International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

163

PonderFlow: A New Policy Specification Language to SDN OpenFlow-based Networks

Bruno Lopes Alcantara Batista

Marcial Porto Fernandez

Universidade Estadual do Ceara (UECE)
Av Silas Munguba 1700 - Fortaleza/CE - Brazil
{bruno,marcial } @larces.uece.br

Abstract—The SDN/OpenFlow architecture is a proposal from
the Clean Slate initiative to define a new Internet architecture
where network devices are simple, and the control plane and
management are performed on a centralized controller, called
Openflow controller. Each Openflow controller provides an Ap-
plication Programming Interface (API) that allows a researcher
or a network administrator to define the desired treatment to
each flow inside controller. However, each Openflow controller
has its own standard API, requiring users to define the be-
havior of each flow in a programming or scripting language.
It also makes difficult for the migration from one controller
to another one, due to the different APIs. This paper proposes
the PonderFlow, an extension of Ponder language to OpenFlow
network policy specification. The PonderFlow extends the original
Ponder specification language allowing to define an Openflow flow
rule abstractly, independent of Openflow controller used. Some
examples of OpenFlow policy will be evaluated showing its syntax
and the grammar validation.

Keywords—Openflow; OpenFlow Controller; Policy-based Net-
work Management; Policy Definition Language

I. INTRODUCTION

This paper is an extended version of the paper presented
in The Thirteenth International Conference on Networks (ICN
2014) [1]. Comparing to the original paper, this one shows
more description examples and evaluates the parser implemen-
tation to validate the proposal.

The Software Defined Network (SDN) architecture with
OpenFlow protocol is a proposal of the Clean Slate initiative
to define an open protocol to sets up forward tables in switches
[2]. It is the basis of the SDN architecture, where the network
can be modified dynamically by the user, and the control-plane
are decoupled from the data-plane. The OpenFlow proposal
tries to use the most basic abstraction layer of the switch to
achieve better performance. The OpenFlow protocol can set a
condition-action tuple on switches like forward, filter and also,
count packets from a specific flow that match a condition.

The network management is performed by the OpenFlow
Controller maintaining the switches simple, only with the
packet forwarding function. This architecture provides several
benefits: (1) OpenFlow controller can manage all flow deci-
sions reducing the switch complexity; (2) A central controller
can see all networks and flows, giving global and optimal
management of network provisioning; (3) OpenFlow switches
are relatively simple and reliable, since forward decisions are
defined by a controller, rather than by a switch firmware.
However, as the number of switches increases in a computer
network and it becomes more complex to manage the switches
flows, it is necessary to use a tool to help the network admin-
istrator to manage the flows in order to modify dynamically
the system behavior.

A policy-based tool can reduce the complexity inherent to
this kind of problem. It is a way to manage a large network
environment, where the behavior of the network assets may
change over time.

Policy-Based Network Manager (PBNM) is the technology
that provides the tools for automated network using policies to
describe environment behavior abstractly. The PBNM can help
network administrators to manage OpenFlow networks simply
defining policies, where a policy is a set of rules to govern all
the system.

This paper presents the PonderFlow, an extension of Ponder
policy specification language. Ponder is a declarative, object-
oriented language for specifying management and security
policy proposed by Damianou et al. [3]. The PonderFlow
provides the necessary resources to define or remove flows,
grant privileges to a user, add or remove flows (authorization
policy) and force a user or system to execute an action before
a particular event (obligation policy).

The rest of the paper is structured as follows. In Section
I, we present some related work about OpenFlow policy
specification languages. Section III introduces the OpenFlow,
the Policy-Based Openflow Network Manager (PBONM) ar-
chitecture and introduces the Ponder specification language.
In Section IV, we present the PonderFlow language, and its
respective grammar and validation. In Section VI, we conclude
the paper and present some future works.

II. RELATED WORK

Foster et al. [4] designed and implemented the Frenetic, a
set of Python’s libraries for network programming to provide
several high-level features for OpenFlow/NOX [5] program-
ming issues. Frenetic is based on functional reactive program-
ming, a paradigm in which programs manipulate streams of
values, delivering the need to write event-driven programs
leading a unified architecture where programs "see every
packet" rather than processing traffic indirectly by manipu-
lating switch-level rules. However, the network administrator
needs to use a programming language, Python [6] in this case,
to define the behavior of OpenFlow network.

Mattos et al. [7] propose an OpenFlow Management In-
frastructure (OMNI) for controlling and managing OpenFlow
networks and also for allowing the development of autonomous
applications for these networks. OMNI provides a web in-
terface with set of tools to manage and control the network,
and the network administrators interact through this interface.
The outputs of all OMNI applications are eXtensible Markup
Language (XML), simplifying the data interpretation by other
applications, agents or human operators. However, the network
administrator needs to use a programming language to call
any OMNI function using a web Application Programming

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Interface (API) or access the web interface and proceed
manually.

Voellmy et al. proposed Procera [8], a controller archi-
tecture and high-level network control language that allow to
express policies in the OpenFlow controllers. Procera applies
the principles of functional reactive programming to provide
an expressive, declarative and extensible language. Users can
extend the language by adding new constructors.

The PonderFlow has similarities with Procera and Frenetic,
but our main goal is to create a policy specification language
decoupled from the conventional programming languages, and
also, regardless of the OpenFlow controller used. The Ponder-
Flow language is an extension of Ponder language and can be
easily ported to another OpenFlow controller. As Ponder is a
well-known policy language, the validations is not necessary.
In this work, we used the Java language to implement the
parser and lexical analyses in Floodlight OpenFlow controller
[9]. We want to achieve a level of independence from the
programming language and of the OpenFlow controllers. This
paper presents the PonderFlow, an extensible, declarative lan-
guage for policy’s definition in an OpenFlow network.

III. OPENFLOW POLICY ARCHITECTURE

In this section, we introduce SDN architecture and the
Policy-based network management concepts. We also show
the application of Policy-based management architecture in
OpenFlow environment.

A. OpenFlow

The SDN architecture has several components: the Open-
Flow controller, one or many OpenFlow devices (switch), and
the OpenFlow protocol. This approach considers a centralized
controller that configures all devices. Devices should be kept
simple in order to reach better forward performance and leave
the network control to the controller.

Controller

OpenFiow Switch specification r—__"i
b
» .
.
Secure .t
Channel
Flow
Table

My ~ w |

Figure 1. The OpenFlow architecture [2]

The OpenFlow Controller is the centralized controller of an
OpenFlow network. It sets up all OpenFlow devices, maintains
topology information, and monitors the overall status of entire
network. The device is any capable OpenFlow device on a
network such as a switch, router or access point. Each device
maintains a Flow Table that indicates the processing applied
to any packet of a certain flow. There are several OpenFlow
controllers available, e.g., NOX [5], FloodLight [9], Beacon
[10], POX [11], and Trema [12].

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

164

The OpenFlow Protocol works as an interface between the
controller and the OpenFlow devices setting up the Flow Table.
The protocol should use a secure channel based on Transport
Layer Security (TLS). The controller updates the Flow Table
by adding and removing Flow Entries using the OpenFlow
Protocol. The Flow Table is a database that contains Flow
Entries associated with actions to command the switch to apply
some actions on a certain flow. Some possible actions are:
forward, drop, and encapsulate.

The Openflow Controller presents two behaviors: reactive
and proactive. In the Reactive approach, the first packet of
flow received by switch triggers the controller to insert flow
entries in each OpenFlow switch of network. This approach
presents the most efficient use of existing flow table memory,
but every new flow incurs in a small additional setup time.
Finally, with hard dependency of the controller, if a switch
lost the connection, it has limited utility.

In the Proactive approach, the controller pre-populates
flow table in each switch. This approach has zero additional
flow setup time because the forward rule is defined. Now,
if the switch loss the connection with controller it does not
disrupt traffic. However, the network operation requires a hard
management, e.g., requires to aggregate (wildcard) rules to
cover all routes.

Each device has a Flow Table with flow entries as shown
in Figure 2. A Flow Entry has three parts: rule match fields,
an action and statistics fields and byte counters. The rule
match fields is used to define the match condition to a specific
flow. action defines the action to be applied to an exact flow,
and statistical fields are used to count the rule occurrence for
management purposes.

Rule Action Stats

Packet + byte counters

. Forward packet to port(s)

. Encapsulate and forward to controller
. Drop packet

Send to normal processing pipeline

|5witl.‘h MAC | MAC | Eth
Port ST dst e

Figure 2. The OpenFlow Flow Entry [13]

Bow e

ViAN IP
o Src

P [| TCP | TCP |
Dst Prot | sport | dport

When a packet arrives to the OpenFlow Switch, it is
matched against flow entries in the flow table, and the action
will be triggered if the header field is matched and then updates
the counter.

If the packet does not match any entry in the flow table,
the packet will be sent to the controller over a secure channel.
Packets are matched against all flow entries based on a
prioritization, where each flow entry on flow table has a priority
associated. Higher numbers have higher priorities.

The OpenFlow Protocol uses the TCP protocol and port
6633. Optionally, the communication can use a secure channel
based on TLS.

The OpenFlow Protocol supports three types of messages
[13]:

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Controller-to-Switch Messages: These messages are
sent only by the controller to the switches, and they perform
the functions of switch configuration, exchange information on
the switch capabilities and also manage the Flow Table.

2) Symmetric Messages: These messages are sent in both
directions reporting on switch-controller connection problems.

3) Asynchronous Messages: These messages are sent by
the switch to the controller to announce changes in the network
and switch state.

All packets received by the switch are compared against
the Flow Table. If the packet matches any Flow Entry, the
action for that entry is performed on the packet, e.g., forward
a packet to a specified port. If there is no match, the packet is
forwarded to the controller that is responsible for determining
how to handle packets without valid Flow Entries [13].

It is important to note that when the OpenFlow switch
receives a packet to a nonexistent destination in the Flow
Table, it requires an interaction with the controller to define
the treatment of this new flow. At least, the switch will need to
send a message to the controller with regards to the unknown
packet received (message Packet-In). The controller needs to
configure all switches along the path from source to destination
(message Modify-State). In a network with N switches, we
can estimate the need of 6 x (IV + 1) messages for each new
flow, considering the start and end of TCP connection, the
Packet-in and Modify Flow Entry Messages [13]. If the path
is already pre-defined (there is an entry in Flow Table), this
procedure is not necessary, reducing the amount of messages
exchanged through the network and reducing the processing
at the controller.

Furthermore, the maintenance of old Flow Entries in the
switch Flow Tables gives waste of fast Ternary Content-
Addressable Memory (TCAM) memory. Therefore, it is re-
quired to remove unused flows using a time-out mechanism.
If a flow previously excluded by time-out restarts, it is required
to reconfigure all switches on the end-to-end path.

An OpenFlow device is basically an Ethernet switch with
OpenFlow protocol. However, there are different implemen-
tation approaches: OpenFlow-enable switch and OpenFlow-
compliant switch.

The OpenFlow-enable switch uses off-the-shelf hardware,
i.e., traditional switches with OpenFlow protocol that translate
the rule according to the hardware chipset implementation.
The OpenFlow enable-switch re-use existing TCAM, that in
a conventional switch has no more than only few thousands of
entries for IP routing and MAC table. Considering that we need
at least one TCAM entry per flow, in a current hardware would
be not enough for production environments. The Broadcom
chipset switches based on Indigo Firmware [14], e.g., Netgear
73xxSO, Pronto Switch and many other, are an example of
this approach.

The OpenFlow-compliant switch uses a specific network
chipset, designed to provide better performance to OpenFlow
devices. OpenFlow philosophy relies on matching packets
against multiple tables in the forwarding pipeline, where the
output of one pipeline stage being able to modify the contents
of the table of next stage. Some examples are devices based on
the EZChip NP-4 Network Processor [15] and Intel FM-6000
[16]. But, nowadays, there are few commercial OpenFlow-

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

165

compliant switches; one example is the NoviFlow Switch 1.1
[17].

B. Policy Based Network Management

In traditional network management, policies are hard coded
and require manual intervention o be modified. The costs of
configuration the network results in a manpower intensive task,
and it can result a significant portion of network operations
because [18]:

e There are many network elements to be configured;
e Network problems require manual intervention;

e Dynamic user demands or network conditions require
repeated reconfiguration;

e Manually maintaining consistency and coherence
across and between systems is error prone.

PBNM has emerged as a promising paradigm for network
operation and management. PBNM has the advantage of being
able to change dynamically the behavior of a managed system
according to the changing context requirements without having
to modify the implementation of managed system [19].

The general PBNM can be considered an adaptation of the
IETF policy framework to apply to the area of network provi-
sioning and configuration. The IETF/DMTF policy framework
is shown in Figure 3 and consist of four elements:

e Policy Management Tool (PMT): Graphical tool to
define which policies will be applied in the network.

e Policy Repository (PR): It is used for the storage of
policies, and it is typically a relational database or a
directory.

e Policy Decision Point (PDP): It parses the policy,
checks the authorization and validity before commu-
nicating them to the PEP.

e Policy Enforcement Point (PEP): It can apply and
execute the different policies into network devices.

With the PBNM, we can simplify the management process
through of centralization and business-logic abstractions [19].

Centralization refers to the process of defining all the
devices provisioning and configuration at a single point (the
PMT) rather than provisioning and configuring each device
itself. The benefits of centralization in reducing manual tedium
can easily be seen. In a network of 500 machines requires from
10 to 15 minutes of configuration per machine, the network
administrator would need to work around 10 a 15 days (on a
journey of eight hours of daily work).

Business-level abstractions make the job of the policy
administrator simpler by defining the policies in terms of a
language closer to the business needs of an organization rather
than in terms of the specific technology need to deploy it. The
network administrator needs not to be very conversant with
the details of the technology that supports the desired need.

C. Policies

Policies [20] are one aspect of information, which influ-
ences the behavior of objects within the system. They are often
used as a means of implementing flexible and adaptive systems
for management of Internet services, distributed systems, and
security systems [21].

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Policy
Management Tool
Policy
Repository
Policy
Decision Tool [~
A
Policy

Enforcement Point

Figure 3. The IETF/DTMF policy framework [19]

Policies are classified into two categories:

e Authorization Policies: Define what a manager is
permitted or not permitted to do. They limit the infor-
mation made available to managers and the operations
they are permitted to perform on managed objects.

e Obligation Policies: Define what a manager must or
must not do and hence guide the decision-making
process.

Authorization policies are specified to protect target objects
and are usually implemented using security mechanisms when
subjects cannot be trusted to enforce them. Obligation policies
are event-triggered condition-action rules that can be used to
define adaptable management actions [21].

Large-scale systems may contain millions of users and
resources, and it is not practical to specify policies relating
to individual’s entities. It instead must be possible to specify
policies relating groups of entities and also to nested groups
such as sections within departments, within sites in different
countries in an international organization. Domains can be used
for this case.

A Domain is a collection of managed objects, which
have been explicitly grouped together, based on geographical
boundaries, object type, responsibility and authority or for
covenience of human managers, for the purposes of manage-
ment [20] [21].

More specifically a domain is a managed object which
maintains a list of references to its member managed objects.
If a domain holds a reference to an object, the object is said
to be a direct member of the domain, and the domain are said
to be its parent [20].

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

166
D. Policy Conflicts

In large distributed systems, there will be multiple human
administrators specifying policies. Policy conflicts can arise
due to omissions, errors or conflicting requirements of the
administrators specifying the policies [22].

For example, an obligation policy may define an activity a
manage must perform but there is no authorization policy to
permit the manager to perform the activity. Obvious conflicts
occur if both a positive and negative authorization or obligation
policy with the same subjects, targets and actions.

The problem of detecting conflicts is extremely difficult.
Analysis of the policy objects without any knowledge of the
application or activities may detect positive-negative conflicts
of modalities and conflicts between obligation and authoriza-
tion policies, and so it may be possible to automate this [20].

E. Policy-Based Openflow Network Manager

The behavior of an OpenFlow network is defined by flow
table entries of the devices (e.g., switch) comprising the
network. These entries determine the action to be taken by
the device, which may authorize the entry of a package in the
device so that, it can be forwarded to another device or host
or deny the packet in the device. However, some questions
arise naturally about: (1) How to create or manage OpenFlow
network with controllers currently present? (2) How to delegate
or revoke network permissions to a particular user? (3) How to
manage the switches flows as the number of hosts and switches
increases?

Policy-Based Network Manager (PBNM) has emerged as
a promising paradigm for network operation and management,
and has the advantage to dynamically change the behavior of a
managed system according to the context requirements without
the need to modify the implementation of managed system
[19]. The general PBNM can be considered an adaptation of
the Internet Engineering Task Force (IETF) policy framework
to apply to the area of network provisioning and configuration.

With PBNM the management network process can be sim-
plified through of centralization and business-logic abstractions
[19]. Centralization refers to the process of configuring all
devices in a single-point (Policy Management Tool (PMT))
instead of reconfiguring the device individually.

In a previous work [23], we propose to use the PBNM
concepts in OpenFlow networks. PBONM was proposed, a
framework based on the IETF policy framework. Ponder lan-
guage was chosen as the standard policy specification language
in the PBONM. The PBONM is depicted on Figure 4. The
architecture is divided in the following layers:

Policy Management Tool (PMT): it is a software layer that
manages the network users, switches and OpenFlow layers
providing the User Interface to enable these features. The
Ponder is used to specify the policies in this layer. The
Policy Repository (database) will store the policies and other
information about of the network.

Policy Decision Point (PDP): it is responsible to interpreting
the policies stored in the repository, checks the users’ autho-
rization (if the user has permission to add or remove a flow in
specific switch), check policy conflicts on database and release
the policies to Policy Enforcement Point.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Policy Enforcement Point (PEP): it is responsible to execute
the configuration of OpenFlow controller. When the policies
are interpreted, OpenFlow flows are generated and forwarded
to the OpenFlow controller. So, the OpenFlow controller can
enforce these flows on the network.

OpenFlow Network Devices: they are OpenFlow switches
controlled by an OpenFlow controller and configured by PEP.

The PBONM is depicted on Figure 4. The architecture is
divided in the following layers:

e PMT: it is a software layer to manage the network
users, switches and OpenFlow layers providing the
User Interface to enable these features. The Ponder is
used to specify the policies in this layer. The database
(LDAP or RDBMS) will store the policies, and other
informations needed the network.

e Policy Decision Point(PDP): it is responsible to in-
terpreting the policies stored in the repository, checks
the users’ authorization (if the user has permission to
add or remove a flow in specific switch), check policy
conflicts on database and release the policies to Policy
Enforcement Point.

e Policy Enforcement Point(PEP): it is responsible to
execute the configuration of OpenFlow controller.
When the policies are interpreted, OpenFlow flows are
generated and forwarded to the OpenFlow controller.
So the OpenFlow controller can enforce these flows
on the network.

o Network Components(NC): t are switches and routers
subordinate to OpenFlow controller. These network
components are configured by flows sent by PEP.

Policy-Based OpenFlow Network Management

Policy Management Tool (PMT)

User management Tool
Switch management Tool

Policy
Layer Management Tool

Repository

Policy Decision Point (PDP)

Conflicts Checker

Policy Enforcement Point (PEP)

Policy Parser

Policy Evaluation

A 4

OpenFlow Controller [« Policy Implementer

—

OpenFlow Networkl)evices

Q@ Openciow

(@ Openilow

/4
X

y

Figure 4. The Policy-Based OpenFlow Network Manager architecture

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

167

Thus, the network administrator can specify network flows
and the users’ permission through of a graphical tool using a
policy specification language. These policies will be translated
to OpenFlow controller API calls and will be applied to the
network devices.

F. Ponder: Policy Specification Language

Ponder is a declarative, object-oriented language for spec-
ifying security and management policy for distributed object
systems proposed by Damianou et al. [3]. The language is
flexible, expressive and extensible to cover the wide range
of requirements implied by the current distributed systems
requirement and allows for the specification of security policies
(role-based access control) and management policies (manage-
ment obligations) [20].

There are four building blocks supported on Ponder, which
are: (1) authorizations: what activities the subject can perform
on the set of target objects; (2) obligations: what activities a
manager or agent must perform on target objects; (3) refrains:
what actions a subject must not execute on target objects; (4)
delegation: granting privileges to grantees.

However, the Ponder language does not support the net-
work flows abstraction. In contrast, OpenFlow architecture
works over the network flows concept. To use Ponder in
PBONM, an extension to the language is needed, to support the
requirement inherent in the new environment. Thus, a network
administrator can define flows in a network switch OpenFlow
clearly and concisely.

The advantage of using a policy language is to permit the
network administrator only needs to think in an abstract form,
how the OpenFlow network should work, without worrying
about the implementation details of a specific controller. Unlike
other flow language’s definition, that requires the administrator
to use a programming language [4], [7], [8].

Ponder2 is a re-design of Ponder language and toolkit,
maintaining the concepts and the basic constructs [24]. In
contrast to the original Ponder, which was designed for general
network and systems management; Ponder2 was designed as
an extensible framework to configure more complex services.
It uses the PonderTalk, a high-level configuration and control
language, and it permits user-extensible Java objects. In our
proposal, we prefer to use the original Ponder language be-
cause the new functionality of Ponder2 is not necessary. We
believe that the concise description of Ponder is easier for a
network administrator, unlike the more extensible and complex
PonderTalk description.

IV. PONDERFLOW: OPENFLOW POLICY SPECIFICATION
LANGUAGE

Ponder is the policy language used to manage security
policies and access control. However, the Ponder language
is too vague to cover all types of manageable environments
[25]. PonderFlow is a policy definition language for Open-
Flow networks where your main objective is to specify flows
transparently, independent of OpenFlow controller used in the
network. The PonderFlow extends the Ponder language [3] to
suit the flow definition paradigm of OpenFlow environment.

Some of the Ponder’s building blocks were kept and others
were not used in favor of simplicity. Nevertheless, even keep-
ing some building blocks from the original Ponder language;

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the philosophy behind these blocks was changed to suit the
paradigm of OpenFlow networks. Furthermore, it was added a
way to specify flows through policies, making PonderFlow a
declarative scripting language. In this way, the new keyword
flow is included to specify the flow’s characteristics. In the
following subsections, the building blocks will be explained,
and we will show some examples to manage network flows.

ANTLR framework [26] was used to generate the lexi-
cal analyzer and parser grammar in the Java programming
language, as well as to generate the images of Abstract
Syntax Tree (AST) tree of the building blocks defined in the
PonderFlow.

A. Authorization Policies

The authorization policies define what the members within
a group (subject) may or may not do in the target objects.
Essentially, these policies define the level of access the users
possess to use an OpenFlow switches network.

A positive authorization policy defines the actions that
subjects are permitted to do on target objects. A negative
authorization policy specifies the actions that subjects are not
allowed to do on target objects.

This building block is very similar to the original language
Ponder, but the focus of this building block in PonderFlow
context is in the access by the users in the switches that
comprise the OpenFlow network and OpenFlow controller
itself.

Listing 1. PonderFlow Authorization Policy Sintax

1 inst (auth+ | auth—) policyName {
subject [<type_def>] domain—scope—expression;

3 target [<type_def>] domain—scope—expression;
[flow [<type_def>] flow—expression;]
5 action action—1list;

[when constraint—expression |
constraint—flow—expression];

The syntax of an authorization policy is shown in Listing 1.
Everything in bold is language keywords. Choices are enclosed
within round brackets () separated by |. Names and variables
are represented within < >. Optional elements are specified
with square brackets []. The policy body is specified between
braces { }.

Constraints are optional in authorization policies and can
be specified to limit applicability of policies based on time or
attribute values to the objects on which the policy refers.

The elements of an authorization policy can be specified
in any order, and the policy name must begin with a letter and
contain letters, numbers and underscore in the rest of your
name.

The specification of the subject and target may be option-
ally specified using an Uniform Resource Identifier (URI) to
represent the domain of the subject or of the target. Moreover,
we can specify the subject type or the target type in the policy
definition.

Listing 2. Positive authorization policy example

1 inst auth+ switchPolicyOps {

subject <User> /NetworkAdmin ;
3 target <OFSwitch> /Nregion/switches;

action addFlow (), removeFlow (), enable (), disable();
51

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

168

Listing 2 shows an example of a positive authorization
policy allowing all network administrators to perform the
actions of adding flows, remove flows, enable and disable all
switches in Nregion. Note, this policy is applied to any flow,
and it is similar to conventional Ponder authorization policy.
In Figure 5, we show the AST tree of a positive authorization
policy from Listing 2.

A snippet of ANTLR grammar defined for PonderFlow
authorization policies is described in Listing 3.

Listing 3. Authorization policy grammar

1 auth_policy:
INST (AUTH_POSITIVE | AUTH_NEGATIVE)

3 policy_name
OPEN_BODY

5 auth_policy_options=*
CLOSE_BODY

~

INST (AUTH_POSITIVE | AUTH_NEGATIVE)
policy_name SET policy_name

9 OPEN_PARENTESIS

variable (COMMA variable)x*

11 CLOSE_PARENTESIS ;

In Figure 5, we have the AST tree generated by ANTLR
to move the policy of positive authorization of Listing 2 to the
interpreter and Figure 6 for the same negative authorization
policy of Listing 4.

Listing 4. Negative authorization policy example

1 inst auth— researcherOps {
subject <User> /Researchers ;

3 target <OFSwitch> /Nregion/switches;
action enable (), disable();

51

In Listing 4, we define a negative authorization policy
restricting users from the researchers group does not perform
the actions to enable or disable the switches in a Nregion.

The language also provides the ability to define policy
types, enabling the reuse of policies by passing formal param-
eters in its definition. Several instances of the same type can
be created and adapted to the identical environment through
real values as arguments.

Listing 5. Type definition policy sintax

1 type (auth+ | auth—) policyType (formalParameters) {
authorization—policy —parts
39
inst (auth+ | auth—) policyName = policyType (
actualParameters)

The authorization policy switchPolicyOps (from Listing 2)
can be specified as a type of the subject and target given as
parameters as shown in Listing 6.

Listing 6. Type policy definition example

type auth+ PolOpsT(subject s, target <OFSwitch> t) {
2 action load (), remove(), enable(), disable ()
}
4 inst auth+ admPolyOps=PolOpsT (/NetworkAdmins ,
/NregionA/switches);
inst auth+ rsrPolOps=PolOpsT(/Researchers,
/NregionB/switches) ;

Furthermore, we can use the PonderFlow Authorization
Policies to define a flow in the OpenFlow network. A flow

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

169
input
st‘m <EOF=>

auth_stm

inst auth+ switchPolicyOps { auth_params auth_params auth_p|aram5 1

/subect\ A auth_actions
/H_
subject <User> /MetworkAdmin ; target <OFSwitch> /Mregion/switches ; action auth_action_list
auth_action , auth_action , auth_action
addFlow [) removeFlow () enable {) disable

Figure 5. The AST tree for Listing 2 example

input

stm <ECF>

auth_stm

=

inst auth- researcherCps { auth params

<0OFSwitch> /MNregion/switches

subject <User> /Researcher ; target

auth params

auth params }
auth_actions
action auth_action_list
auth_action |, auth_action

enable ([) disable [)

Figure 6. The AST tree for Listing 3 example

is an OpenFlow network path between hosts, independent of
the switch quantity.

Thus, network administrator does not need to use a pro-

TABLE 1. OPENFLOW POLICY WILDCARDS

ingress-port The switch port on which the packet is received

. 1 like J Pyvth Ctt. i der t src-mac The source mac address value
grammlngl anguage I ,e ava, Fython or » I order to ma- dst-mac The destination mac address value
nipulate directly behavior through of the OpenFlow controller. vian-id The VLAN identification value

Listing 7. Type policy definition example

vlan-priority =~ The VLAN priority value
ether-type The ethernet type value

tos-bits The ToS bits value
I flow—expression = on = <DPID> > protocol The IP protocol number used in the protocol field
I sre = <DPID>/<switch_port> , sre-ip The source IP address value
3 | src¢ = <IP—ADDRESS> , dsti he destinati address val
| src = <MAC_ADDRESS> ., st-ip The destination IP address value
5 | dst = <DPID>/<switch_port> , sre-port The source protocol port value
| dst = <IP—ADDRESS> , dst-port The destination protocol port value
7 | dst = <MAC_ADDRESS> |,
| by = <DPID> ;

To define a flow, we need to use the keyword flow in
the authorization policy statement. With this keyword, we can
define the characteristic of the flow. Furthermore, it is possible
define a path restriction where the network administrator can
define where the flow must pass.

Listing 7 shows the grammar of flow-expression, where:
DPID is the switch identification, src and dst are respectively
the source device and destination device, switch_port is the
incoming packet switch port, IP-ADDRESS is a valid IP
address and MAC-ADDRESS is a valid MAC address.

The example in Listing 8 authorizes a flow to user /User/S-
tudents/John (subject), on the switches of domain /Uece/-
Macc/Larces/Switches, set flows (action) on the network to
establish a path starting from the switch with Datapath ID
(DPID) 00:00:00:2C:AB:7C:07:2A on the port 2 (src) and
ending in the switch with DPID 00:00:00:47:5B:DD:3F:1B
on port 5 (dst), passing by the switches with DPID
00:00:00:C5:FF:21:7F:3B and 00:00:00:33:45:AF:1C:8A (by)
when the source IP address of the flow is 192.168.0.21, the
destination IP address 192.168.0.57 and the protocol destina-

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tion port is 80.
Listing 8. A PonderFlow authorization policy

inst auth+ flowOlI {
2 subject <User> /Users/ Students/John;
target <Switch> /Uece/Macc/Larces/Switches;
4 flow <Flow> src=00:00:00:2C:AB:7C:07:2A/2 ,
dst=00:00:00:47:5B:DD:3F:1B/5
6 by =00:00:00:C5:FF:21:7F:3B ,
00:00:00:33:45:AF:1C:8A ;
8 action setFlow ();
when src—ip=192.168.0.21,
10 dst—ip=192.168.0.57,
dst—port=80;
12 }

PonderFlow specifies a set of default actions for flow
definition, but the developers are free to add more actions to
the language. The default actions are listed in Table II. Listing
9 defines a policy which user Alice can set a flow action to
change the source IP address of the packet to 10.23.45.65 when
the destination IP address is 10.23.45.123 on the switch with
DPID 00:00:00:4F:32:1D:56:9C.

Listing 9. The flow definition to change the source ip address

inst auth+ flow02{
2 subject <User> Alice ;
target <Switch> 00:00:00:4F:32:1D:56:9C;
4 action setSrcIP(°10.23.45.657);
when dst—ip=10.23.45.123;
6}

Furthermore, it is possible to define a policy to be applied
in a specific switch and not a path. This is desirable when the
network administrator wishes to add or remove a particular
flow in a specific switch, in this way, the network administrator
changes the network behavior in a single point on the network.

In Listing 10 is shown a policy example authorizing user
Bob adds a flow (action) for the (subject) in the switch
00:00:00:4F:32:1D:56:9C (target) when the destination IP
address is 172.24.5.17, and the destination port is 5432.

Listing 10. Authorizing add a specific flow in the switch

inst auth+ flow3{
2 subject <User> Bob;
target <Switch> 00:00:00:4F:32:1D:56:9C;
4 action setFlow () ;
when dst—ip=172.24.5.17,
6 dst—port=5432;

TABLE II. OPENFLOW ACTION FIELD

setFlow()

delFlow()
setSrcIp(ip-address)
setDstIp(ip-address)
setSrcMac(mac-address)
setDstMac(mac-address)

Set the flow(s) in a specified path

Delete the flow(s) in a specified path

Set the source IP address of the packet

Set the destination IP address of the packet
Set the source MAC address of the packet

Set the destination MAC address of the packet

setSrcPort(port) Set the source port of the packet
setDstPort(port) Set the destination port of the packet
setVlanld(integer) Set the VLAN of the packet

setVlanPriority(integer) Set the VLAN priority of the packet

We can restrict the actions of the network users with
the authorization policies. For example, we cannot permit a
certain kind of flows through the OpenFlow network with

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

170

the authorization policies. In Listing 11 we define an au-
thorization policy not allowing Alice (subject) add flows
(action) in the switches with DPID 00:00:00:4F:32:1D:56:9C,
00:00:00:47:5B:DD:3F:1B and 00:00:00:33:45:AF:1C:8A.

Listing 11. Negative authorization policy for deny add flow in the switch

1 inst auth— flow4 {
subject <User> Alice;
3 target <Switch> /Uece/Macc/Larces/Switches;
flow by=00:00:00:4F:32:1D:56:9C,
5 00:00:00:47:5B:DD:3F:1B,
and 00:00:00:33:45:AF:1C:8A
7 action setFlow ()

}

Another kind of usage is not allows the user to change a
packet values in the network. Listing 12 shows an example of
this policy.

Listing 12. Negative authorization policy for deny add flow in the switch

inst auth— flow5 {
2 subject <User> Alice;
target <Switch> /Uece/Macc/Larces/Switches;
4 action setSrcIP (),
setDstlp (),

6 setSrcMac () ,
setDstMac () ,
8 setSrcPort (),

setDstPort () ;

10 }

The previous example the user Alice (subject) cannot
change the source ip address, destination ip address, source
mac address, destination mac address, source port and destina-
tion port (action) in any switch of /Uece/Macc/Larces/Switches
domain.

Moreover, it is possible define action which specific user
can perform in the network. Listing 13 shows a policy
which allows the user of domain /Uece/Macc/Larces/Admin
(subject) remove flows (action) of in any switch of /Uece/-
Macc/Larces/Switches domain (target).

Listing 13. Authorization policy for allow remove flow

inst auth— flow5{
2 subject <User> /Uece/Macc/Larces/Admin;
target <Switch> /Uece/Macc/Larces/Switches;
4 action delFlow () ;
}

B. Obligation Policies

Obligation policies allow to specify actions to be performed
by the network administrator or by the OpenFlow controller
when certain events occur in an OpenFlow network and
provide the ability to respond any change in circumstances.

These policies are event-triggered and define the activities
subjects (network administrator or OpenFlow controller) must
perform on objects within the target domain. Events can be
simple, e.g., an internal timer, or more complex, starting by
reading some kind of sensor, e.g., a network card stopped.

This building block is very similar to the original language
Ponder, but in the context of PonderFlow, including flow
definition. This block sets an obligation for the network ad-
ministrator or the OpenFlow controller performs some action,
or simply is notified, when a particular event occurs.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

input

stm <EOF>

oblig_stm

____::——’—‘—;’-7
inst oblig flowAddFailure { on

on on_expr
flowAddFailure | teim) subject <User> var /Administrators
dpid s =

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

171

r//%

. target <OFSwitch> wvar /Nregion/Switches/sw01

. do dofac‘;t\ons §
t = do_action_list

notificate (auth_action_params)

st

Figure 7. The AST tree for Listing 16 example

Listing 14. Obligation policy sintax

1 inst oblig policyName {
on event—specification ;
3 subject [<type_def>] domain—Scope—Expression ;
[target [<type_def>] domain—Scope—Expression ;]

5 do obligation—action—1list ;
[catch exception—specification ;]
7 [when constraint—Expression ;]

}

The syntax of obligation policies is shown in Listing 14.
The required event specification follows the on keyword. The
target element is optional in obligation policies. The optional
catch-clause specifies an exception to be performed if the
actions fail to execute, for some reason.

A snippet of ANTLR grammar defined for PonderFlow
obligation policies is described in Listing 15.

Listing 15. Obligation policy grammar

oblig_policy:
2 INST OBLIG policy_name
OPEN_BODY
4 oblig_policy_optionsx*
CLOSE_BODY ;

In Listing 16, the obligation policy is triggered when a
failure on adding a flow occurs. Network administrator will
be notified when this event occurs, and he will receive the
switch ID where it happened. Figure 7 shows the AST tree of
Listing 16.

Listing 16. Obligation policy sintax

1 inst oblig flowAddFailure {

on flowAddFailure (dpid) ;
3 subject <User> s=/Administrators ;

target <OFSwitch> t = /Nregion/Switches/sw0l ;
5 do notificate(s, t) ;

}

To perform an obligation policy, it is required the user
has an authorization over the target. This can be specified
with an authorization policy. If there is no authorization
policy specifying who can perform a particular action, the
obligation policy will produce an exception error (depends on
the implementation), and the policy will not be applied in the
system.

V. PONDERFLOW PARSER

A PonderFlow parser was developed in Java using ANTLR
framework [26]. The ANTLR framework is a flexible and
powerful tool for parsing formal languages like PonderFlow.
The parser translates the PonderFlow statements describe in
Section IV.

ANTLR provides support for two tree-walking mecha-
nisms; the parse-tree listeners and the parse-tree visitors. By
default, ANTLR generates a parse-tree listener interface to
respond to events executed by the built-in tree walker. The
PonderFlow parser uses the parse-tree listeners to parse its
grammar.

The parser consists of some Java classes, generated au-
tomatically by ANTLR. The PonderFlow parser is basically
a Java class implementing a parse-tree listener interface, and
this interface requires some Java methods to be implemented.

In these methods, we add Java code describing what must
be done for each PonderFlow statement read. It is possible to
use other tools such as a DBMS or other framework to assist
in analyzing the statements OpenFlow process.

Some performance test was executed over PonderFlow
parser. The instances of the performance testing vary between
1 and 10000 statements. Figure 8 shows the elapsed time to
parse instances of 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2500,
5000 and 10000 PonderFlow statements, respectively.

Elapsed Time

0 2000 4000 6000 800D 10000 000

annn

12000

Policies

Figure 8. Time required to parse several instances.

As shown in Figure 8 can be seen the analyzer is easily
scalable and can analyze tens of thousands of statements in a

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

second. Use other tools, such as a DBMS, the time of analysis
may increase, hampering the analysis process.

However, since some compilers of programming languages
may take several seconds to compile the source code, even if
it is added to other tools and frameworks on the PonderFlow
parser, the compile time will still be at a tolerable level of
acceptability.

VI. CONCLUSION AND FUTURE WORKS

This paper described the PonderFlow language, a new
policy specification language for OpenFlow networks. With
this language, the network administrator does not need to be an
expert in a programming language, like Java, Python or C++,
to specify the policy of an OpenFlow network. The language
statements are simple and concise to define policies.

The PonderFlow grammar was presented as well as some
examples of usage and their AST tree representation. The
grammar was tested using the ANTLR framework, which
generates the parser and the lexical analyzer for the Java
programming language.

Some tests were performed and it was observed that
this solution had scalability, and is easily integrated into an
OpenFlow controller. However, the PonderFlow works merely
with OpenFlow Switch Specification version 1.0, because most
of the commercial switches only support this version.

It shall extend the Ponder language to use the OpenFlow
Switch Specification version 1.3. Another point that should be
studied is the treatment of policy’s conflicts, where a network
administrator can, by accident or malpractice, declare two
or more conflicting policies. It is necessary to perform an
assessment on all policies before applying them on OpenFlow
controller.

REFERENCES

[1] B. Batista and M. Fernandez, “Ponderflow: A policy specification
language for openflow networks,” in ICN 2014, The Thirteenth Interna-
tional Conference on Networks, Nice, France, Feb. 2014, pp. 204-209.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, 2008, pp. 69-74.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder
policy specification language,” in Proceedings of the International
Workshop on Policies for Distributed Systems and Networks (POLICY
’01). London, UK, UK: Springer-Verlag, 2001, pp. 18-38. [Online].
Available: http://dl.acm.org/citation.cfm?id=646962.712108

[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: a network programming language,”
SIGPLAN Not., vol. 46, no. 9, Sep. 2011, pp. 279-291. [Online].
Available: http://doi.acm.org/10.1145/2034574.2034812

[5] NOXRepo.org, “NOX Openflow Controller,” Last accessed, Aug. 2014.
[Online]. Available: http://www.noxrepo.org/nox/about-nox/

[6] G. VanRossum and F. L. Drake, The Python Language Reference.
Python Software Foundation, 2010.

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

International Journal on Advances in Networks and Services, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/networks_and_services/

172

D. M. E. Mattos, N. C. Fern, V. T. D. Costa, L. P. Cardoso, M. Elias,
M. Campista, L. H. M. K. Costa, and O. C. M. B. Duarte, “Omni:
Openflow management infrastructure,” Paris, France, 2011.

A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for
high-level reactive network control,” in Proceedings of the first
workshop on Hot topics in software defined networks, ser. HotSDN
’12. New York, NY, USA: ACM, 2012, pp. 43-48. [Online].
Available: http://doi.acm.org/10.1145/2342441.2342451

D. Erickson, “Floodlight Java based
troller,” Last accessed, Aug. 2014.
http://floodlight.openflowhub.org/

“Beacon,” Last accessed, Jun. 2014. [Online].
https://openflow.stanford.edu/display/Beacon/Home

NOXRepo.org, “POX Openflow Controller,” Last accessed, Aug. 2014.
[Online]. Available: http://www.noxrepo.org/pox/about-pox/

OpenFlow Con-
[Online]. Available:

Available:

NEC Corporation, “Trema Openflow Controller,” Last accessed, Aug.
2014. [Online]. Available: http://trema.github.com/trema/

B. Heller, “Openflow switch specification, version 1.0.0,” Dec. 2009.

[Online]. Available: www.openflowswitch.org/documents/openflow-
spec-v1.0.0.pdf

OpenFlow Hub, “Indigo OpenFlow Switching Software
Package,” Last accessed, Jun. 2013. [Online]. Available:

http://www.openflowswitch.org/wk/index.php/IndigoReleaseNotes

O. Ferkouss, I. Snaiki, O. Mounaouar, H. Dahmouni, R. Ben Ali,
Y. Lemieux, and O. Cherkaoui, “A 100gig network processor platform
for openflow,” in Network and Service Management (CNSM), 2011 7th
International Conference on. IEEE, 2011, pp. 1-4.

R. Ozdag, “Intel ethernet switch fm6000: SDN with openflow,” Intel
Corporation, Tech. Rep., 2012.

NoviFlow Inc, “NoviFlow Switch 1.1,” Last accessed, Sep. 2013.
[Online]. Available: http://www.noviflow.com/

R. Bert6-Monle6n, E. Casini, R. van Engelshoven, R. Goode, K.-
D. Tuchs, and T. Halmai, “Specification of a policy based network
management architecture,” Military Communication Conference, 2011,
pp. 1393-1398.

D. C. Verma, “Simplify network administration using policy-based
management,” IEEE Network, vol. 16, no. 2, March/April 2002, pp.
20-26.

M. Sloman, “Policy driven management for distributed systems,” Jour-
nal of Network and Systems Management, vol. Vol.2, no. No 4, 1994.
N. C. Damianou, A. K. Bandara, M. S. Sloman, and E. C. Lupu, “A
survey of policy specification approaches,” April 2002.

E. C. Lupu and M. Sloman, “Conflicts in policy-based
distributed systems management,” IEEE Trans. Softw. Eng.,
vol. 25, no. 6, Nov. 1999, pp. 852-869. [Online]. Available:

http://dx.doi.org/10.1109/32.824414

B. L. A. Batista, G. A. L. de Campos, and M. P. Fernandez, “A proposal
of policy based OpenFlow network management,” in 20th International
Conference on Telecommunications (ICT 2013), Casablanca, Morocco,
May 2013.

K. Twidle, E. Lupu, N. Dulay, and M. Sloman, ‘“Ponder2-a policy
environment for autonomous pervasive systems,” in Policies for Dis-
tributed Systems and Networks, 2008. POLICY 2008. IEEE Workshop
on. IEEE, 2008, pp. 245-246.

T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers, “A survey
of policy-based management approaches for service oriented system,”
19th Australian Conference on Software Engineering, 2008.

T. Parr, “ANTLR: ANother Tool for Language Recognition,” Last
accessed, Aug. 2013. [Online]. Available: http://www.antlr.org/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

