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Abstract—Many web-based application areas must infer label 
distributions starting from a small set of sparse, noisy labels. 
Previous work has shown that graph-based propagation can be 
very effective at finding the best label distribution across 
nodes, starting from partial information and a weighted-
connection graph.  In their work on video recommendations, 
Baluja et al. showed high-quality results using Adsorption, a 
normalized propagation process. An important step in the 
original formulation of Adsorption was re-normalization of the 
label vectors associated with each node, between every 
propagation step.  That interleaved normalization forced 
computation of all label distributions, in synchrony, in order to 
allow the normalization to be correctly determined.  
Interleaved normalization also prevented use of standard 
linear-algebra methods, like stabilized bi-conjugate gradient 
descent (BiCGStab) and Gaussian elimination.  We show how 
to replace the interleaved normalization with a single pre-
normalization, done once before the main propagation process 
starts, allowing use of selective label computation (label slicing) 
as well as large-matrix-solution methods.  As a result, much 
larger graphs and label sets can be handled than in the original 
formulation and more accurate solutions can be found in fewer 
propagation steps.  We further extend that work to handle 
graphs that change and expand over time.  We report results 
from using pre-normalized Adsorption in topic labeling for 
web domains, using label slicing and BiCGStab.  We also 
report results from using incremental updates on changing co-
author network data.  Finally, we discuss two options for 
handling mixed-sign (positive and negative) graphs and labels. 

Keywords - graph propagation, large-scale labeling, 
incremental connection-graph changes, stabilized bi-conjugate 
gradient descent, Gaussian elimination, topic discovery, web 
domains. 

I.  INTRODUCTION 
Many different approaches have recently been proposed 

to label propagation across weighted graphs of nodes [1]-[7].  
Applications include searching for, recommending, and 
advertising against image, audio, and video content. These 
labeling problems must handle millions of interconnected 
entities (users, domains, content segments) and thousands of 
competing labels (interests, tags, recommendations, topics).  
These applications share the characteristics of having a 
limited amount of label data, often of uneven quality, 
associated with a large graph of weighted connections 

between many nodes, some unlabeled and some partially 
labeled. 

We build on the work done by Zhu and Ghahramani [3], 
Baluja et al. [2] and Covell and Baluja [1].  The Baluja paper 
[2] described Adsorption, a graph-based approach to 
estimating label distributions, which was applied to 
providing YouTube video recommendations.  The resulting 
top-pick recommendation was more accurate than the next-
best alternative algorithm for all users who had watched 3 or 
more previous videos, with accuracy improvements of up to 
100% for the most frequent watchers. In Adsorption [1],[2], 
each node (e.g., each video for which we are building a 
recommendation list) has a limited capacity for labels (e.g., 
the proposed recommendations for that video).  Baluja et al. 
[2] enforce this constraint by interleaving a normalization 
step at each node, in between every propagation step.  
Without this normalization, the solution is not guaranteed to 
converge. 

The interleaved normalization step is needed for 
convergence but prevents label slicing: under the original 
formulation [2], we cannot find the estimated distribution of 
a subset of labels without solving for the full set of labels 
first.  Furthermore, the interleaved normalization prevents 
the use of most standard linear-algebra techniques, such as 
Gaussian elimination of nodes that are not of direct interest 
(though they still are needed for their effect on the remainder 
of the graph).  Additionally, methods for rapid convergence 
to the final solution, such as stabilized bi-conjugate gradient 
descent (BiCGStab), cannot be used in the original 
formulation. 

We start the paper with a recap of the original Adsorption 
application and mathematical description [2], in Section II.  
This paper then reviews and expands on the work presented 
by Covell and Baluja [1] for pre-normalizing the Adsorption 
graph and label weights, such that there is no need for 
interleaved normalization (Section III).  With this, we can 
use BiCGStab and Gaussian elimination.  Our graph size 
contains more than 10 million nodes and 4 billion inter-
connections (i.e., more than 10 million rows and more than 4 
billion non-zero entries in the corresponding matrix), which 
is more than we can reasonably handle in straightforward 
implementations of these techniques. Instead, we use 
implementations of BiCGStab and Gaussian elimination in 
the MapReduce framework.  We describe these 
implementations briefly, in Sections IV and V. In Section 
VI, we present our results on topic labeling of web domains, 
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using a graph based on shared keywords between pages 
across the domains. 

In Section VII, we extend the pre-normalized framework 
[1] to handle fast updates for graphs with newly added nodes 
and changing connection weights between existing nodes. In 
Section VIII, we demonstrate this incremental-update 
approach on a co-author network, as seen originally seen in 
2003 and then updated in 2005.  Finally, in Section IX, we 
discuss two alternative approaches to handling negative 
associations.  

II. ADSORPTION (WITH INTERLEAVED NORMALIZATION) 
The original formulation of Adsorption [2] can be 

described as an iteration using two systems of equations: 
Xn+1 =σ Xn +βWXnn + γL δ1!

"
#
$
                (1)  

Xn+1{ }i* = Xn+1{ }i* Xn+1{ }i* 1
  (2)  

where double underlining indicates a matrix of values, a 
single underline is a vector, not-underlined values are 
scalars, and the tilde indicates a not-normalized set of values.  
The matrix W  holds the connection weights with row i   
giving the incoming connections into the i’th node.  This 
matrix often is symmetric, to start with, but this property is 
not required and will be given up later to allow for pre-
normalization.  The matrix L  holds the weights of the 
injection label information. These are often noisy or 
incomplete label sets based on some prior information, with 
the graph propagation as a way to improve and expand these 
label sets.  In , each label is associated with a column and 
the weights for the injection labels for the i’th node of the 
graph are in the i’th row of the matrix.  In addition to the true 
labels, in L , Baluja et al. [2] add an abandonment label, 
represented in Equation (1) by the appended column δ1 .  
The scalar δ  can be thought of in many different ways: as 
the loss in certainty about any of the labels that are 
propagated for one hop in the graph; as the number of 
random walks through the graph that end with 
“abandonment”, giving no final label set; as the 
regularization margin in the system of equations.  The other 
scalars (𝜎 , 𝛽 , and 𝛾) allow graph-wide balancing of the 
previous (same-node) labels, of the propagated neighbors’ 
labels, and of the injection labels. Finally, the matrix Xnn  is 
the label distribution estimate, with the i’th row containing 
the estimated labels for the i’th node, including as the last 
column the abandonment label.  In this context, the node’s 
abandonment weight provides a measure, at that node, of the 
label uncertainty. 

Equation (1) creates a new un-normalized estimate of the 
steady-state label distribution across all the nodes using a 
weighted combination of the previous normalized estimate 
for the distribution ( Xnn ), of a graph-weighted propagated 
version of that same distribution (WXnn ), of injection labels  
( L ), and of the abandonment label ( δ ).  Equation (2) 
provides a normalized estimate of the label distribution, by 
dividing each row of the estimate from Equation (1) by the 

L1 norm of the full label set, including the abandonment 
label. 

Iterating over Equations (1) and (2) together is 
guaranteed to converge to a stable steady-state solution, as 
long as δ  is greater than 0.  Baluja et al. [2] used this 
algorithm to successfully provide video recommendations 
that, using a top-pick-accuracy measure, outperformed 
alternative approaches.  Our goal is to provide a formulation 
for the same Adsorption algorithm that does not require per-
propagation-step normalization, allowing us to use label 
slicing and standard linear-algebra tools. 

III. PRE-NORMALIZED ADSORPTION 
We achieve our goal of pre-normalized Adsorption by 

first assuming that all associations in our graph and in our 
label injection are non-negative.  Specifically:

 sign Xn{ }ij( ) ≥ 0 , sign W{ }ij( ) ≥ 0 , and sign L{ }ij( ) ≥ 0 . 
This non-negative assumption works well with the 

partial-information applications that are the most common 
ones in large-graph labeling formulations: for example, in 
video recommendation, we can say that two videos are often 
watched together, within a single viewing session, but it is 
much more difficult to say that two videos are negatively 
associated (that watching one means you are significantly 
less likely to watch the other), since we seldom have enough 
training data to make such an assertion with any confidence. 

For those applications where we do have confidence in 
negative label-to-node associations (negative values in L ), 
we can handle these by introducing a negated label column 
and using positive associations with the negated label where 
we would have otherwise used negative associations with the 
positive label.  Handling negative node-to-node connections 
(negative values in W ) is also possible.  We go over all of 
these cases in more detail in Section IX. 

Assuming we have non-negative values in our 
component matrices, we can consider the denominator of 
Equation (2) in more detail: 
Xn+1{ }i* 1

= σ I +βW( )Xn + γL δ1!
"

#
${ }

i* 1

         (3) 

= σ I +βW{ }ik X n{ }kj
k
∑
"

#
$

%

&
'

j
∑ + γL δ1(

)
*
+{ }

ijj
∑        (4) 

= σ I +βW{ }ik X n{ }kj
j
∑

k
∑ +γ L{ }ij

j
∑ +δ          (5) 

= σ I +βW{ }ik
k
∑ +γ L{ }i* 1

+δ            (6) 

=σ +β W{ }i* 1
+γ L{ }i* 1

+δ            (7) 

Equation (3) simply provides the expansion of the L1 row 
norm using the propagation Equation (1).  Equation (4) 
makes use of the non-negativity conditions that we are 
requiring, in order to remove the absolute values implied by 
the L1 norm and expands the norm summation, as well as the 
summation implicit in the WXnn  matrix multiply.  Equation 
(5) swaps the order of summation, allowing us to make use 
of the unit L1 row norm for Xnn  in Equation (6).  Simplifying 

L
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the summations and noting the use of the row-norm 
definitions for L  and W  finally results in Equation (7). 

The useful property of Equation (7) is that Xn+1{ }i* 1
 

depends only the initial combination weights and the row 
norms of L  and W .  We can use this property to pre-
normalize by first defining 

 
λi =σ +β W{ }i* 1

+γ L{ }i* 1
+δ         (8)

 
σ̂ i =σ λi σ̂ = diag(σ̂ i )                 (9) 

β̂i = β W{ }i* 1
λi β̂ = diag(β̂i )              (10)

 
γ̂ i = γ L{ }i* 1

λi γ̂ = diag(γ̂ i )              (11)
 

δ̂i = δ λi δ̂ = vec(δ̂i )               (12)  
and then using these new quantities in a pre-normalized 
Adsorption algorithm. 

 

Xn+1 = σ̂ Xn + β̂WXnn + γ̂ L δ̂
!
"#

$
%&

     (13)  

Note that direct use of Equation (13) is exactly the 
power-iteration approach to finding the solution (used in [2]) 
and will give the same solutions at every iteration as the 
combination of Equations (1) and (2): the pre-normalization 
has the exact same effect, even though it is only done once, 
as the interleaved normalizations.  Equation (13), therefore, 
also is guaranteed to converge to a stable solution, just as the 
original Adsorption algorithm is guaranteed. The advantage 
is that we do not need to normalize at each step and, as a 
result, we can compute an incomplete set of labels, while still 
deriving the benefits of the full label set to limit belief within 
the set of labels that are interested in.  This slicing directly 
reduces the computational costs by the same percentage as 
the percentage of dropped labels. Furthermore, with the use 
of Equation (13) as the system of equations for which we 
want a solution, we can use standard linear-algebra tools, 
like BiCGStab (for faster convergence) and Gaussian 
elimination (for shrinking our graph matrix).  We discuss 
these algorithms and their large-graph implementations next. 

 

IV. MAP-REDUCE FORMULATION OF STABILIZED BI-
CONJUGATE GRADIENT DESCENT (BICGSTAB) 

In [2], Baluja et al. implicitly use power iteration to solve 
their system of constraints.  For symmetric systems of 
constraints, gradient-descent methods can find solutions in 
fewer iterations, for any given level of accuracy (as 
measured by the average residual error).  However, due to 
the pre-normalization of Adsorption, we no longer have a 
symmetric matrix, and must move to bi-conjugate gradient 
approaches. Since the most direct generalization (biconjugate 
gradient descent) is not numerically stable, we focus on 
stabilized biconjugate gradient descent [8], which has been 
shown to converge more uniformly than power iteration, 
without the numerical issues of (not-stabilized) bi-conjugate 
gradient descent.  We ran several simulations using power 
iteration and BiCGStab, based on random graph matrices 

with the same level of regularization as we expect to see 
through the abandonment variable in our true graphs.  In 
these tests, when the graph matrix and the beginning label 
estimates were non-sparse, on average, BiCGStab converged 
to the correct solution 12 times faster than the power-
iteration method (e.g., BiCGStab would converge in two 
iterations, requiring only 5 graph-matrix multiplies, while 
power iteration would require 60 iterations, needing 60 
graph-matrix multiplies to converge to the same level of 
accuracy). 

When the graph matrix and the beginning label estimates 
were sparse, there were similar differences in the rate of 
convergence, away from the “wavefront boundary”.  We use 
the term wavefront to emphasize that (for both power 
iteration and BiCGStab), updates are done in such a way that 
non-zero values propagate through the graph according to 
the neighborhood connections.  When the labels are sparsely 
injected, non-zero values move in a “wave”, outward from 
non-zero areas into areas that were zero (due to sparseness). 
Both power iteration and BiCGStab rely on the graph matrix 
to determine the label-estimate update, so both have their 
non-zero wavefronts progress in the same way. 

Due to the size of the graph over which we will be 
operating, we implemented BiCGStab using three 
MapReduce [9] stages per iteration.  Using the notation from 
the Wikipedia article on BiCGStab [10], we have a distinct 
set of vectors for each of the labels on which we want to 
estimate the final distribution.   We arrive at the BiCGStab 
components A  and b  (at least conceptually) by separating 
γ̂ L  into columns corresponding tob , by separating Xn  into 
columns corresponding to xn  and by using 

A = I − σ̂ − β̂W             (14) 

We select an initial shadow direction r̂ 0  for each column 
aligned with its first-pass residual vector, r0 . Note that 
computing the first-pass residual vector takes one 
MapReduce to compute r0 = b− Ax0 .  (For our applications, 
b itself is often a good initial estimate for x .)   It is this 
separate estimation of each column (where each column 
corresponds to a single label) that makes label slicing so 
simple and powerful in combination with BiCGStab. 

Unlike [10], we mark all our auxiliary variables with the 
iteration on which they were computed, since this makes our 
Reduce processing more uniform and reliable: therefore, we 
use αn , sn

 
and tn  here (instead of their un-versioned form 

from [10]). To allow the remaining framework to operate 
smoothly, starting from the initialization (the 0’th pass), we 
also use the settings for our auxiliary variables that are 
suggested in [10], namely: ρ0 =α =ω0 =1  and ν 0 = p0 = 0  

For all iterations after this initialization, there are 3 
MapReduce stages: (A) updating the search direction and its 
projection through A ; (B) updating the shadow direction and 
its projection through A ; and (C) combining the computed 
components to give a new state estimate and residual. 

For all three MapReduce stages, the reduce processing is 
the same: from the set of inputs computed in the Map stage, 



249

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as well as the inputs passed directly through to the Reducer 
from previous stages or iterations, keep and combine the 
results for each variable (auxiliary variables, residual, and 
state estimate) that is marked with the highest iteration 
number observed for that variable, and throw away earlier 
versions. 

A. Updating the search direction and its projection 
1) Map (shared) context: 

a. From initial selection: 0r̂  
b. From previous iteration: 

 ρn−1 , αn−1
, ωi−1

, rn−1 , ν n−1 , p
n−1

  
c. From pre-map computation: 

ρn = r̂ 0, rn−1  
p
n
= rn−1 + ρn

ρn−1( ) αn−1
ωn−1( ) pn−1 −ωn−1ηn−1( )

 2) Map computation: 
For each row in A , compute η

n{ }i = A{ }i* pn
 B. Updating the shadow direction and its projection 

1) Map (shared) context: 
a. From initial selection: 0r̂  
b. From previous iteration: rn−1  
c. From previous stage of current iteration: 

 ρn , η
n

 
d. From pre-map computation: 

αn = ρn r̂ 0,ηn  
sn = rn−1 −αnηn

 2) Map computation: 
For each row in A , compute tn{ }i = A{ }i* sn

 C. Combining components for residual and state estimates 
1) Map (shared) context: 

a. From previous iteration: xn−1  
b. From previous stages of current iteration: 

αn
, sn , tn , p

n  
2) Map computation: For each label, compute 

ωn = sn, tn tn, tn  
xn = xn−1 +αn pn +ωn sn  
rn = sn −ωntn  

V. MAPREDUCE FORMULATION OF GAUSSIAN 
ELIMINATION 

Label slicing allows us to compute our distributions on 
the subset of labels that are of most interest, while still 
benefiting from the constraints effectively imposed by the 
full label set.  In a similar way, Gaussian elimination allows 
us to compute our distribution on a subset of nodes 
(domains), while still benefiting from the indirect 
interconnections that are formed through the nodes that we 
do not want to explicitly include in our calculation.  The 
computational savings provided by Gaussian elimination is 
linear with the percentage reduction in the number of graph 
connections.  In addition, Gaussian elimination can speed up 
convergence, by effectively increasing the wavefront-

propagation speed through those parts of the graph that were 
originally connected via the eliminated nodes. 

Gaussian elimination is much simpler to implement in 
the MapReduce framework than BiCGStab, requiring only a 
single stage and capable of handling elimination of multiple 
nodes per run.  The Reduce processing in the MapReduce is 
a straight pass-through of the outputs from the map stage.   

To make the description more concise, define 

Akeep = A{ }i* Lγ
keep

= γ̂ L{ }
i*

i ∈ nodes
to be kept

"
#
$

%$

&
'
$

($  

Aremove = A{ } j* Lγ
remove

= γ̂ L{ }
j*

j ∈ nodes to be
eliminated

"
#
$

%$

&
'
$

($
 

 
Using this notation, the map processing is 

1) Map (shared) context: 
From stored representation: 

 Aremove
, Lγ

remove
 

2) Map computation: For each row, i, in Akeep
 and Lγ

keep
 

a) Initialize 
Akeep = Akeep, Aremove = Aremove  
Lγ

keep
= Lγ

keep
, Lγ

remove
= Lγ

remove

 

b) Compute the pivot strength, π ij , for each 
j ∈ nodes to be eliminated{ } : 

π ij = Akeep{ }
ij

Aremove{ }
jj  

and select the elimination node, j , with the smallest 
amplitude π ij   

c) Eliminate all non-zero entries in the j ’th column in 

Akeep{ }
i*

 and  Aremove
, with matched operations on Lγ

keep{ }
i*

 

and Lγ
remove

: 

Akeep{ }
ik
← Akeep{ }

ik
−π ij

Aremove{ } jk  

Lγ
keep{ }

ik

← Lγ
keep{ }

ik

−π ij
Lγ

remove
{ }

jk
 

Aremove{ }
nk
← Aremove{ }

nk
− π nj

Aremove{ } jk ∀n ≠ j  

Lγ
remove

{ }
nk
← Lγ

remove
{ }

nk
− π nj

Lγ
remove

{ }
jk

∀n ≠ j  

with π nj = Aremove{ }
nj

Aremove{ }
jj  

d) Remove row j  from Aremove
, Lγ

remove

 

e) Repeat (b), (c), and (d), until there are no more rows 
(nodes) to be removed. 

f) Output Akeep{ }
i*

 and Lγ
keep{ }

i*
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• Clothing 

o Women’s, Men’s, Children’s 
o Athletic, Casual, Formal, Outerwear, Sleepwear 
o Shoes, Boots 

• Accessories 
o Jewelry, Watches, Purses 

• Toys 
o Building Toys, Dolls, Stuffed Animals, Ride-on Toys 

• Gifts 
o Flowers, Cards, Party Items, Holiday Items 

• Discounts 
o Coupons, Loyalty Cards 

 
Figure 1.  Examples from selected 71 commercial topics. 

 

 

 
Figure 2. Cumulative residual distribution (by iteration). [1] 

 

VI. LARGE-SCALE DOMAIN-LEVEL TOPIC LABELING 
Baluja et al. [2] already showed the usefulness of the 

Adsorption approach in video recommendations.  The pre-
normalized Adsorption algorithm [1] provides identical 
results at a fraction of the computational cost using the new 
formulation with label slicing, Gaussian elimination, and 
BiCGStab. The final computational cost is reduced by the 
product of the savings of all three approaches (label slicing, 
BiCGStab and Gaussian elimination). 

In our previous paper [1], we explored using pre-
normalized Adsorption for topic labeling on web domains, 
for search and advertising.  Many pages URLs, and even 
whole domains, are poorly classified by standard topic-
analysis approaches, due to having little in the way of 
machine-understandable content to classify.  A standard 
example of this problem are domains that primarily host 
images or video – while the page URL can be examined for 
clues to the topic, as well as the linked-to URLs, the results 
are impoverished and noisy.  If we can improve the topic 
labeling, we could more accurately index these pages for 
search and for content-matched advertisement. 

Specifically, we created a graph with domains as nodes 
and a measure of shared searches for cross-domain pairs of 
URLs as the weighted connections between nodes. Our 
measure looked at, for each search term, the click rates for 
each URL served in the results and set the strength of the 
URL-URL-term triple to the lower of the click rates between 
the paired URLs.  The connection weight between pairs of 
URLs is the sum over all triples that terminate at those two 
URLs.  To aggregate from URL-pair connections, up to 
domain-pair connections, we sum across those URL-pair 
connections where the first of the pair of URLs is from the 
first domain and the second is from the second domain. 
Similarly, our injection labeling is based on combining topic 
analysis of the URLs within the domain, dropping those 
topics that were based on keywords that showed too much 
within-domain variance in their strength.  We aggregate the 
link and topic-label strength up to the domain level to 
improve coverage and reliability of our graph connections. 
Even with this aggregation of URLs to domain-level nodes 
and filtering of keyword labels to within-domain-stable sets, 
our initial data provides a graph of about 13 million domains 
(nodes), with about 4 billion node-to-node connections based 
on analysis of more than 253 million search terms.  Our topic 

analysis provides more than 4,500 general topics, using 
traditional text-based classification. 

From this set of 4,500 topics, we focused on 71 
commercial topics (see Figure 1 for examples).  The 
computational savings (over the original Adsorption 
approach) for the label slicing alone was a factor of 63 times.  
We do not include this savings in the remainder of this 
discussion, since it is available to both power iteration and 
BiCGStab, as long as we are using the pre-normalized 
Adsorption formulation.  That said, it is the most significant 
source of computational savings, compared to the original 
work [2]. 

We ran this set of 71 labels through two iterations of 
BiCGStab (5 graph-matrix multiplies) and through 70 
iterations of the power method, both starting from the same 
initial estimate.  Figure 2 shows the size of the per-node 
residual for BiCGStab on these labels (using an L1 norm).  
As with our small-scale simulations, at the end of our second 
iteration, the not-insignificant residuals occurred at the 3% of 
the nodes that were at the “wavefront boundary” of one or 
more of the topic labels.  This level of convergence, with just 
5 matrix multiplies, is not seen in the power-iteration 
solution until the 62th iteration (an additional savings of 
nearly 12.5 times). 

Since the goal of our label propagation is to increase the 
richness and extent of the topic labeling on poorly labeled (or 
unlabeled) domains without over-extending into domains 
that are not related to our commercial subset, it is helpful to 
look at the statistics summarized in Figures 3 through 5. 

Figure 3 gives a measure of the richness of our labels on 
commercial domains and how that richness increases as a 
function of iteration.  The plot shows the percentages of 
domains by how many commercial-topic labels are seen on 
that domain. If a domain is commercial, the more 
commercial labels that are associated with the domain, the 
richer the topic description.  As shown by the plots, our 



251

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

injection labels (those given by topic analysis) within each 
domain provides sparse topic labels, with the largest 
percentage of commercial domains having only one label.  
Since our 71 commercial topics are actually a hierarchical 
set, this sparseness is unlikely to be correct for most 
domains.  By the end of the second iteration, the mode of 
that distribution has moved to around 30 topic labels per 
commercial domain. 

Also, the legend in Figure 3 gives us the information 
needed to check that we are not just expanding the support of 
our commercial-topic labels indiscriminately across the full 
domain graph.  The first iteration extends the support of the 
commercial labels by a third, from just under 9% of all 
domains to just under 12%, suggesting the addition of a 
subset of the unlabeled domains within the graph.  After the 
first iteration, the support of the commercial-label set is 
effectively unchanged.  This can be traced back to the effect 
of pre-normalizing on the full set of topic labels.  Even 
though the non-commercial topics are not being explicitly 
computed in our iterations, they still have an effect, keeping 
the commercial labels from spreading onto distant (in the 
graph-connection sense) domains, as they otherwise would 
as the commercial wavefront progressed.  This highlights 
both one of the main advantages of the original Adsorption 
as well as the most compelling advantage of the pre-
normalized Adsorption.  With the original Adsorption, each 
node has a limited capacity for supporting labels, thereby 
limiting propagation – but enforcing that limited capacity 
forced computation of all label distributions, not just the 
labels of interest.  With pre-normalized Adsorption, there is 
still the per-node limited capacity for supporting labels, but 
we achieve that capacity limit by pre-normalizing, freeing us 
to compute only at that subset of labels that we are interested 
in, without having those labels spread unchecked. 

Up to now, our analysis of our results has focused on the 
richness and extent of our commercial labels but not on the 
likely quality of the mix of labels that we are introducing 
onto commercial nodes.  Since our topics are structured into 

a hierarchical framework, intuitively what we would like is 
to have each commercial site labeled mostly by closely 
related subsets of the available topics.  We can use dendrite 
distances between the labels to capture this sense of 
closeness among the sets of labels associated with each 
domain node.  As with standard dendrite measures, for each 
pair of labels on a domain, we count the number of 
hierarchical topic links that we have to go across in order to 
travel from one topic label to the other.  We lengthen that 
distance by one for each generation that both labels have to 
travel back through, in order to penalize siblings more than 
grandparent-grandchild relations.  As an example, if we 
need to calculate the distance between women’s jewelry and 
men’s clothing and we have the two tree branches “Jewelry 
→ Women’s Accessories → Apparel” and “Men’s Clothing 
→ Apparel”, our dendrite distance measure would be 4: two 
(for “Women’s Jewelry” to “Apparel”) plus one (for “Men’s 
Clothing” to “Apparel”) plus one (for the one generation 
removal from direct descendent connection). 

As a way to evaluate our label distributions on domains 
with 2 to 6 labels, we computed all pairwise dendrite 
distances within each domain and averaged them (again, on a 
per-domain basis).  Due to the use of the topic hierarchy in 
our dendrite-distance measure, smaller distances amongst the 
labels on a single domain correspond to more believable 
topic mixes.  Figure 4 shows our results, as function of 
iteration.  When the initial topic labeling provides more than 
one label, it includes many dissimilar labels, with the mode 
of the dendrite average distance being up between 6 and 7.  
Our propagation reduces that average distance, filling in 
parent and children nodes, to give a mode that is just above 
one.  While parents could always be filled in by knowing the 
hierarchical structure of our topic labels, the propagation 
graph is doing this without that knowledge – it is finding 
these associations purely through propagation of neighbor 

 
Figure 3. Node-level coherence of commercial labels. [1] 

 

 
Figure 4. Dendrite topic-label distance on domains with 2-6 labels     

(by iteration). [1] 
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labels.  (Furthermore, we could not use the tree-structure 
meta-information to fill in the correct children labels – if we 
blindly used the tree structure, we would get numerous 
nearby but irrelevant labels.)  For this set of nodes, we are 
enriching the topic description without introducing unrelated 
labels.  This measure of quality is a stringent one, since at no 
point do we use the dendrite structure to limit our 
propagation.  

Figure 5 shows a similar measure, for domains with more 
than 6 labels, again averaging the dendrite distances within 
each node. We did this separation between Figure 4, for 
domains with 2-6 commercial labels, and Figure 5, for 
domains with more than 6 commercial labels, since the 
dendrite distances across larger sets of labels, taken from the 
same hierarchy will have a larger minimum-average distance 
than will smaller sets of labels.  For small sets, you can often 
find 2-6 labels, with all parent-child or sibling relationships 
with one another but, for large sets of labels, this is not 
possible and first and second cousin relationships become a 
major part of even the most compact set of labels.  Same as 
with Figure 4, Figure 5 shows that the average dendrite 
distance decreases with each iteration, even on nodes with 
more than 6 labels.  Since closely related sets of topic labels 
are more likely to be a full and accurate description of the 
domain topic, our topic labeling seems to be improved by 
our graph propagation work. 

All of the measurements conducted on the propagation of 
web labels on this large set of domains indicate an 
improvement in search indexing and content-matched 
advertising.  In the future, we will expand these experiments 
in two directions.  First, we will run live trials, with full user-
facing experiments, to determine the quality improvement in 
the user experience.  Second, we will increase our graph size 
and specificity by including individual URLs, for those sites 

that have enough textual information to support that level of 
analysis.   

VII. EFFICIENT UPDATING ON DYNAMIC GRAPHS 
In nearly every application of graph-based label 

propagation, the graph changes over time: in video 
recommendation, new videos are added and old videos fade 
in popularity; in social networks, new users join, new 
friendships are made, and old friendships are ended; and, in 
topic labeling, the connection strengths between domains 
change as their content is updated.  These changes occur 
gradually and most of the label distributions within the 
newly changed graph are only mildly perturbed from those 
labels that were computed for the original matrix, making it 
more efficient to do incremental updates than to restart the 
labeling process from scratch.  The largest changes are 
associated with newly added nodes and labels and with the 
nodes that connect to either those sets.  We focus on the 
changes to the graph and the labels to create an efficient 
update process. 

Since we are now considering a change in the graph and 
label distribution, which will necessitate breaking the 
matrices into pieces, we first define a more compact notation 
for our pre-normalized adsorption state equation.  Instead of 
using Equation (13), we will use 

X = Ŵ X + L̂       
(15)

 
where Ŵ = σ̂ + β̂W  and L̂ = γ̂ L δ̂

!
"#

$
%& . Equation (15) is 

identical to Equation (13), with the exception of the symbols 
that we use to describe it.  This notation hides the iteration 
subscript that we previously associated with X , so that we 
will be able to use the subscript location for identifying sub-
matrices. 

To refer to the two related but distinct sets of graph and 
label weights, we will use a superscript of “-” or “+” to 
distinguish the pre-change and post-change versions of the 
graph, respectively.  So: 

X− ≈ Ŵ
−
X− + L̂

−      (16)
  

is the pre-change version of the graph state equations, with 
X−  as the inferred label distributions that we have already 
computed for the pre-change graph, and 

X+ = Ŵ
+
X+ + L̂

+      (17) 
is the post-change version of the graph state equations, with 
X+  as the inferred label distributions that we need to 
compute for the post-change graph.  We also define 
difference matrices: 

ΔY =Y + −Y −      (18) 

where Y  can be any of X , Ŵ , or L̂ . 
In order to allow us to use matrix operations across these 

two graph descriptions, we assume that we have added all-
zero rows and columns as needed to the pre-change graph, to 
allow for the newly added nodes and labels that we need for 
the post-change description and that we have added all-zero 
rows and columns as needed to the post-change graph, to 
allow for the newly removed nodes and labels that were 

 
Figure 5. Dendrite topic-label distance on domains                        

with more than 6 labels (by iteration). [1] 
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present in the pre-change description.  We rearrange the rows 
and columns, so that we group these to all-zero rows and 
columns and use the notation 

Y =
Y || Y |− Y |+

Y
−| Y

−−
0

Y
+| 0 Y

++

"

#

$
$
$
$

%

&

'
'
'
'

    (19) 

where Y  can be any of X , Ŵ , or L̂  and Y −  refers to the 

pre-change versions of these matrices and Y +  refers to the 
post-change versions. The subscripts “|”, “-”, and “+” 
distinguish between nodes and labels according to their need 
to be part of the pre- and post-change graphs.  The first of the 
subscript pair refers to the row characteristics and the second 
refers to the column characteristics.  The “-” subscript is for 
rows or columns that are only needed for the pre-change 
matrices (i.e., they are identically zero for the post-change 
matrices).  The “+” subscript is for rows or columns that are 
only needed for the post-change matrices (i.e., they are 
identically zero for the pre-change matrices).  The “|” 
subscript is for rows or columns that are needed for both pre- 
and post-change matrices.  Notice that we can assert that the 
sub-matrices that would have represented interactions 
between “-” and “+” rows and columns are known to be 
identically zero, since these two sets of nodes and labels do 
not occur (non-trivially) in the same matrices.  Also, using 
this grouping, we know that Y |+

− =Y
++

− =Y
+|
− ≡ 0  and 

Y |−
+ =Y

−−

+ =Y
−|
+ ≡ 0 .  Finally, we will use the same matrix 

partitioning for the difference matrices, ΔY , as we have 
described above for the pre- and post-change matrices. 

Our goal is to find a good estimate of  from , with 
as few computations as possible.  Starting from the post-
change equation and recasting it in terms of the pre-change 
matrices and the difference matrices: 

X+ = Ŵ
+
X+ + L̂

+

       (20) 
 

X− +ΔX = Ŵ
+
X− +ΔX( )+ L̂−

+ΔL̂      (21) 

X− +ΔX = Ŵ
−
+ΔŴ( )X− +Ŵ

+
ΔX + L̂

−
+ΔL̂   (22) 

Rearranging Equation (22): 

ΔX = Ŵ
+
ΔX +ΔL̂ +ΔŴ X− + Ŵ X−− + L̂

−
− X−( )   (23) 

Since we have a good estimate of X− from the pre-

change description, we use X− ≈ Ŵ
−
X− + L̂

−
 to remove the 

final term from Equation (23), giving 

ΔX = Ŵ
+
ΔX + ΔL̂ +ΔŴ X−( )     (24) 

Finally, we define 
ΔX 0 = ΔL̂ +ΔŴ X−

     
(25) 

to get: 
ΔX = Ŵ

+
ΔX +ΔX 0      (26) 

There are several things of note about Equations (25) and 
(26). From Equation (25),ΔX 0  is exactly the estimate for 
ΔX , if our previous estimate was 0 . It is also used in later 
iterations, as a persistent input, so explicitly saving it reduces 
the computation needed on later iterations.  Finally, ΔX 0  is 

much sparser than L̂ , which will be useful in our discussion 
of Equation (26). 

Equation (26) is an update equation, similar to Equation 
(15). The reason that Equation (26) is preferred over 
Equation (15) is (as just noted) ΔX 0  is much sparser than L̂
and that ΔX  is much sparser than X̂ , even after several 
iterations.   This sparseness reduces the amount of 
computation needed per iteration. 

We can further improve the efficiency and compactness 
of our computation by not computing values for the nodes 
that are not needed for the post-change description.  We can 
now use our matrix partitioning to remove these extra 
entries.  We can also use our knowledge that 
Y |+

− =Y
++

− =Y
+|
− ≡ 0  and Y |−

+ =Y
−−

+ =Y
−|
+ ≡ 0  to simplify the 

formula.  When we use those zero identities along with the 
sub-matrix notation in Equation (26), we get: 

  

X+ X−

  

(27)
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We can reduce Equation (27) down to the four submatrix 

update equations that constrain label distributions in the post-
change network ( ΔX ||

, X |+
+ , X

+|
+ , and X

++

+ ). Focusing on 
those four update equations: 

ΔX || = Ŵ ||

+
ΔX || +Ŵ |+

+
X

+|
+ +ΔL̂ || +ΔŴ ||X ||

− −Ŵ |−

−
X

−|
−  (28) 

X |+
+ = Ŵ ||

+
X |+

+ +Ŵ |+

+
X

++

+ + L̂ |+
+

          (29) 

X
+|
+ = Ŵ

+|

+
ΔX || +Ŵ ++

+
X

+|
+ + L̂

+|

+
+Ŵ

+|

−
X ||

−         (30) 

X
++

+ = Ŵ
+|

+
X |+

+ +Ŵ
++

+
X

++

+ + L̂
++

+
           (31) 

 
Reformatting Equations (28) through (31) back into a 

single partitioned matrix gives: 

ΔX || X |+
+

X
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+ X
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+

"
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$
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+
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(32)

 

where 

ΔX ||
0 = ΔL̂ || +ΔŴ ||X ||

− −Ŵ |−

−
X

−|
−     (33) 

ΔX
+|
0 = L̂

+|

+
+Ŵ

+|

−
X ||

−       (34) 
 
Using Equations (32) through (34) allows us to find an 

update to the inferred label matrices, starting from the 
inferred labels for the pre-change graph, even when there are 
nodes and labels that have been newly added or completely 
deleted.  This approach saves computation on each iteration, 
since the inferred-label change matrix will be non-zero on a 
much smaller number of nodes and labels than the full 
inferred-label matrices are.  Further savings can be had by 
computing and caching the initial update matrices described 
in Equations (33) and (34) for use in later iterations.  We 
stop iterating on the inferred-label change matrix when the 
per-entry residuals are similar in size to residuals that we 
ignored in using X− ≈ Ŵ

−
X− + L̂

−

 
or when the inferred-

label change matrix is no more sparse than the full post-
change inferred-label matrix.  At that point, the post-change 
inferred label matrix should be reconstructed, using the 
values of X |+

+ , X
++

+ , and X
+|
+ as given by Equation (32) and 

using X ||
+ = X ||

− +ΔX ||
for the last non-trivial submatrix of 

X+
. 
The convergence of Equation (32) is guaranteed only 

indirectly.  Equation (32) is formed as the difference of two 
state equations (one for the pre-change graph and one for the 
post-change graph).  Both of those two state equations, 
having eigenvalues that are strictly inside the unit circle, are 

guaranteed to converge.  The difference between them will 
therefore converge. 

VIII. INCREMENTAL UPDATING OF CO-AUTHOR NETWORK 
INFERENCES 

To demonstrate the use of the incremental update of 
label distributions on changing graphs, we used condensed-
matter collaboration data, posted at [11] from work done by 
Newman [12].  This co-author network data was first 
collected from physics pre-print publications for 1995 
through 1999 but was twice updated, first to contain co-
author connections from 1995 to 2003 and later to extend 
that time frame to 2005.  The 1995-2003 network contains 
31,163 authors (nodes) while the 1995-2005 network has 
40,421 authors.  Based on exact matching of names, all 
except 57 of the authors from the 2003 network could be 
uniquely matched to the authors in the 2005 network.  These 
57 authors had ambiguous matches (e.g., there were 3 
“PARK, S” author nodes in both the 2003 and 2005 
networks).  This original pair of networks had 30% new 
authors added  (and 0.2% dropped, due to ambiguity) 
between 2003 and 2005, in addition to having changes in 
the connection weights between the authors that were in 
both networks.  To create the co-author graph, Newman [12] 
scanned the Los Alamos e-Print Archive on condensed-
matter physics for the years in question.  For each paper in 
that database that had n authors, for n > 1, he added (or 
strengthened) a connection between each pair of co-authors 
by a weight of 1/(n – 1).  In this way, the connections made 
from each co-author to other researchers is increased by 
one, for each paper that is a collaborative effort. Newman’s 
research [12] describes the core characteristics of this 
network: the mean (collaborative) papers-per-author in this 
field is 3.87 (with a standard deviation of 5); the mean 
number of authors per paper is 2.66 (with a standard 
deviation of 1); and the mean number of collaborators for 
each author is 5.86 (with a standard deviation of 9). 

This type of co-author graph can be used to recommend 
new collaborations to each author in the network, based on 
propagating the names of potential collaborators.  To this 
end, we use parts of these co-author weighted graphs as our 
un-normalization node-to-node matrix, W as used in 
Equation (1).  We created an un-normalized label matrix, L  
as used in Equation (1), from the author names, using as an 
(un-normalized) injection weight the number of papers on 
which that author collaborated.  Using the number of papers 
as this label weight will result in the prolific authors’ names 
being recommended as potential collaborators more widely 
and strongly than less prolific authors.  To complete the un-
normalized constraint equation, we somewhat arbitrarily set 
β = γ =1 and σ = δ = 2  in Equation (1). 

The addition of 30% new authors between 1995-2003 
and 1995-2005 is large enough that the incremental update 
approach would provide little, if any, computational 
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savings: with this much change, is almost as dense as 

 and, due to the authorship fan-out becomes nearly as 

dense as the full label matrix, , by the second iteration. 
To concretely demonstrate the potential for large 
computational savings in incrementally changing networks, 
we employed a subset of the 1995-2003 and 1995-2005 
data. We first reduced the size of both of the 2003 and the 
2005 networks down to the same 27,519 authors, ones with 
unambiguous matches who occurred with a reasonable 
weight and connectivity in both data sets.  From this shared 
set, we picked equal numbers of distinct nodes to drop from 
each of the reduced-2003 and reduced-2005 networks, so 
that both reduced networks retained equal numbers of nodes 
(authors) by picking the least well-connected nodes and 
dropping them from one of the two networks. For our “1% 
replacement experiment”, we did this with 1% of the nodes, 
so that both the pre- and the post-change graphs had 27,244 
nodes with 275 of the nodes that are in the reduced-2003 
graph being dropped and replaced with a distinct set of 275 
nodes for the reduced-2005 graph.  The connection weights 
between the 99% of the nodes (26,969 nodes) that appeared 
in both of these reduced graphs changed in whatever way 
that was indicated by the original 2003 or 2005 data from 
[11].  In a similar manner, we created our “17% replacement 
experiment”, removing two distinct sets of 3,997 nodes 
from the reduced-2003 and -2005 networks to create two 
graphs with 23,522 nodes each, 17% of which are present in 
only one of the two graphs.  As before, the connection 
weights for the nodes that were shared between the graphs 
was allowed to change, according to the original 2003 or 
2005 data from [11]. 

Once these two pairs of un-normalized networks (pre- 
and post-change networks for the 1% and 17% replacement 
experiments) were formed, we separately normalized the 

matrices for each of the four networks, as described by 
Equations (8) to (13).  These normalizations are based on 
the entries that are actually in each network: there is no 
leakage from pre-change networks into the normalization of 
the post-change network (nor vice-versa) and there is no 
leakage from anything done in the 1% replacement 
networks to the 17% replacement networks (nor vice-versa). 

The node-to-node connection occupancies were about 
0.04% on both the pre- and post-change graphs (Ŵ

−
 and 

Ŵ
+

) for both the 1% and 17% replacement experiments.  
This is nearly twice the collaboration rate reported by 
Newman [12], in part due to the longer time period covered 
(8 and 10 years, in contrast with 5 years) and in part due to 
the selection bias for how we created the reduced 2003 and 
2005 networks. In contrast to the occupancy of Ŵ

−
 and 

Ŵ
+

, the occupancy of ΔŴ  was about 50% of that level 
(so, 0.02% occupancy) for the 17% replacement experiment 
and about 5% of that level (so, 0.002% occupancy) for the 
1% replacement.  These occupancy levels are higher than 
expected by a factor of 3-5 times, due to the changes in the 

weights between Ŵ ||

−
and Ŵ ||

+
.  These weights change, even 

though neither of the connected nodes are added or 
removed, since the connection (un-normalized) weights are 
taken from the 2003 and the 2005 co-author data, 
respectively, as well as indirect effects from changing 
normalization on rows that do connect with new or removed 
nodes. 

In both experiments, we start from the pre-change label 
distributions, X− .  We computed these label distributions 
using power-method iterations for 20 iterations.  This 
brought the per-entry residual errors on the label 

ΔX 0

L̂
X̂

Figure 6. Residual error on 1% replacement network, starting from the 
label distribution from the pre-change graph, as a function of iteration 

(using the power method of solution) 

 
Figure 7. Computational savings on 1% replacement network using 
incremental updating compared to using the same starting estimate 

with the full post-change network. 
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distributions (as measured by Xn+1 − Xn ij
) down to below 

10-8 for all entries.  The result had non-trivial entries on 
about 70% of the pre-change label distribution matrix, for 
both 1% and 17% replacement experiments. 

Figures 6 and 7 show our results for our 1% replacement 
experiment.  Figures 8 and 9 show our results for our 17% 
replacement experiment.  In both Figures 6 and 8, we show 
the reduction in the residual label error, starting from the 
label distribution computed for the pre-change graph (the 
reduced-2003 graph), when applied to the post-change 
graph.  For these graphs, we use the power-iteration method 
(instead of bi-conjugate gradient descent).  Using power 
iteration and starting from a well-converged solution for the 
pre-change graph, the residual errors are exactly the same, 
whether we use the incremental or non-incremental update 
methods.  We can also see that, for these graph pairs, the 
residual error is rapidly reduced, falling to well under 1% of 
the initial error within 8 iterations.  The rate at which that 
reduction happens is slower for the 17% replacement 
experiment than for the 1% replacement but only by a factor 
of less than two, in terms of the remaining residual (relative 
to the starting residual). 

Figures 7 and 9 show the computational savings, derived 
from using the incremental update equations.  For the 
incremental-update method, we use Equation (32), starting 
with ΔX = 0 and counting the number of multiplies needed 

to determine as part of that first iteration.  For the full-

update method, we use Equation (20), using X− as the 

starting estimate for X+
. The computational savings of 

using the incremental-update approach is very large for the 
1% replacement experiment, with as much as 95% of the 
multiplies needed for Equation (20) avoided by Equation 
(32), with the same error rates.  Even after 10 iterations, the 

savings is above 84% of the multiplies that would be needed 
for Equation (20).  The savings of the incremental approach 
is much more modest when 17% of the nodes have been 
replaced (as well as other edges changing weight).  Under 
those conditions, the savings are 12-13%, for early iterations 
but falls to only 4% savings (per iteration) by the 10’th 
iteration. The difference between 1% and 17% replacement, 
in terms of the levels of savings from incremental updating, 
can be traced back to the non-zero occupancy rates in . 

For the 1% replacement experiment, the occupancy of  
was 2%; for the 17% replacement experiment, it was 25%.  
Both are less dense than the 70% occupancy of the pre-
change label distribution ( X− ) but the initial cost is higher 
than this difference in sparseness would suggest.  Part of 
that reduction in savings is due to the computation of  
itself.  Furthermore, for the 17% replacement experiment, 
the initial difference in sparseness is greatly reduced by 
even the third iteration, due to the co-authorship fan out in 

Ŵ
+

. 
The specific savings and convergence rates will depend 

on the specific network configurations and changes that are 
being used.  However, these co-author network examples 
are somewhat representative of the types of networks that 
exist for many problems, in that there are only sparse 
interconnections (having a fan-out level of only 0.04% of 
what is possible) and having multiple cliques. Fortunately, 
in large-scale real-world usage scenarios (e.g., YouTube and 
social networks like G+) updates are computed daily or 
even more frequently.  As a result, the amount of change 
that will be encountered in the network between update 
cycles, compared to the overall size of the network, is small. 
The real-world computational savings of this procedure will 

ΔX 0

ΔX 0

ΔX 0

ΔX 0

 
Figure 8. Residual error on 17% replacement network, starting from 

the label distribution from the pre-change graph, as a function of 
iteration (using the power method of solution) 

 
Figure 9. Computational savings on 17% replacement network using 
incremental updating compared to using the same starting estimate 

with the full post-change network. 
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be enormous in practice, allowing responsive targeting to 
occur using these propagation approaches. 

 

IX. NEGATIVE ASSOCIATIONS ACROSS NODES AND 
BETWEEN NODES AND LABELS 

To this point, our derivation has relied on having only 
non-negative values in our node-to-node connections and in 
our injection label weights.  By restricting our matrices to 
non-negative values and by pre-normalizing as described in 
Equations (8) through (12), we are guaranteed to maintain 
the same unit L1 norm for all iterations, for all rows of . 

In most large graph-based problems, there is no 
difficulty with restricting the description in this way.  In the 
earlier mentioned example of video-to-video 
recommendation, we can say that two videos are often 
watched together, within a single viewing session, but it is 
much more difficult to say that two videos are negatively 
associated (that watching one means you are significantly 
less likely to watch the other); rarely is there enough 
training data to confidently ascertain disassociations. 

Nonetheless, there are several cases in which negative 
information can be useful.  First consider the use of social 
networks in movie and music recommendations and 
reviews.  Often, users express dislike for particular songs or 
movies.  In this case, though the node-to-node connections 
(user-to-user) remain positive, the label (the 
movie/song/artist) may now have a negative connection 
weight to some nodes. We need to be able to handle and 
propagate these negative reviews in the same way as 
positive reviews, as both can shape public opinion. The 
simplest way to do this is to separately represent positive-
bias and negative-bias labels, even when they refer to the 
same underlying label: in our example we would double the 
number of labels that we used, with one for “likes” and one 
for “dislikes” for each movie/song.  Representing this using 
the notation for Equation (15) we would have: 

X p Xn!
"#

$
%&
= Ŵ X p Xn!

"#
$
%&
+ L̂

p
L̂
n!

"
#

$

%
&  (35) 

where L̂
p
=max L̂, 0( )  are positive injection labels (declared 

“likes”) and L̂
n
=max −L̂, 0( )  are negative injection labels 

(declared “dislikes”).  For Equation (35), we are still 
requiring that all entries in Ŵ  be non-negative. The result is 
that the inferred label weights are split, with positive-
association weights in X p and negative-association weights 

in Xn . 

As long as X p and Xn  are represented separately, the L1 

row norm of X p Xn!
"#

$
%&will remain one, throughout our 

iterative estimation, without renormalizing.  This approach 
will have the effect that the amount of ‘attention’ paid to 

controversial movies/songs will be higher, in terms of the 
portion of the available L1 unit length, than it would be if we 
did not split positive and negative labels into separate 
entries.  For some applications, this separation of opposite 
extremes may be the right thing to do.  For example, it may 
be that separately listing strong positive and negative 
recommendations for a controversial movie, and thereby 
having that movie feature prominently in terms amount of 
attention it is given, is better than having the 
recommendations for that movie “wash out” to neutral, by 
not exposing the controversy in opinions. 

An alternative example would be to use a social-network 
of voters in conjunction with political-opinion labels to help 
guide a politician’s stance on legislation.  The social 
network could capture regional differences within the 
politician’s constituency.  Since the politician needs to be 
seen as serving all represented regions equally, understating 
the key issues of a region that has a divided stand on some 
controversial issue does not serve the politician well.  The 
politician is probably better served by emphasizing the 
issues with political consensus, for those regions, rather than 
effectively ignoring all the opinions of the region by 
understating what they do agree upon.  As such, this 
situation may be better handled by the re-combining and re-
normalizing approach we outline later in this section. 

In the previous examples, we explored the use of 
negative values associated with a node’s labels.  Now, we 
consider the case where there are negative connection 
weights between nodes.  Consider the case of financial-fund 
analysis.  If we are trying to find closely related (as well as 
nearly opposite) investment opportunities, we could create a 
graph with one node for each fund under study and with the 
node-to-node connection being set by the statistically 
significant market-adjusted price-change correlations.  The 
labels would then be the fund symbols themselves, 

optionally with long and short positions represented in X p

and Xn , respectively.  In this framework, there are many 
combinations of funds or instruments that would show 
negative connection weights between them.  A fairly simple 
example would be the connection from either a purchase-to-
open put contract or a sell-to-open call contract to the 
underlying security.  Both option contracts are clearly 
distinct in their valuation from the underlying security (with 
the time-value changes having the largest exogenous 
impact) but both have price changes that are strongly 
(negatively) correlated with the security’s price changes. A 
less direct example of negative connections between funds 
would by an ultra-short fund on a market sector and any of 
the largest firms in that sector (for example, QID and 
AAPL). 

To handle negative node-to-node connections, we use a 
similar slicing-and-doubling approach as we used for 
negative label weights.  Specifically, we can say 

Xnn
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where Ŵ
p
=max Ŵ, 0( )  and Ŵ

n
=max −Ŵ, 0( ) . Note that 

Equation (36) has two “partial” rows per node, one (with 
positive associations) in X p and the other (with negative 

associations) in Xn . It is the concatenation of these two 

parts, X p Xn!
"#

$
%& , that will maintain a unit L1 row norm, 

while the energy split between X p and Xn  in each row can 
vary widely, from one iteration to another.  Also note that 
Equation (35) is a re-arranged and simplified version of 

Equation (36), with Ŵ
n
= 0 . 

In the movie/music recommendation example, we 
suggested that keeping track of diverse opinions about the 
same movie/song made sense (since controversial 
movies/music are fundamentally different than ones that do 
not evoke strong opinions either way).  In contrast, in this 
financial example, keeping positive and negative label 
entries separately (corresponding to holding long and short 
positions of the same security) may not be the correct 
approach.  Similarly, in the politician’s example, it may be 
better to refocus the rhetoric on non-controversial issues, 
instead of tracking the degree of controversy.  

Therefore, we investigate the effects of recombining and 
reweighting positive and negative inferred labels, X p and 

Xn .  When we recombine X p and Xn , by taking 

X = X p − Xn , we will end up with a row norm less than one, 

in all rows where one or more non-zero entries of X p and 

Xn  overlap.  The total reduction in the ith row norm will be 

Li
loss = 2 min Xij

p,Xij
n( )

j
∑     (37) 

To avoid under-emphasizing the combined information 
from rows with some conflicting labels, we then need to 
renormalize, to bring the row norm back up to one.  We can 
do this selectively on only those rows where Li

loss  exceeds 
some pre-defined threshold.  When that happens, the label 
vector for that ith row should be replaced with 

Xij
p =max 0,

Xij
p − Xij

n

1− Li
loss

"

#
$
$

%

&
'
'

    (38) 

and 

Xij
n =max 0,

Xij
n − Xij

p

1− Li
loss

"

#
$
$

%

&
'
'

    (39) 

This need for re-normalization, unfortunately, means that 
we can no longer use label slicing, since we need to be able 

to track the row norm for this normalization process.  It also 
complicates the use of stabilized bi-conjugate gradient 
descent, since that approach introduces interdependences 
between update iterations that are not easily adjusted for 
changing scale. When we use this re-normalizing method, 
we need to be aware of the increases in the computational 
costs that result.  However, this method does allow us to 
handle situations that respond best to “fair and equal” 
representations of each node within the network, throughout 
the computation, even in the presence of conflicting 
labeling.  The cost/benefit trade-off must be carefully 
considered in the context of each application. 

X. CONCLUSIONS 
This paper improves the computational efficiency of 

Adsorption, a graph-based labeling approach that has already 
been shown to be highly effective. We do so by replacing 
propagation-interleaved normalization with pre-
normalization, without changing the results provided by 
Adsorption.  Specifically, if the power-method approach to 
finding a solution is used, as it was with Adsorption, the 
answers at every iteration will be exactly the same using 
either the original or the pre-normalized Adsorption.  The 
advantage of the pre-normalized Adsorption is 
computational efficiency in determining the label 
distribution.  With the pre-normalized version, we can use 
label slicing, to compute only those labels that are of direct 
interest, without losing the beneficial belief-limiting 
characteristics of the full label set.  Label slicing reduces the 
computational cost linearly with the percentage of dropped 
labels. Similarly, we can use Gaussian elimination, to 
compute the labels only on those nodes that are of direct 
interest, without losing the effects of the connections that 
occur indirectly through currently not-of-interest nodes.  
Finally, we can speed up convergence to the steady-state 
solution by a factor of 12 (in numbers of graph matrix 
multiples), by using stabilized biconjugate gradient descent, 
instead of power iteration.  We tested the pre-normalized 
Adsorption in a new, large-scale application area, topic 
labeling on web domains, with promising results. 

Additionally, we explored extensions to address two real-
world scenarios, in which network propagation will play an 
important role: (1) networks with both positive and negative 
connections as well as positive and negative associations 
with labels and (2) gradually changing networks in which 
nodes are added and removed (as well as having weight 
changes between existing nodes). Examples of changing 
networks include searching for, recommending, and 
advertising against image, audio, and video content. These 
labeling problems must handle millions of interconnected 
entities (users, domains, content segments) and thousands of 
competing labels (interests, tags, recommendations, topics). 
By using a label update matrix (instead of the full label 
distribution matrix) in our update equations, we were able to 
converge to the correct label distribution on the changed 
network in the same number of iterations as we would need 
for the full network but with only one tenth of the 
computation (for a network that changed by 1% node 
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replacement).  This savings drops rapidly as the percentage 
replacement increased but was still significant, even at 17% 
node replacement.  We demonstrated the incremental update 
using co-author networks.  We note that, in real-world cases 
in which rapid and continual updated of large (107 – 109 
node) networks is required, the methods proposed in this 
paper will make propagation methods feasible.  
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