights to the decision
variables. This simple algorithm modification creates a
rather powerful tool to bias the selected solution, as to
respond to the provider policy.

Future work will be done to apply the method

proposed to very large networks - real life case studies
(e.g., from Internet Topology zoo, [16]) and comparing the
quality of trade-offs when defining different weights to
decision variables.

168

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. MCDA for a dynamic graph with 14 nodes (5 controllers) and equal priorities; d1=1, d2=1, d3=1.

REFERENCES

[1] E. Borcoci, R. Badea, S. G. Obreja, and M. Vochin, “On

Multi-controller Placement Optimization in Software Defined
Networking - based WANs,” The International Symposium
on Advances in Software Defined Networks
SOFTNETWORKING 2015, 2015 - Barcelona, Spain,
http://www.iaria.org/conferences2015/SOFTNETWORKING.
html

[2] B. N. Astuto, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks,”
Communications Surveys and Tutorials, IEEE

Communications Society, (IEEE), 2014, 16 (3), pp. 1617 –
1634.

[3] “Software-Defined Networking: The New Norm for Networks”
ONF White Paper 04.2012; retrieved: 02.2015
https://www.opennetworking.org/images/stories/downloads/s
dn-resources/white-papers/wp-sdn-newnorm.pdf.

[4] “SDN: The Service Provider Perspective,”
Ericsson Review, 21.02.2013. retrieved: 02.2015
http://www.ericsson.com/res/thecompany/docs/publications/er
icsson_review/2013/er-software-defined-networking.pdf.

[5] S. H. Yeganeh, A. Tootoonchian and Y. Ganjali, “On
Scalability of Software-Defined Networking,” IEEE Comm.
Magazine, February 2013, pp. 16-141,.

[6] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A
Flexible OpenFlow-Controller Benchmark,” in European
Workshop on Software Defined Networks (EWSDN),
Darmstadt, Germany, October 2012.

169

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed
control plane for openflow” in Proc. INM/WREN, 2010.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S.
Shenker, “Onix: a distributed control platform for large-scale
production networks,” in Proc. OSDI, 2010.

[9] S. H. Yeganeh and Y. Ganjali, “Kandoo: A Framework for
Efficient and Scalable Offloading of Control Applications,”
Proc. HotSDN ’12 Wksp., 2012.

[10] H. Yan-nan, W. Wen-dong, G. Xiang-yang, Q. Xi-rong, C.
Shi-duan, ”On the placement of controllers in software-
defined networks,” ELSEVIER, Science Direct, vol. 19,
Suppl.2, October 2012, pp. 92–97,
http://www.sciencedirect.com/science/article/pii/S100588851
160438X.

[11] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” in Proc. HotSDN, 2012, pp. 7–12.

[12] J. Figueira, S. Greco, and M. Ehrgott, “Multiple CriteDecision
Analysis: state of the art surveys,” Kluwer Academic
Publishers, 2005.

[13] A. P. Wierzbicki, “The use of reference objectives in
multiobjective optimization”. Lecture Notes in Economics
and Mathematical Systems, vol. 177. Springer-Verlag, pp.
468–486.

[14] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and
P. Tran-Gia, “Pareto-Optimal Resilient Controller Placement
in SDN-based Core Networks,” in ITC, Shanghai, China,
2013.

[15] Internet2 open science, scholarship and services exchange.
http://www.internet2.edu/network/ose/.

[16] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M.
Roughan, “The Internet Topology Zoo,” IEEE JSAC, vol. 29,
no. 9, 2011.

[17] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience of
Split-Architecture Networks,” in GLOBECOM 2011, 2011.

[18] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan,
“Reliability aware controller placement for software-defined
networks,” in Proc. IM. IEEE, 2013, pp. 672–675.

[19] L. Muller, R. Oliveira, M. Luizelli, L. Gaspary, M. Barcellos,
“Survivor: an Enhanced Controller Placement Strategy for
Improving SDN Survivability,” IEEE Global Comm.
Conference (GLOBECOM); 12/2014.

[20] D. Hochba “Approximation algorithms for np-hard problems”,
ACM SIGACT News, 28(2), 1997, pp. 40–52.

[21] https://www.python.org/doc/essays/blurb/

[22] https://networkx.github.io/

170

International Journal on Advances in Networks and Services, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

