
246

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Efficient and Accurate Label Propagation
 on Dynamic Graphs and Label Sets

Michele Covell and Shumeet Baluja
Google Research

Google Inc., Mountain View CA, USA
covell@google.com shumeet@google.com

Abstract—Many web-based application areas must infer label
distributions starting from a small set of sparse, noisy labels.
Previous work has shown that graph-based propagation can be
very effective at finding the best label distribution across
nodes, starting from partial information and a weighted-
connection graph. In their work on video recommendations,
Baluja et al. showed high-quality results using Adsorption, a
normalized propagation process. An important step in the
original formulation of Adsorption was re-normalization of the
label vectors associated with each node, between every
propagation step. That interleaved normalization forced
computation of all label distributions, in synchrony, in order to
allow the normalization to be correctly determined.
Interleaved normalization also prevented use of standard
linear-algebra methods, like stabilized bi-conjugate gradient
descent (BiCGStab) and Gaussian elimination. We show how
to replace the interleaved normalization with a single pre-
normalization, done once before the main propagation process
starts, allowing use of selective label computation (label slicing)
as well as large-matrix-solution methods. As a result, much
larger graphs and label sets can be handled than in the original
formulation and more accurate solutions can be found in fewer
propagation steps. We further extend that work to handle
graphs that change and expand over time. We report results
from using pre-normalized Adsorption in topic labeling for
web domains, using label slicing and BiCGStab. We also
report results from using incremental updates on changing co-
author network data. Finally, we discuss two options for
handling mixed-sign (positive and negative) graphs and labels.

Keywords - graph propagation, large-scale labeling,
incremental connection-graph changes, stabilized bi-conjugate
gradient descent, Gaussian elimination, topic discovery, web
domains.

I. INTRODUCTION
Many different approaches have recently been proposed

to label propagation across weighted graphs of nodes [1]-[7].
Applications include searching for, recommending, and
advertising against image, audio, and video content. These
labeling problems must handle millions of interconnected
entities (users, domains, content segments) and thousands of
competing labels (interests, tags, recommendations, topics).
These applications share the characteristics of having a
limited amount of label data, often of uneven quality,
associated with a large graph of weighted connections

between many nodes, some unlabeled and some partially
labeled.

We build on the work done by Zhu and Ghahramani [3],
Baluja et al. [2] and Covell and Baluja [1]. The Baluja paper
[2] described Adsorption, a graph-based approach to
estimating label distributions, which was applied to
providing YouTube video recommendations. The resulting
top-pick recommendation was more accurate than the next-
best alternative algorithm for all users who had watched 3 or
more previous videos, with accuracy improvements of up to
100% for the most frequent watchers. In Adsorption [1],[2],
each node (e.g., each video for which we are building a
recommendation list) has a limited capacity for labels (e.g.,
the proposed recommendations for that video). Baluja et al.
[2] enforce this constraint by interleaving a normalization
step at each node, in between every propagation step.
Without this normalization, the solution is not guaranteed to
converge.

The interleaved normalization step is needed for
convergence but prevents label slicing: under the original
formulation [2], we cannot find the estimated distribution of
a subset of labels without solving for the full set of labels
first. Furthermore, the interleaved normalization prevents
the use of most standard linear-algebra techniques, such as
Gaussian elimination of nodes that are not of direct interest
(though they still are needed for their effect on the remainder
of the graph). Additionally, methods for rapid convergence
to the final solution, such as stabilized bi-conjugate gradient
descent (BiCGStab), cannot be used in the original
formulation.

We start the paper with a recap of the original Adsorption
application and mathematical description [2], in Section II.
This paper then reviews and expands on the work presented
by Covell and Baluja [1] for pre-normalizing the Adsorption
graph and label weights, such that there is no need for
interleaved normalization (Section III). With this, we can
use BiCGStab and Gaussian elimination. Our graph size
contains more than 10 million nodes and 4 billion inter-
connections (i.e., more than 10 million rows and more than 4
billion non-zero entries in the corresponding matrix), which
is more than we can reasonably handle in straightforward
implementations of these techniques. Instead, we use
implementations of BiCGStab and Gaussian elimination in
the MapReduce framework. We describe these
implementations briefly, in Sections IV and V. In Section
VI, we present our results on topic labeling of web domains,

247

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

using a graph based on shared keywords between pages
across the domains.

In Section VII, we extend the pre-normalized framework
[1] to handle fast updates for graphs with newly added nodes
and changing connection weights between existing nodes. In
Section VIII, we demonstrate this incremental-update
approach on a co-author network, as seen originally seen in
2003 and then updated in 2005. Finally, in Section IX, we
discuss two alternative approaches to handling negative
associations.

II. ADSORPTION (WITH INTERLEAVED NORMALIZATION)
The original formulation of Adsorption [2] can be

described as an iteration using two systems of equations:
Xn+1 =σ Xn +βWXnn + γL δ1!

"
#
$
 (1)

Xn+1{ }i* = Xn+1{ }i* Xn+1{ }i* 1
 (2)

where double underlining indicates a matrix of values, a
single underline is a vector, not-underlined values are
scalars, and the tilde indicates a not-normalized set of values.
The matrix W holds the connection weights with row i
giving the incoming connections into the i’th node. This
matrix often is symmetric, to start with, but this property is
not required and will be given up later to allow for pre-
normalization. The matrix L holds the weights of the
injection label information. These are often noisy or
incomplete label sets based on some prior information, with
the graph propagation as a way to improve and expand these
label sets. In , each label is associated with a column and
the weights for the injection labels for the i’th node of the
graph are in the i’th row of the matrix. In addition to the true
labels, in L , Baluja et al. [2] add an abandonment label,
represented in Equation (1) by the appended column δ1 .
The scalar δ can be thought of in many different ways: as
the loss in certainty about any of the labels that are
propagated for one hop in the graph; as the number of
random walks through the graph that end with
“abandonment”, giving no final label set; as the
regularization margin in the system of equations. The other
scalars (𝜎 , 𝛽 , and 𝛾) allow graph-wide balancing of the
previous (same-node) labels, of the propagated neighbors’
labels, and of the injection labels. Finally, the matrix Xnn is
the label distribution estimate, with the i’th row containing
the estimated labels for the i’th node, including as the last
column the abandonment label. In this context, the node’s
abandonment weight provides a measure, at that node, of the
label uncertainty.

Equation (1) creates a new un-normalized estimate of the
steady-state label distribution across all the nodes using a
weighted combination of the previous normalized estimate
for the distribution (Xnn), of a graph-weighted propagated
version of that same distribution (WXnn), of injection labels
(L), and of the abandonment label (δ). Equation (2)
provides a normalized estimate of the label distribution, by
dividing each row of the estimate from Equation (1) by the

L1 norm of the full label set, including the abandonment
label.

Iterating over Equations (1) and (2) together is
guaranteed to converge to a stable steady-state solution, as
long as δ is greater than 0. Baluja et al. [2] used this
algorithm to successfully provide video recommendations
that, using a top-pick-accuracy measure, outperformed
alternative approaches. Our goal is to provide a formulation
for the same Adsorption algorithm that does not require per-
propagation-step normalization, allowing us to use label
slicing and standard linear-algebra tools.

III. PRE-NORMALIZED ADSORPTION
We achieve our goal of pre-normalized Adsorption by

first assuming that all associations in our graph and in our
label injection are non-negative. Specifically:

 sign Xn{ }ij() ≥ 0 , sign W{ }ij() ≥ 0 , and sign L{ }ij() ≥ 0 .
This non-negative assumption works well with the

partial-information applications that are the most common
ones in large-graph labeling formulations: for example, in
video recommendation, we can say that two videos are often
watched together, within a single viewing session, but it is
much more difficult to say that two videos are negatively
associated (that watching one means you are significantly
less likely to watch the other), since we seldom have enough
training data to make such an assertion with any confidence.

For those applications where we do have confidence in
negative label-to-node associations (negative values in L),
we can handle these by introducing a negated label column
and using positive associations with the negated label where
we would have otherwise used negative associations with the
positive label. Handling negative node-to-node connections
(negative values in W) is also possible. We go over all of
these cases in more detail in Section IX.

Assuming we have non-negative values in our
component matrices, we can consider the denominator of
Equation (2) in more detail:
Xn+1{ }i* 1

= σ I +βW()Xn + γL δ1!
"

#
${ }

i* 1

 (3)

= σ I +βW{ }ik X n{ }kj
k
∑
"

#
$

%

&
'

j
∑ + γL δ1(

)
*
+{ }

ijj
∑ (4)

= σ I +βW{ }ik X n{ }kj
j
∑

k
∑ +γ L{ }ij

j
∑ +δ (5)

= σ I +βW{ }ik
k
∑ +γ L{ }i* 1

+δ (6)

=σ +β W{ }i* 1
+γ L{ }i* 1

+δ (7)

Equation (3) simply provides the expansion of the L1 row
norm using the propagation Equation (1). Equation (4)
makes use of the non-negativity conditions that we are
requiring, in order to remove the absolute values implied by
the L1 norm and expands the norm summation, as well as the
summation implicit in the WXnn matrix multiply. Equation
(5) swaps the order of summation, allowing us to make use
of the unit L1 row norm for Xnn in Equation (6). Simplifying

L

248

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the summations and noting the use of the row-norm
definitions for L and W finally results in Equation (7).

The useful property of Equation (7) is that Xn+1{ }i* 1

depends only the initial combination weights and the row
norms of L and W . We can use this property to pre-
normalize by first defining

λi =σ +β W{ }i* 1

+γ L{ }i* 1
+δ (8)

σ̂ i =σ λi σ̂ = diag(σ̂ i) (9)

β̂i = β W{ }i* 1
λi β̂ = diag(β̂i) (10)

γ̂ i = γ L{ }i* 1

λi γ̂ = diag(γ̂ i) (11)

δ̂i = δ λi δ̂ = vec(δ̂i) (12)
and then using these new quantities in a pre-normalized
Adsorption algorithm.

Xn+1 = σ̂ Xn + β̂WXnn + γ̂ L δ̂
!
"#

$
%&

 (13)

Note that direct use of Equation (13) is exactly the
power-iteration approach to finding the solution (used in [2])
and will give the same solutions at every iteration as the
combination of Equations (1) and (2): the pre-normalization
has the exact same effect, even though it is only done once,
as the interleaved normalizations. Equation (13), therefore,
also is guaranteed to converge to a stable solution, just as the
original Adsorption algorithm is guaranteed. The advantage
is that we do not need to normalize at each step and, as a
result, we can compute an incomplete set of labels, while still
deriving the benefits of the full label set to limit belief within
the set of labels that are interested in. This slicing directly
reduces the computational costs by the same percentage as
the percentage of dropped labels. Furthermore, with the use
of Equation (13) as the system of equations for which we
want a solution, we can use standard linear-algebra tools,
like BiCGStab (for faster convergence) and Gaussian
elimination (for shrinking our graph matrix). We discuss
these algorithms and their large-graph implementations next.

IV. MAP-REDUCE FORMULATION OF STABILIZED BI-
CONJUGATE GRADIENT DESCENT (BICGSTAB)

In [2], Baluja et al. implicitly use power iteration to solve
their system of constraints. For symmetric systems of
constraints, gradient-descent methods can find solutions in
fewer iterations, for any given level of accuracy (as
measured by the average residual error). However, due to
the pre-normalization of Adsorption, we no longer have a
symmetric matrix, and must move to bi-conjugate gradient
approaches. Since the most direct generalization (biconjugate
gradient descent) is not numerically stable, we focus on
stabilized biconjugate gradient descent [8], which has been
shown to converge more uniformly than power iteration,
without the numerical issues of (not-stabilized) bi-conjugate
gradient descent. We ran several simulations using power
iteration and BiCGStab, based on random graph matrices

with the same level of regularization as we expect to see
through the abandonment variable in our true graphs. In
these tests, when the graph matrix and the beginning label
estimates were non-sparse, on average, BiCGStab converged
to the correct solution 12 times faster than the power-
iteration method (e.g., BiCGStab would converge in two
iterations, requiring only 5 graph-matrix multiplies, while
power iteration would require 60 iterations, needing 60
graph-matrix multiplies to converge to the same level of
accuracy).

When the graph matrix and the beginning label estimates
were sparse, there were similar differences in the rate of
convergence, away from the “wavefront boundary”. We use
the term wavefront to emphasize that (for both power
iteration and BiCGStab), updates are done in such a way that
non-zero values propagate through the graph according to
the neighborhood connections. When the labels are sparsely
injected, non-zero values move in a “wave”, outward from
non-zero areas into areas that were zero (due to sparseness).
Both power iteration and BiCGStab rely on the graph matrix
to determine the label-estimate update, so both have their
non-zero wavefronts progress in the same way.

Due to the size of the graph over which we will be
operating, we implemented BiCGStab using three
MapReduce [9] stages per iteration. Using the notation from
the Wikipedia article on BiCGStab [10], we have a distinct
set of vectors for each of the labels on which we want to
estimate the final distribution. We arrive at the BiCGStab
components A and b (at least conceptually) by separating
γ̂ L into columns corresponding tob , by separating Xn into
columns corresponding to xn and by using

A = I − σ̂ − β̂W (14)

We select an initial shadow direction r̂ 0 for each column
aligned with its first-pass residual vector, r0 . Note that
computing the first-pass residual vector takes one
MapReduce to compute r0 = b− Ax0 . (For our applications,
b itself is often a good initial estimate for x .) It is this
separate estimation of each column (where each column
corresponds to a single label) that makes label slicing so
simple and powerful in combination with BiCGStab.

Unlike [10], we mark all our auxiliary variables with the
iteration on which they were computed, since this makes our
Reduce processing more uniform and reliable: therefore, we
use αn , sn

and tn here (instead of their un-versioned form

from [10]). To allow the remaining framework to operate
smoothly, starting from the initialization (the 0’th pass), we
also use the settings for our auxiliary variables that are
suggested in [10], namely: ρ0 =α =ω0 =1 and ν 0 = p0 = 0

For all iterations after this initialization, there are 3
MapReduce stages: (A) updating the search direction and its
projection through A ; (B) updating the shadow direction and
its projection through A ; and (C) combining the computed
components to give a new state estimate and residual.

For all three MapReduce stages, the reduce processing is
the same: from the set of inputs computed in the Map stage,

249

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as well as the inputs passed directly through to the Reducer
from previous stages or iterations, keep and combine the
results for each variable (auxiliary variables, residual, and
state estimate) that is marked with the highest iteration
number observed for that variable, and throw away earlier
versions.

A. Updating the search direction and its projection
1) Map (shared) context:

a. From initial selection: 0r̂
b. From previous iteration:

 ρn−1 , αn−1
, ωi−1

, rn−1 , ν n−1 , p
n−1

c. From pre-map computation:

ρn = r̂ 0, rn−1
p
n
= rn−1 + ρn

ρn−1() αn−1
ωn−1() pn−1 −ωn−1ηn−1()

 2) Map computation:
For each row in A , compute η

n{ }i = A{ }i* pn
 B. Updating the shadow direction and its projection

1) Map (shared) context:
a. From initial selection: 0r̂
b. From previous iteration: rn−1
c. From previous stage of current iteration:

 ρn , η
n

d. From pre-map computation:

αn = ρn r̂ 0,ηn
sn = rn−1 −αnηn

 2) Map computation:
For each row in A , compute tn{ }i = A{ }i* sn

 C. Combining components for residual and state estimates
1) Map (shared) context:

a. From previous iteration: xn−1
b. From previous stages of current iteration:

αn
, sn , tn , p

n
2) Map computation: For each label, compute

ωn = sn, tn tn, tn
xn = xn−1 +αn pn +ωn sn
rn = sn −ωntn

V. MAPREDUCE FORMULATION OF GAUSSIAN
ELIMINATION

Label slicing allows us to compute our distributions on
the subset of labels that are of most interest, while still
benefiting from the constraints effectively imposed by the
full label set. In a similar way, Gaussian elimination allows
us to compute our distribution on a subset of nodes
(domains), while still benefiting from the indirect
interconnections that are formed through the nodes that we
do not want to explicitly include in our calculation. The
computational savings provided by Gaussian elimination is
linear with the percentage reduction in the number of graph
connections. In addition, Gaussian elimination can speed up
convergence, by effectively increasing the wavefront-

propagation speed through those parts of the graph that were
originally connected via the eliminated nodes.

Gaussian elimination is much simpler to implement in
the MapReduce framework than BiCGStab, requiring only a
single stage and capable of handling elimination of multiple
nodes per run. The Reduce processing in the MapReduce is
a straight pass-through of the outputs from the map stage.

To make the description more concise, define

Akeep = A{ }i* Lγ
keep

= γ̂ L{ }
i*

i ∈ nodes
to be kept

"
#
$

%$

&
'
$

($

Aremove = A{ } j* Lγ
remove

= γ̂ L{ }
j*

j ∈ nodes to be
eliminated

"
#
$

%$

&
'
$

($

Using this notation, the map processing is

1) Map (shared) context:
From stored representation:

 Aremove
, Lγ

remove

2) Map computation: For each row, i, in Akeep
 and Lγ

keep

a) Initialize
Akeep = Akeep, Aremove = Aremove
Lγ

keep
= Lγ

keep
, Lγ

remove
= Lγ

remove

b) Compute the pivot strength, π ij , for each
j ∈ nodes to be eliminated{ } :

π ij = Akeep{ }
ij

Aremove{ }
jj

and select the elimination node, j , with the smallest
amplitude π ij

c) Eliminate all non-zero entries in the j ’th column in

Akeep{ }
i*

 and Aremove
, with matched operations on Lγ

keep{ }
i*

and Lγ
remove

:

Akeep{ }
ik
← Akeep{ }

ik
−π ij

Aremove{ } jk

Lγ
keep{ }

ik

← Lγ
keep{ }

ik

−π ij
Lγ

remove
{ }

jk

Aremove{ }
nk
← Aremove{ }

nk
− π nj

Aremove{ } jk ∀n ≠ j

Lγ
remove

{ }
nk
← Lγ

remove
{ }

nk
− π nj

Lγ
remove

{ }
jk

∀n ≠ j

with π nj = Aremove{ }
nj

Aremove{ }
jj

d) Remove row j from Aremove
, Lγ

remove

e) Repeat (b), (c), and (d), until there are no more rows
(nodes) to be removed.

f) Output Akeep{ }
i*

 and Lγ
keep{ }

i*

250

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Clothing

o Women’s, Men’s, Children’s
o Athletic, Casual, Formal, Outerwear, Sleepwear
o Shoes, Boots

• Accessories
o Jewelry, Watches, Purses

• Toys
o Building Toys, Dolls, Stuffed Animals, Ride-on Toys

• Gifts
o Flowers, Cards, Party Items, Holiday Items

• Discounts
o Coupons, Loyalty Cards

Figure 1. Examples from selected 71 commercial topics.

Figure 2. Cumulative residual distribution (by iteration). [1]

VI. LARGE-SCALE DOMAIN-LEVEL TOPIC LABELING
Baluja et al. [2] already showed the usefulness of the

Adsorption approach in video recommendations. The pre-
normalized Adsorption algorithm [1] provides identical
results at a fraction of the computational cost using the new
formulation with label slicing, Gaussian elimination, and
BiCGStab. The final computational cost is reduced by the
product of the savings of all three approaches (label slicing,
BiCGStab and Gaussian elimination).

In our previous paper [1], we explored using pre-
normalized Adsorption for topic labeling on web domains,
for search and advertising. Many pages URLs, and even
whole domains, are poorly classified by standard topic-
analysis approaches, due to having little in the way of
machine-understandable content to classify. A standard
example of this problem are domains that primarily host
images or video – while the page URL can be examined for
clues to the topic, as well as the linked-to URLs, the results
are impoverished and noisy. If we can improve the topic
labeling, we could more accurately index these pages for
search and for content-matched advertisement.

Specifically, we created a graph with domains as nodes
and a measure of shared searches for cross-domain pairs of
URLs as the weighted connections between nodes. Our
measure looked at, for each search term, the click rates for
each URL served in the results and set the strength of the
URL-URL-term triple to the lower of the click rates between
the paired URLs. The connection weight between pairs of
URLs is the sum over all triples that terminate at those two
URLs. To aggregate from URL-pair connections, up to
domain-pair connections, we sum across those URL-pair
connections where the first of the pair of URLs is from the
first domain and the second is from the second domain.
Similarly, our injection labeling is based on combining topic
analysis of the URLs within the domain, dropping those
topics that were based on keywords that showed too much
within-domain variance in their strength. We aggregate the
link and topic-label strength up to the domain level to
improve coverage and reliability of our graph connections.
Even with this aggregation of URLs to domain-level nodes
and filtering of keyword labels to within-domain-stable sets,
our initial data provides a graph of about 13 million domains
(nodes), with about 4 billion node-to-node connections based
on analysis of more than 253 million search terms. Our topic

analysis provides more than 4,500 general topics, using
traditional text-based classification.

From this set of 4,500 topics, we focused on 71
commercial topics (see Figure 1 for examples). The
computational savings (over the original Adsorption
approach) for the label slicing alone was a factor of 63 times.
We do not include this savings in the remainder of this
discussion, since it is available to both power iteration and
BiCGStab, as long as we are using the pre-normalized
Adsorption formulation. That said, it is the most significant
source of computational savings, compared to the original
work [2].

We ran this set of 71 labels through two iterations of
BiCGStab (5 graph-matrix multiplies) and through 70
iterations of the power method, both starting from the same
initial estimate. Figure 2 shows the size of the per-node
residual for BiCGStab on these labels (using an L1 norm).
As with our small-scale simulations, at the end of our second
iteration, the not-insignificant residuals occurred at the 3% of
the nodes that were at the “wavefront boundary” of one or
more of the topic labels. This level of convergence, with just
5 matrix multiplies, is not seen in the power-iteration
solution until the 62th iteration (an additional savings of
nearly 12.5 times).

Since the goal of our label propagation is to increase the
richness and extent of the topic labeling on poorly labeled (or
unlabeled) domains without over-extending into domains
that are not related to our commercial subset, it is helpful to
look at the statistics summarized in Figures 3 through 5.

Figure 3 gives a measure of the richness of our labels on
commercial domains and how that richness increases as a
function of iteration. The plot shows the percentages of
domains by how many commercial-topic labels are seen on
that domain. If a domain is commercial, the more
commercial labels that are associated with the domain, the
richer the topic description. As shown by the plots, our

251

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

injection labels (those given by topic analysis) within each
domain provides sparse topic labels, with the largest
percentage of commercial domains having only one label.
Since our 71 commercial topics are actually a hierarchical
set, this sparseness is unlikely to be correct for most
domains. By the end of the second iteration, the mode of
that distribution has moved to around 30 topic labels per
commercial domain.

Also, the legend in Figure 3 gives us the information
needed to check that we are not just expanding the support of
our commercial-topic labels indiscriminately across the full
domain graph. The first iteration extends the support of the
commercial labels by a third, from just under 9% of all
domains to just under 12%, suggesting the addition of a
subset of the unlabeled domains within the graph. After the
first iteration, the support of the commercial-label set is
effectively unchanged. This can be traced back to the effect
of pre-normalizing on the full set of topic labels. Even
though the non-commercial topics are not being explicitly
computed in our iterations, they still have an effect, keeping
the commercial labels from spreading onto distant (in the
graph-connection sense) domains, as they otherwise would
as the commercial wavefront progressed. This highlights
both one of the main advantages of the original Adsorption
as well as the most compelling advantage of the pre-
normalized Adsorption. With the original Adsorption, each
node has a limited capacity for supporting labels, thereby
limiting propagation – but enforcing that limited capacity
forced computation of all label distributions, not just the
labels of interest. With pre-normalized Adsorption, there is
still the per-node limited capacity for supporting labels, but
we achieve that capacity limit by pre-normalizing, freeing us
to compute only at that subset of labels that we are interested
in, without having those labels spread unchecked.

Up to now, our analysis of our results has focused on the
richness and extent of our commercial labels but not on the
likely quality of the mix of labels that we are introducing
onto commercial nodes. Since our topics are structured into

a hierarchical framework, intuitively what we would like is
to have each commercial site labeled mostly by closely
related subsets of the available topics. We can use dendrite
distances between the labels to capture this sense of
closeness among the sets of labels associated with each
domain node. As with standard dendrite measures, for each
pair of labels on a domain, we count the number of
hierarchical topic links that we have to go across in order to
travel from one topic label to the other. We lengthen that
distance by one for each generation that both labels have to
travel back through, in order to penalize siblings more than
grandparent-grandchild relations. As an example, if we
need to calculate the distance between women’s jewelry and
men’s clothing and we have the two tree branches “Jewelry
→ Women’s Accessories → Apparel” and “Men’s Clothing
→ Apparel”, our dendrite distance measure would be 4: two
(for “Women’s Jewelry” to “Apparel”) plus one (for “Men’s
Clothing” to “Apparel”) plus one (for the one generation
removal from direct descendent connection).

As a way to evaluate our label distributions on domains
with 2 to 6 labels, we computed all pairwise dendrite
distances within each domain and averaged them (again, on a
per-domain basis). Due to the use of the topic hierarchy in
our dendrite-distance measure, smaller distances amongst the
labels on a single domain correspond to more believable
topic mixes. Figure 4 shows our results, as function of
iteration. When the initial topic labeling provides more than
one label, it includes many dissimilar labels, with the mode
of the dendrite average distance being up between 6 and 7.
Our propagation reduces that average distance, filling in
parent and children nodes, to give a mode that is just above
one. While parents could always be filled in by knowing the
hierarchical structure of our topic labels, the propagation
graph is doing this without that knowledge – it is finding
these associations purely through propagation of neighbor

Figure 3. Node-level coherence of commercial labels. [1]

Figure 4. Dendrite topic-label distance on domains with 2-6 labels

(by iteration). [1]

252

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

labels. (Furthermore, we could not use the tree-structure
meta-information to fill in the correct children labels – if we
blindly used the tree structure, we would get numerous
nearby but irrelevant labels.) For this set of nodes, we are
enriching the topic description without introducing unrelated
labels. This measure of quality is a stringent one, since at no
point do we use the dendrite structure to limit our
propagation.

Figure 5 shows a similar measure, for domains with more
than 6 labels, again averaging the dendrite distances within
each node. We did this separation between Figure 4, for
domains with 2-6 commercial labels, and Figure 5, for
domains with more than 6 commercial labels, since the
dendrite distances across larger sets of labels, taken from the
same hierarchy will have a larger minimum-average distance
than will smaller sets of labels. For small sets, you can often
find 2-6 labels, with all parent-child or sibling relationships
with one another but, for large sets of labels, this is not
possible and first and second cousin relationships become a
major part of even the most compact set of labels. Same as
with Figure 4, Figure 5 shows that the average dendrite
distance decreases with each iteration, even on nodes with
more than 6 labels. Since closely related sets of topic labels
are more likely to be a full and accurate description of the
domain topic, our topic labeling seems to be improved by
our graph propagation work.

All of the measurements conducted on the propagation of
web labels on this large set of domains indicate an
improvement in search indexing and content-matched
advertising. In the future, we will expand these experiments
in two directions. First, we will run live trials, with full user-
facing experiments, to determine the quality improvement in
the user experience. Second, we will increase our graph size
and specificity by including individual URLs, for those sites

that have enough textual information to support that level of
analysis.

VII. EFFICIENT UPDATING ON DYNAMIC GRAPHS
In nearly every application of graph-based label

propagation, the graph changes over time: in video
recommendation, new videos are added and old videos fade
in popularity; in social networks, new users join, new
friendships are made, and old friendships are ended; and, in
topic labeling, the connection strengths between domains
change as their content is updated. These changes occur
gradually and most of the label distributions within the
newly changed graph are only mildly perturbed from those
labels that were computed for the original matrix, making it
more efficient to do incremental updates than to restart the
labeling process from scratch. The largest changes are
associated with newly added nodes and labels and with the
nodes that connect to either those sets. We focus on the
changes to the graph and the labels to create an efficient
update process.

Since we are now considering a change in the graph and
label distribution, which will necessitate breaking the
matrices into pieces, we first define a more compact notation
for our pre-normalized adsorption state equation. Instead of
using Equation (13), we will use

X = Ŵ X + L̂
(15)

where Ŵ = σ̂ + β̂W and L̂ = γ̂ L δ̂

!
"#

$
%& . Equation (15) is

identical to Equation (13), with the exception of the symbols
that we use to describe it. This notation hides the iteration
subscript that we previously associated with X , so that we
will be able to use the subscript location for identifying sub-
matrices.

To refer to the two related but distinct sets of graph and
label weights, we will use a superscript of “-” or “+” to
distinguish the pre-change and post-change versions of the
graph, respectively. So:

X− ≈ Ŵ
−
X− + L̂

− (16)

is the pre-change version of the graph state equations, with
X− as the inferred label distributions that we have already
computed for the pre-change graph, and

X+ = Ŵ
+
X+ + L̂

+ (17)
is the post-change version of the graph state equations, with
X+ as the inferred label distributions that we need to
compute for the post-change graph. We also define
difference matrices:

ΔY =Y + −Y − (18)

where Y can be any of X , Ŵ , or L̂ .
In order to allow us to use matrix operations across these

two graph descriptions, we assume that we have added all-
zero rows and columns as needed to the pre-change graph, to
allow for the newly added nodes and labels that we need for
the post-change description and that we have added all-zero
rows and columns as needed to the post-change graph, to
allow for the newly removed nodes and labels that were

Figure 5. Dendrite topic-label distance on domains

with more than 6 labels (by iteration). [1]

253

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

present in the pre-change description. We rearrange the rows
and columns, so that we group these to all-zero rows and
columns and use the notation

Y =
Y || Y |− Y |+

Y
−| Y

−−
0

Y
+| 0 Y

++

"

#

$
$
$
$

%

&

'
'
'
'

 (19)

where Y can be any of X , Ŵ , or L̂ and Y − refers to the

pre-change versions of these matrices and Y + refers to the
post-change versions. The subscripts “|”, “-”, and “+”
distinguish between nodes and labels according to their need
to be part of the pre- and post-change graphs. The first of the
subscript pair refers to the row characteristics and the second
refers to the column characteristics. The “-” subscript is for
rows or columns that are only needed for the pre-change
matrices (i.e., they are identically zero for the post-change
matrices). The “+” subscript is for rows or columns that are
only needed for the post-change matrices (i.e., they are
identically zero for the pre-change matrices). The “|”
subscript is for rows or columns that are needed for both pre-
and post-change matrices. Notice that we can assert that the
sub-matrices that would have represented interactions
between “-” and “+” rows and columns are known to be
identically zero, since these two sets of nodes and labels do
not occur (non-trivially) in the same matrices. Also, using
this grouping, we know that Y |+

− =Y
++

− =Y
+|
− ≡ 0 and

Y |−
+ =Y

−−

+ =Y
−|
+ ≡ 0 . Finally, we will use the same matrix

partitioning for the difference matrices, ΔY , as we have
described above for the pre- and post-change matrices.

Our goal is to find a good estimate of from , with
as few computations as possible. Starting from the post-
change equation and recasting it in terms of the pre-change
matrices and the difference matrices:

X+ = Ŵ
+
X+ + L̂

+

 (20)

X− +ΔX = Ŵ
+
X− +ΔX()+ L̂−

+ΔL̂ (21)

X− +ΔX = Ŵ
−
+ΔŴ()X− +Ŵ

+
ΔX + L̂

−
+ΔL̂ (22)

Rearranging Equation (22):

ΔX = Ŵ
+
ΔX +ΔL̂ +ΔŴ X− + Ŵ X−− + L̂

−
− X−() (23)

Since we have a good estimate of X− from the pre-

change description, we use X− ≈ Ŵ
−
X− + L̂

−
 to remove the

final term from Equation (23), giving

ΔX = Ŵ
+
ΔX + ΔL̂ +ΔŴ X−() (24)

Finally, we define
ΔX 0 = ΔL̂ +ΔŴ X−

(25)

to get:
ΔX = Ŵ

+
ΔX +ΔX 0 (26)

There are several things of note about Equations (25) and
(26). From Equation (25),ΔX 0 is exactly the estimate for
ΔX , if our previous estimate was 0 . It is also used in later
iterations, as a persistent input, so explicitly saving it reduces
the computation needed on later iterations. Finally, ΔX 0 is

much sparser than L̂ , which will be useful in our discussion
of Equation (26).

Equation (26) is an update equation, similar to Equation
(15). The reason that Equation (26) is preferred over
Equation (15) is (as just noted) ΔX 0 is much sparser than L̂
and that ΔX is much sparser than X̂ , even after several
iterations. This sparseness reduces the amount of
computation needed per iteration.

We can further improve the efficiency and compactness
of our computation by not computing values for the nodes
that are not needed for the post-change description. We can
now use our matrix partitioning to remove these extra
entries. We can also use our knowledge that
Y |+

− =Y
++

− =Y
+|
− ≡ 0 and Y |−

+ =Y
−−

+ =Y
−|
+ ≡ 0 to simplify the

formula. When we use those zero identities along with the
sub-matrix notation in Equation (26), we get:

X+ X−

(27)

254

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We can reduce Equation (27) down to the four submatrix

update equations that constrain label distributions in the post-
change network (ΔX ||

, X |+
+ , X

+|
+ , and X

++

+). Focusing on
those four update equations:

ΔX || = Ŵ ||

+
ΔX || +Ŵ |+

+
X

+|
+ +ΔL̂ || +ΔŴ ||X ||

− −Ŵ |−

−
X

−|
− (28)

X |+
+ = Ŵ ||

+
X |+

+ +Ŵ |+

+
X

++

+ + L̂ |+
+

 (29)

X
+|
+ = Ŵ

+|

+
ΔX || +Ŵ ++

+
X

+|
+ + L̂

+|

+
+Ŵ

+|

−
X ||

− (30)

X
++

+ = Ŵ
+|

+
X |+

+ +Ŵ
++

+
X

++

+ + L̂
++

+
 (31)

Reformatting Equations (28) through (31) back into a

single partitioned matrix gives:

ΔX || X |+
+

X
+|
+ X

++

+

"

#

$
$
$

%

&

'
'
'
=

Ŵ ||

+
Ŵ |+

+

Ŵ
+|

+
Ŵ

++

+

"

#

$
$
$

%

&

'
'
'

ΔX || X |+
+

X
+|
+ X

++

+

"

#

$
$
$

%

&

'
'
'

+
ΔX ||

0 L̂ |+
+

ΔX
+|
0 L̂

++

+

"

#

$
$
$

%

&

'
'
'

(32)

where

ΔX ||
0 = ΔL̂ || +ΔŴ ||X ||

− −Ŵ |−

−
X

−|
− (33)

ΔX
+|
0 = L̂

+|

+
+Ŵ

+|

−
X ||

− (34)

Using Equations (32) through (34) allows us to find an

update to the inferred label matrices, starting from the
inferred labels for the pre-change graph, even when there are
nodes and labels that have been newly added or completely
deleted. This approach saves computation on each iteration,
since the inferred-label change matrix will be non-zero on a
much smaller number of nodes and labels than the full
inferred-label matrices are. Further savings can be had by
computing and caching the initial update matrices described
in Equations (33) and (34) for use in later iterations. We
stop iterating on the inferred-label change matrix when the
per-entry residuals are similar in size to residuals that we
ignored in using X− ≈ Ŵ

−
X− + L̂

−

or when the inferred-

label change matrix is no more sparse than the full post-
change inferred-label matrix. At that point, the post-change
inferred label matrix should be reconstructed, using the
values of X |+

+ , X
++

+ , and X
+|
+ as given by Equation (32) and

using X ||
+ = X ||

− +ΔX ||
for the last non-trivial submatrix of

X+
.
The convergence of Equation (32) is guaranteed only

indirectly. Equation (32) is formed as the difference of two
state equations (one for the pre-change graph and one for the
post-change graph). Both of those two state equations,
having eigenvalues that are strictly inside the unit circle, are

guaranteed to converge. The difference between them will
therefore converge.

VIII. INCREMENTAL UPDATING OF CO-AUTHOR NETWORK
INFERENCES

To demonstrate the use of the incremental update of
label distributions on changing graphs, we used condensed-
matter collaboration data, posted at [11] from work done by
Newman [12]. This co-author network data was first
collected from physics pre-print publications for 1995
through 1999 but was twice updated, first to contain co-
author connections from 1995 to 2003 and later to extend
that time frame to 2005. The 1995-2003 network contains
31,163 authors (nodes) while the 1995-2005 network has
40,421 authors. Based on exact matching of names, all
except 57 of the authors from the 2003 network could be
uniquely matched to the authors in the 2005 network. These
57 authors had ambiguous matches (e.g., there were 3
“PARK, S” author nodes in both the 2003 and 2005
networks). This original pair of networks had 30% new
authors added (and 0.2% dropped, due to ambiguity)
between 2003 and 2005, in addition to having changes in
the connection weights between the authors that were in
both networks. To create the co-author graph, Newman [12]
scanned the Los Alamos e-Print Archive on condensed-
matter physics for the years in question. For each paper in
that database that had n authors, for n > 1, he added (or
strengthened) a connection between each pair of co-authors
by a weight of 1/(n – 1). In this way, the connections made
from each co-author to other researchers is increased by
one, for each paper that is a collaborative effort. Newman’s
research [12] describes the core characteristics of this
network: the mean (collaborative) papers-per-author in this
field is 3.87 (with a standard deviation of 5); the mean
number of authors per paper is 2.66 (with a standard
deviation of 1); and the mean number of collaborators for
each author is 5.86 (with a standard deviation of 9).

This type of co-author graph can be used to recommend
new collaborations to each author in the network, based on
propagating the names of potential collaborators. To this
end, we use parts of these co-author weighted graphs as our
un-normalization node-to-node matrix, W as used in
Equation (1). We created an un-normalized label matrix, L
as used in Equation (1), from the author names, using as an
(un-normalized) injection weight the number of papers on
which that author collaborated. Using the number of papers
as this label weight will result in the prolific authors’ names
being recommended as potential collaborators more widely
and strongly than less prolific authors. To complete the un-
normalized constraint equation, we somewhat arbitrarily set
β = γ =1 and σ = δ = 2 in Equation (1).

The addition of 30% new authors between 1995-2003
and 1995-2005 is large enough that the incremental update
approach would provide little, if any, computational

255

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

savings: with this much change, is almost as dense as

 and, due to the authorship fan-out becomes nearly as

dense as the full label matrix, , by the second iteration.
To concretely demonstrate the potential for large
computational savings in incrementally changing networks,
we employed a subset of the 1995-2003 and 1995-2005
data. We first reduced the size of both of the 2003 and the
2005 networks down to the same 27,519 authors, ones with
unambiguous matches who occurred with a reasonable
weight and connectivity in both data sets. From this shared
set, we picked equal numbers of distinct nodes to drop from
each of the reduced-2003 and reduced-2005 networks, so
that both reduced networks retained equal numbers of nodes
(authors) by picking the least well-connected nodes and
dropping them from one of the two networks. For our “1%
replacement experiment”, we did this with 1% of the nodes,
so that both the pre- and the post-change graphs had 27,244
nodes with 275 of the nodes that are in the reduced-2003
graph being dropped and replaced with a distinct set of 275
nodes for the reduced-2005 graph. The connection weights
between the 99% of the nodes (26,969 nodes) that appeared
in both of these reduced graphs changed in whatever way
that was indicated by the original 2003 or 2005 data from
[11]. In a similar manner, we created our “17% replacement
experiment”, removing two distinct sets of 3,997 nodes
from the reduced-2003 and -2005 networks to create two
graphs with 23,522 nodes each, 17% of which are present in
only one of the two graphs. As before, the connection
weights for the nodes that were shared between the graphs
was allowed to change, according to the original 2003 or
2005 data from [11].

Once these two pairs of un-normalized networks (pre-
and post-change networks for the 1% and 17% replacement
experiments) were formed, we separately normalized the

matrices for each of the four networks, as described by
Equations (8) to (13). These normalizations are based on
the entries that are actually in each network: there is no
leakage from pre-change networks into the normalization of
the post-change network (nor vice-versa) and there is no
leakage from anything done in the 1% replacement
networks to the 17% replacement networks (nor vice-versa).

The node-to-node connection occupancies were about
0.04% on both the pre- and post-change graphs (Ŵ

−
 and

Ŵ
+

) for both the 1% and 17% replacement experiments.
This is nearly twice the collaboration rate reported by
Newman [12], in part due to the longer time period covered
(8 and 10 years, in contrast with 5 years) and in part due to
the selection bias for how we created the reduced 2003 and
2005 networks. In contrast to the occupancy of Ŵ

−
 and

Ŵ
+

, the occupancy of ΔŴ was about 50% of that level
(so, 0.02% occupancy) for the 17% replacement experiment
and about 5% of that level (so, 0.002% occupancy) for the
1% replacement. These occupancy levels are higher than
expected by a factor of 3-5 times, due to the changes in the

weights between Ŵ ||

−
and Ŵ ||

+
. These weights change, even

though neither of the connected nodes are added or
removed, since the connection (un-normalized) weights are
taken from the 2003 and the 2005 co-author data,
respectively, as well as indirect effects from changing
normalization on rows that do connect with new or removed
nodes.

In both experiments, we start from the pre-change label
distributions, X− . We computed these label distributions
using power-method iterations for 20 iterations. This
brought the per-entry residual errors on the label

ΔX 0

L̂
X̂

Figure 6. Residual error on 1% replacement network, starting from the
label distribution from the pre-change graph, as a function of iteration

(using the power method of solution)

Figure 7. Computational savings on 1% replacement network using
incremental updating compared to using the same starting estimate

with the full post-change network.

256

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distributions (as measured by Xn+1 − Xn ij
) down to below

10-8 for all entries. The result had non-trivial entries on
about 70% of the pre-change label distribution matrix, for
both 1% and 17% replacement experiments.

Figures 6 and 7 show our results for our 1% replacement
experiment. Figures 8 and 9 show our results for our 17%
replacement experiment. In both Figures 6 and 8, we show
the reduction in the residual label error, starting from the
label distribution computed for the pre-change graph (the
reduced-2003 graph), when applied to the post-change
graph. For these graphs, we use the power-iteration method
(instead of bi-conjugate gradient descent). Using power
iteration and starting from a well-converged solution for the
pre-change graph, the residual errors are exactly the same,
whether we use the incremental or non-incremental update
methods. We can also see that, for these graph pairs, the
residual error is rapidly reduced, falling to well under 1% of
the initial error within 8 iterations. The rate at which that
reduction happens is slower for the 17% replacement
experiment than for the 1% replacement but only by a factor
of less than two, in terms of the remaining residual (relative
to the starting residual).

Figures 7 and 9 show the computational savings, derived
from using the incremental update equations. For the
incremental-update method, we use Equation (32), starting
with ΔX = 0 and counting the number of multiplies needed

to determine as part of that first iteration. For the full-

update method, we use Equation (20), using X− as the

starting estimate for X+
. The computational savings of

using the incremental-update approach is very large for the
1% replacement experiment, with as much as 95% of the
multiplies needed for Equation (20) avoided by Equation
(32), with the same error rates. Even after 10 iterations, the

savings is above 84% of the multiplies that would be needed
for Equation (20). The savings of the incremental approach
is much more modest when 17% of the nodes have been
replaced (as well as other edges changing weight). Under
those conditions, the savings are 12-13%, for early iterations
but falls to only 4% savings (per iteration) by the 10’th
iteration. The difference between 1% and 17% replacement,
in terms of the levels of savings from incremental updating,
can be traced back to the non-zero occupancy rates in .

For the 1% replacement experiment, the occupancy of
was 2%; for the 17% replacement experiment, it was 25%.
Both are less dense than the 70% occupancy of the pre-
change label distribution (X−) but the initial cost is higher
than this difference in sparseness would suggest. Part of
that reduction in savings is due to the computation of
itself. Furthermore, for the 17% replacement experiment,
the initial difference in sparseness is greatly reduced by
even the third iteration, due to the co-authorship fan out in

Ŵ
+

.
The specific savings and convergence rates will depend

on the specific network configurations and changes that are
being used. However, these co-author network examples
are somewhat representative of the types of networks that
exist for many problems, in that there are only sparse
interconnections (having a fan-out level of only 0.04% of
what is possible) and having multiple cliques. Fortunately,
in large-scale real-world usage scenarios (e.g., YouTube and
social networks like G+) updates are computed daily or
even more frequently. As a result, the amount of change
that will be encountered in the network between update
cycles, compared to the overall size of the network, is small.
The real-world computational savings of this procedure will

ΔX 0

ΔX 0

ΔX 0

ΔX 0

Figure 8. Residual error on 17% replacement network, starting from

the label distribution from the pre-change graph, as a function of
iteration (using the power method of solution)

Figure 9. Computational savings on 17% replacement network using
incremental updating compared to using the same starting estimate

with the full post-change network.

257

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be enormous in practice, allowing responsive targeting to
occur using these propagation approaches.

IX. NEGATIVE ASSOCIATIONS ACROSS NODES AND
BETWEEN NODES AND LABELS

To this point, our derivation has relied on having only
non-negative values in our node-to-node connections and in
our injection label weights. By restricting our matrices to
non-negative values and by pre-normalizing as described in
Equations (8) through (12), we are guaranteed to maintain
the same unit L1 norm for all iterations, for all rows of .

In most large graph-based problems, there is no
difficulty with restricting the description in this way. In the
earlier mentioned example of video-to-video
recommendation, we can say that two videos are often
watched together, within a single viewing session, but it is
much more difficult to say that two videos are negatively
associated (that watching one means you are significantly
less likely to watch the other); rarely is there enough
training data to confidently ascertain disassociations.

Nonetheless, there are several cases in which negative
information can be useful. First consider the use of social
networks in movie and music recommendations and
reviews. Often, users express dislike for particular songs or
movies. In this case, though the node-to-node connections
(user-to-user) remain positive, the label (the
movie/song/artist) may now have a negative connection
weight to some nodes. We need to be able to handle and
propagate these negative reviews in the same way as
positive reviews, as both can shape public opinion. The
simplest way to do this is to separately represent positive-
bias and negative-bias labels, even when they refer to the
same underlying label: in our example we would double the
number of labels that we used, with one for “likes” and one
for “dislikes” for each movie/song. Representing this using
the notation for Equation (15) we would have:

X p Xn!
"#

$
%&
= Ŵ X p Xn!

"#
$
%&
+ L̂

p
L̂
n!

"
#

$

%
& (35)

where L̂
p
=max L̂, 0() are positive injection labels (declared

“likes”) and L̂
n
=max −L̂, 0() are negative injection labels

(declared “dislikes”). For Equation (35), we are still
requiring that all entries in Ŵ be non-negative. The result is
that the inferred label weights are split, with positive-
association weights in X p and negative-association weights

in Xn .

As long as X p and Xn are represented separately, the L1

row norm of X p Xn!
"#

$
%&will remain one, throughout our

iterative estimation, without renormalizing. This approach
will have the effect that the amount of ‘attention’ paid to

controversial movies/songs will be higher, in terms of the
portion of the available L1 unit length, than it would be if we
did not split positive and negative labels into separate
entries. For some applications, this separation of opposite
extremes may be the right thing to do. For example, it may
be that separately listing strong positive and negative
recommendations for a controversial movie, and thereby
having that movie feature prominently in terms amount of
attention it is given, is better than having the
recommendations for that movie “wash out” to neutral, by
not exposing the controversy in opinions.

An alternative example would be to use a social-network
of voters in conjunction with political-opinion labels to help
guide a politician’s stance on legislation. The social
network could capture regional differences within the
politician’s constituency. Since the politician needs to be
seen as serving all represented regions equally, understating
the key issues of a region that has a divided stand on some
controversial issue does not serve the politician well. The
politician is probably better served by emphasizing the
issues with political consensus, for those regions, rather than
effectively ignoring all the opinions of the region by
understating what they do agree upon. As such, this
situation may be better handled by the re-combining and re-
normalizing approach we outline later in this section.

In the previous examples, we explored the use of
negative values associated with a node’s labels. Now, we
consider the case where there are negative connection
weights between nodes. Consider the case of financial-fund
analysis. If we are trying to find closely related (as well as
nearly opposite) investment opportunities, we could create a
graph with one node for each fund under study and with the
node-to-node connection being set by the statistically
significant market-adjusted price-change correlations. The
labels would then be the fund symbols themselves,

optionally with long and short positions represented in X p

and Xn , respectively. In this framework, there are many
combinations of funds or instruments that would show
negative connection weights between them. A fairly simple
example would be the connection from either a purchase-to-
open put contract or a sell-to-open call contract to the
underlying security. Both option contracts are clearly
distinct in their valuation from the underlying security (with
the time-value changes having the largest exogenous
impact) but both have price changes that are strongly
(negatively) correlated with the security’s price changes. A
less direct example of negative connections between funds
would by an ultra-short fund on a market sector and any of
the largest firms in that sector (for example, QID and
AAPL).

To handle negative node-to-node connections, we use a
similar slicing-and-doubling approach as we used for
negative label weights. Specifically, we can say

Xnn

258

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

X p

Xn

!

"

#
#

$

%

&
&=

Ŵ
p

Ŵ
n

Ŵ
n

Ŵ
p

!

"

#
#
#

$

%

&
&
&

X p

Xn

!

"

#
#

$

%

&
&+

L̂
p

L̂
n

!

"

#
#
#

$

%

&
&
&

 (36)

where Ŵ
p
=max Ŵ, 0() and Ŵ

n
=max −Ŵ, 0() . Note that

Equation (36) has two “partial” rows per node, one (with
positive associations) in X p and the other (with negative

associations) in Xn . It is the concatenation of these two

parts, X p Xn!
"#

$
%& , that will maintain a unit L1 row norm,

while the energy split between X p and Xn in each row can
vary widely, from one iteration to another. Also note that
Equation (35) is a re-arranged and simplified version of

Equation (36), with Ŵ
n
= 0 .

In the movie/music recommendation example, we
suggested that keeping track of diverse opinions about the
same movie/song made sense (since controversial
movies/music are fundamentally different than ones that do
not evoke strong opinions either way). In contrast, in this
financial example, keeping positive and negative label
entries separately (corresponding to holding long and short
positions of the same security) may not be the correct
approach. Similarly, in the politician’s example, it may be
better to refocus the rhetoric on non-controversial issues,
instead of tracking the degree of controversy.

Therefore, we investigate the effects of recombining and
reweighting positive and negative inferred labels, X p and

Xn . When we recombine X p and Xn , by taking

X = X p − Xn , we will end up with a row norm less than one,

in all rows where one or more non-zero entries of X p and

Xn overlap. The total reduction in the ith row norm will be

Li
loss = 2 min Xij

p,Xij
n()

j
∑ (37)

To avoid under-emphasizing the combined information
from rows with some conflicting labels, we then need to
renormalize, to bring the row norm back up to one. We can
do this selectively on only those rows where Li

loss exceeds
some pre-defined threshold. When that happens, the label
vector for that ith row should be replaced with

Xij
p =max 0,

Xij
p − Xij

n

1− Li
loss

"

#
$
$

%

&
'
'

 (38)

and

Xij
n =max 0,

Xij
n − Xij

p

1− Li
loss

"

#
$
$

%

&
'
'

 (39)

This need for re-normalization, unfortunately, means that
we can no longer use label slicing, since we need to be able

to track the row norm for this normalization process. It also
complicates the use of stabilized bi-conjugate gradient
descent, since that approach introduces interdependences
between update iterations that are not easily adjusted for
changing scale. When we use this re-normalizing method,
we need to be aware of the increases in the computational
costs that result. However, this method does allow us to
handle situations that respond best to “fair and equal”
representations of each node within the network, throughout
the computation, even in the presence of conflicting
labeling. The cost/benefit trade-off must be carefully
considered in the context of each application.

X. CONCLUSIONS
This paper improves the computational efficiency of

Adsorption, a graph-based labeling approach that has already
been shown to be highly effective. We do so by replacing
propagation-interleaved normalization with pre-
normalization, without changing the results provided by
Adsorption. Specifically, if the power-method approach to
finding a solution is used, as it was with Adsorption, the
answers at every iteration will be exactly the same using
either the original or the pre-normalized Adsorption. The
advantage of the pre-normalized Adsorption is
computational efficiency in determining the label
distribution. With the pre-normalized version, we can use
label slicing, to compute only those labels that are of direct
interest, without losing the beneficial belief-limiting
characteristics of the full label set. Label slicing reduces the
computational cost linearly with the percentage of dropped
labels. Similarly, we can use Gaussian elimination, to
compute the labels only on those nodes that are of direct
interest, without losing the effects of the connections that
occur indirectly through currently not-of-interest nodes.
Finally, we can speed up convergence to the steady-state
solution by a factor of 12 (in numbers of graph matrix
multiples), by using stabilized biconjugate gradient descent,
instead of power iteration. We tested the pre-normalized
Adsorption in a new, large-scale application area, topic
labeling on web domains, with promising results.

Additionally, we explored extensions to address two real-
world scenarios, in which network propagation will play an
important role: (1) networks with both positive and negative
connections as well as positive and negative associations
with labels and (2) gradually changing networks in which
nodes are added and removed (as well as having weight
changes between existing nodes). Examples of changing
networks include searching for, recommending, and
advertising against image, audio, and video content. These
labeling problems must handle millions of interconnected
entities (users, domains, content segments) and thousands of
competing labels (interests, tags, recommendations, topics).
By using a label update matrix (instead of the full label
distribution matrix) in our update equations, we were able to
converge to the correct label distribution on the changed
network in the same number of iterations as we would need
for the full network but with only one tenth of the
computation (for a network that changed by 1% node

259

International Journal on Advances in Networks and Services, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/networks_and_services/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

replacement). This savings drops rapidly as the percentage
replacement increased but was still significant, even at 17%
node replacement. We demonstrated the incremental update
using co-author networks. We note that, in real-world cases
in which rapid and continual updated of large (107 – 109
node) networks is required, the methods proposed in this
paper will make propagation methods feasible.

REFERENCES
[1] M. Covell and S. Baluja, “Efficient and Accurate Label

Propagation on Large Graphs and Label Sets,” Proceedings of
the International Conferences on Advances in Multimedia,
IARIA, April 2013, pp. 12-18.

[2] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S.
Kumar, D. Ravichandran, and M. Aly, “Video suggestion and
discovery for YouTube: taking random walks through the
view graph,” Proceedings of the International Conference on
World Wide Web, ACM, April 2008, pp. 895-904.

[3] X. Zhu and Z. Ghahramani, “Learning from labeled and
unlabeled data with label propagation,” CMU technical
report, CMU-CALD-02-107, 2002.

[4] P.P. Talukdar, J. Reisinger, M. Pasca, D. Ravichandran, R.
Bhagat, and F. Pereira, “Weakly-supervised acquisition of
labeled class instances using graph random walks,”
Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Association of Computational
Linguistics, October 2008, pp. 582-590.

[5] Y. Jing and S. Baluja, “Visual Rank: applying Page Rank to
large-scale image search,” Transactions on Pattern Analysis

and Machine Intelligence, IEEE, vol. 30, November 2008, pp.
1877-1890.

[6] J. Liu, W. Lai, X S. Hua, Y. Huang, and S. Li, “Video search
re-ranking via multi-graph propagation,” Proceedings of the
International Conference on Multimedia, ACM, September
2007, pp. 208-217.

[7] M. Speriosu, N. Sudan, S. Upadhyay, and J. Baldridge,
“Twitter polarity classification with label propagation over
lexical links and the follower graph,” Proceedings of the
Workshop on Unsupervised Learning in Natural Language
Processing, Association of Computational Linguistics, July
2011, pp. 53-63.

[8] H. A. Van der Vorst, “Bi-CGSTAB: A Fast and Smoothly
Converging Variant of BiCG for the Solution of
Nonsymmetric Linear Systems,” Journal on Scientive and
Statistical Computing, SIAM, vol. 13, March 1992, pp. 631-
644.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Proceeds of the Symposium on
Operating Systems Design and Implementation, USENIX,
December 2004, pp. 137-150.

[10] Wikipedia, “Biconjugate Gradient Stablized Method,”
http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_
method [retrieved February, 2013].

[11] M. E. J. Newman, “Condensed Matter Collaborations 2003”
and “Condensed Matter Collaborations 2005,” http://www-
personal.umich.edu/~mejn/netdata [retrieved September,
2013].

[12] M. E. J. Newman, “Structure of Scientific Collaboration
Networks,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 98, January 2001, pp.
404-409.

