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Abstract—The Digital Marketplace is a market-based frame-
work where network operators offer communications services
with competition at the call level. It strives to address a tussle
between the actors involved in a heterogeneous wireless access
network. However, as with any market-like institution, it is
vital to analyze the Digital Marketplace from the strategic
perspective to ensure that all shortcomings are removed prior
to implementation. In this paper, we analyze the selling mech-
anism proposed in the Digital Marketplace. The mechanism is
based on a procurement first-price sealed-bid auction where
the network operators represent the sellers/bidders, and the
end-user of a wireless service is the buyer. However, this
auction format is somewhat unusual as the winning bid is a
composition of both the network operator’s monetary bid and
their reputation rating. We create a simple economic model of
the auction, and we show that it is mathematically intractable
to derive the equilibrium bidding behavior when there are
N network operators, and we make only generic assumptions
about the structure of the bidding strategies. We then move on
to consider a scenario with only two network operators, and
assume that network operators use bidding strategies which are
linear functions of their costs. This results in the derivation of
the equilibrium bidding behavior in that scenario.

Keywords-Wireless access networks; network selection; Digital
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I. INTRODUCTION

This paper is an extension of the conference paper [1],
and aims at providing a greater insight into the economics
of intelligent network selection in the Digital Marketplace.

With the advent of 4th Generation wireless systems, such
as WiMAX and 3GPP Long Term Evolution (LTE), the
world of wireless and mobile communications is becoming
increasingly diverse in terms of different wireless access
technologies available [2], [3]; each of these technologies
has its own distinct characteristics. Mirroring this diversity,
multimode terminals (GSM/UMTS/Wi-Fi) currently domi-
nate the market permitting the possibility of selecting the
most appropriate access network to match the Quality of
Service (QoS) requirements of a particular session/call. A
number of approaches have examined this issue utilizing
techniques as disparate as neural networks [4] and multiple
attribute decision making [5]. The applicability of these
techniques can be extended to fixed networks that employ

multihoming where the problem becomes one of path selec-
tion [6], [7].

This work complements previous studies of intelligent
network selection by considering economic aspects. From
this perspective the exclusive one-to-one relationship be-
tween network operators and their subscribers no longer
holds; subscribers are free to choose which operator and
which access technology they would like to utilize at call set-
up time. From the end-users’ perspective, different coverage
and QoS characteristics of each access network will lead
to the ability to seamlessly connect at any time, at any
place, and to the technology, which offers the best quality
available for the best price. This is referred to as the Always
Best Connected networking paradigm [8]. From the network
operators’ perspective, the integration of wireless access
technologies will allow for more efficient usage of the
network resources (by utilizing a wireless technology the
most suitable to a particular service request), and may be
the most economic way of providing both universal coverage
and broadband access [2]. For example, a cellular network
operator who also owns a set of Wi-Fi hot-spots will be able
to offload the bandwidth intensive services from cellular base
stations to Wi-Fi hot-spots. This should, in principle, reduce
the potential cost to the network operator since instead of
investing in additional cellular capacity, they can achieve the
same (or better) results by investing into potentially cheaper
Wi-Fi.

On the other hand, since many different actors with
opposing interests are involved, it may also lead to a ‘tussle’
[9]. For example, the end-users seek to obtain the best
quality for the best price, while the network operators are
concerned with maximizing their profit and/or performing
efficient load balancing. The conflict will become even
more aggravated should the service provision be separated
from the network operators [10]. Hence more sophisticated
management techniques may be required to manage such a
complex system.

In this paper, we analyze the network selection mechanism
proposed in the Digital Marketplace (DMP) [11]. The DMP
is a framework where network operators offer communi-
cations services with competition at the call level, and it
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strives to address the tussle between the actors involved
in a heterogeneous wireless access network. Within this
framework, the network selection mechanism constitutes a
sealed-bid auction. We create a simple economic model of
the auction, and show that it is mathematically intractable
to derive the equilibrium bidding behavior when there are
N network operators competing in the DMP, and we make
only generic assumptions about the structure of the bidding
strategies. We then move on to consider a scenario with only
two network operators, and assume that network operators
use bidding strategies which are linear functions of their
costs. This results in the derivation of the equilibrium bid-
ding behavior in that scenario. The main goal of this research
is to demonstrate and analyze the boundary conditions for
such a market to function in the future. In this context,
the participants could be cellular network operators or,
alternatively, localized Wi-Fi hotspot operators competing
for business.

The rest of this paper is organized as follows. In Sec-
tion II, a brief summary of related work by other authors
is given, while in Section III, an overview of the DMP is
provided. Section IV presents the results of the analysis.
Section V discusses future work, while Section VI draws
conclusions.

II. RELATED WORK

Over the last decade, several different approaches have
been proposed as possible solutions to the problem where
economic competition is considered. Antoniou et al., and
Charilas et al. model the problem as a noncooperative game
between wireless access networks, which aims at obtaining
the best possible tradeoff between networks’ efficiency and
available capacity, while, at the same time, satisfying the
end-users’ QoS [12], [13]. Ormond et al. propose an al-
gorithm for intelligent cost-oriented and performance-aware
network selection, which maximizes consumer surplus [14],
[15]. Niyato et al. propose two game-theoretic algorithms
for intelligent network selection mechanism, which performs
intelligent load balancing to avoid network congestion and
performance degradation [16]. Khan et al. model the prob-
lem as a procurement second-price sealed-bid auction where
network operators are the bidders and the end-user is the
buyer [17], [18]. Lastly, Irvine et al. propose a market-
based framework called the DMP, where network operators
offer communications services with competition at the call
level [11], [19], [20].

Although each proposed solution is technically valid,
only the DMP strives to address tussle between the actors
involved. Not only does the DMP consider the technical
challenges but also the economic issues. However, as with
any market-like institution, it is vital to analyze the DMP
from the strategic perspective (using game theory, or oth-
erwise) to ensure that all shortcomings are removed prior
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Figure 1. The Digital Marketplace (adapted from [11])

to implementation. This paper presents results of such an
analysis.

III. THE DIGITAL MARKETPLACE

The DMP was developed with the heterogeneous mobile
and wireless communications environment in mind, where
the end-users have the ability to select a network operator
that reflects their preferences best on a per-call basis. In other
words, the end-users have the freedom of choice, while the
network operators manage service requests appropriately.

The conceptual framework of the DMP is shown in
Figure 1. The DMP is defined using a four-layer commu-
nications stack: application layer, services layer, networks
layer, and medium layer. The end-users who effectively
reside in the application layer are able to negotiate network
access on a per-call basis. To this end, they have two ways
of accomplishing it: they can either go into a business
relationship with a service provider (service agent, SA, in
Figure 1) who will act on their behalf, or they can personally
participate in the negotiation process with a network operator
(network agent, NA). In both cases, the process is supervised
by a market provider (market agent, MA), and takes place
in the services layer. Before the negotiation occurs, the end-
user is required to forward their service requirements to
either the SA or the NA. This is done using a common
communications channel referred to as a logical market
channel (LMC). The LMC itself is negotiated between the
MA and the registered NAs at the marketplace initialization
stage.
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The network selection mechanism in the DMP is based
on a procurement first-price sealed-bid (FPA) auction. The
network operators represent the sellers/bidders who compete
for the right to sell their product (bearer service) to the
end-user. However, unlike in a standard procurement FPA
auction, here, network operators do not bid only on prices,
but also on reputation; i.e., when selecting the winner, the
end-user takes into consideration both the offered price
of the product and the network operator’s reputation. The
reputation is directly proportional to the number of calls
that have been decommitted in the past by the respective
network operator. Since the network selection is intended to
be performed on a per call basis, in a wireless environment,
an important factor to consider while selecting an access
network is the link/connection quality. There exists an ex-
tensive research base in the literature discussing technical
constraints of the network selection problem (for example,
see [21] for a survey of approaches); however, a few consider
economic aspects. In this research, we suggest that poor
link/connection quality strongly implies poor reputation.

Out of sealed-bid and sequential-bid auctions (such as
English or Dutch auctions), an FPA auction was chosen as
a selection mechanism due to the following reasons. Firstly,
given the timing constraints in the DMP (e.g., the waiting
time of the end-user for the call to be admitted), and the
difficulty in predicting the number of bids placed until the
winner is selected in a sequential-bid auction, sealed-bid
auctions are deemed as the most appropriate [11]. Secondly,
the rules governing a second-price sealed-bid auction may
appear as counter-intuitive to the end-user; that is, the lowest
bid secures the auction but the price paid equals the second-
lowest bid [22]. Lastly, since the end-users not only base
their network selection strategy on the offered price, but
also on reputation, an FPA auction is the best fit to such a
requirement.

An FPA auction, in an economic terminology, is an
example of an allocation mechanism; that is, a system where
economic transactions take place and goods are allocated
[23]. As briefly mentioned in the Introduction, it is vital
to analyze it from the strategic perspective, and establish
what the most probable outcome will be; how the network
operators will most likely bid; etc. In this way, all the
shortcomings and inefficiencies can be addressed prior to
implementation.

IV. MODELING AND ANALYSIS

The following notation and concepts are assumed through-
out the rest of this paper.

1) Probability Theory and Statistics: Let X denote a
random variable (r.v.) with the support [a, b], where a < b and
a, b ∈ R. By FX we mean a cumulative distribution function
of the X r.v.; therefore, for any x ∈ R, FX(x) = P{X ≤ x},
where P{X ≤ x} denotes the probability of the event such

that X ≤ x. If FX admits a density function, it shall be
denoted by fX ≡ F ′X .

The expected value of X, denoted by E[X], is defined
as E[X] =

∫∞
−∞ xdFX(x). Similarly, if u is a function of X,

then the expected value of u(X) is defined as E[u(X)] =∫∞
−∞ u(x)dFX(x).

Let X1, . . . , Xn be independent continuous r.v.s with dis-
tribution function F and density function f ≡ F ′. If we let
Xi:n denote the ith smallest of these r.v.s, then X1:n, . . . , Xn:n

are called the order statistics [24], [25]. In the event that the
r.v.s are independently and identically distributed (i.i.d.), the
distribution of Xi:n is

FXi:n
(x) =

n∑
k=i

(n
k

)
(F (x))k(1− F (x))n−k, (1)

while the density of Xi:n can be obtained by differentiating
Equation (1) with respect to x [26]. Hence,

fXi:n
(x) =

n!

(n− i)!(i− 1)!
f(x)(F (x))i−1(1− F (x))n−i.

2) Game Theory: Let ΓB = [N, {Si}, {ui},Θ, F ] be a
Bayesian game with incomplete information. Formally, in
this type of games, each player i ∈ N has a utility func-
tion ui(si, s−i, θi), where si ∈ Si denotes player i’s action,
s−i ∈ S−i = "j 6=iSj denotes actions of all other players
different from i, and θi ∈ Θi represents the type of player
i. Letting Θ = "i∈NΘi, the joint probability distribution of
the θ ∈ Θ is given by F (θ), which is assumed to be common
knowledge among the players [27]–[29].

In game ΓB , a pure strategy for player i is a function
ψi : Θi → Si, where for each type θi ∈ Θi, ψi(θi) specifies the
action from the feasible set Si that type θi would choose.
Therefore, player i’s pure strategy set Ψi is the set of all
such functions.

Player i’s expected utility given a profile of pure strategies
(ψ1, . . . , ψN ) is given by

ũi(ψ1, . . . , ψN ) = E[ui(ψ1(θ1), . . . , ψN (θN ), θi)], (2)

where the expectation is taken over the realizations of
the players’ types, θ ∈ Θ. Now, in game ΓB , a strat-
egy profile (ψ∗1 , . . . , ψ

∗
N ) is a pure-strategy Bayesian Nash

equilibrium if it constitutes a Nash equilibrium of game
ΓN = [N, {Ψi}, {ũi}]; that is, if for each player i ∈ N ,

ũi(ψ
∗
i , ψ
∗
−i) ≥ ũi(ψi, ψ

∗
−i) (3)

for all ψi ∈ Ψi, where ũi(ψi, ψ−i) is defined as in Equa-
tion (2).

3) Incentive Compatibility, Individual Rationality and the
Revelation Principle: Let (Q,M) be a direct mechanism
where Q = (Q1, Q2, . . . , Q|N|) is an allocation rule, and
M = (M1,M2, . . . ,M|N|) a payment rule. Let, as before, Θi

be the set of all types of player i. The allocation rule Qi for
each player i ∈ N is then defined as Qi : Θi → ∆i where ∆i

is the set of all probability distributions over Θi. Similarly,
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the payment rule Mi for each player i ∈ N is defined as
Mi : Θi → R [22], [30].

A direct mechanism (Q,M) is said to satisfy incentive
compatibility (IC) constraint if for all i ∈ N , for all θi ∈ Θi,
and for all θ̂i ∈ Θi,

˜̃ui(θi) ≡ qi(θi)θi −mi(θi) ≥ qi(θ̂i)θi −mi(θ̂i),

where
qi(θ̂i) = E[Qi(θ̂i, θ−i)],

and
mi(θ̂i) = E[Mi(θ̂i, θ−i)].

In both cases, the expectation is taken over the realizations
of all but player i types, θ−i ∈ Θ−i.

A direct mechanism (Q,M) is said to satisfy individual
rationality (IR) constraint if for all i ∈ N , and for all θi ∈ Θi,

˜̃ui(θi) ≥ 0.

In the paper, we will also make use of the very powerful
Revelation Principle theorem [22], [31], [32]:

Theorem 1 (Revelation Principle). Given a mechanism and
an equilibrium for that mechanism, there exists a direct
mechanism in which (1) it is an equilibrium for each buyer
to report his or her value truthfully and (2) the outcomes
are the same as in the given equilibrium of the original
mechanism.

A. Problem Definition and Assumptions

The formal description of the network selection mech-
anism employed in the DMP is as follows. The model
is a modified version of procurement FPA auction. Thus,
formally, it represents a Bayesian game of incomplete infor-
mation, ΓB , as defined in Section IV-2. There are N network
operators who bid for the right to sell their product to the
end-user. With some abuse of notation, we will write N

to denote the cardinality of the set N unless it becomes
ambiguous where we will succumb to the standard notation
of |N |.

Let β : R+ × [0, 1]→ R+, defined by

β(bi, ri) = wprice · bi + wpenalty · ri for all i ∈ N, (4)

denote the compound bid. Each network operator i is char-
acterized by the utility function ui such that

ui(b, c, r) =


bi − ci if β(bi, ri) < min

j 6=i
β(bj , rj),

0 if β(bi, ri) > min
j 6=i

β(bj , rj),
(5)

where b = (bi, b−i) represents the monetary bid (or offered
price) vector, c = (ci, c−i) the type vector, and r = (ri, r−i) the
reputation rating vector. The type of each network operator is
assumed to represent the cost of (or the minimum price for)
the service under consideration. The winner of the auction

is determined as the network operator whose compound bid
is the lowest one; i.e., network operator i is the winner if

β(bi, ri) < min
j 6=i

β(bj , rj).

In the event that there is a tie

β(bi, ri) = min
j 6=i

β(bj , rj),

the winner is randomly selected with equal probability.
It is, moreover, assumed that the price and reputation

weights (wprice, wpenalty) are announced by the end-user to
all network operators before the auction. Thus, there is
no uncertainty in knowing how much the end-user values
the offered price of the service over the reputation of the
network operator (or vice versa). Furthermore,

wprice + wpenalty = 1, 0 ≤ wprice, wpenalty ≤ 1.

In order to simplify the notation, it is assumed throughout the
rest of this paper that w = wprice. This reduces the definition
of the compound bid in Equation (4) to

β(bi, ri) = wbi + (1− w)ri for all i ∈ N.

The set of network operators, N , is finite and the network
operators are risk neutral. Furthermore, the end-user is risk
neutral and does not have any budget constraints; that is, the
end-user is prepared to accept any offer from the network
operator.

The costs ci for each network operator i are private
knowledge. Thus, they are particular realizations of the
r.v.s Ci for each i. Furthermore, it is assumed that each
Ci is i.i.d. over the interval [0, 1], and admits a continuous
distribution function FC and its associated density function
fC .

The reputation ratings ri for each network operator i ∈ N
are common knowledge. It is assumed that each ri ∈ [0, 1]

such that the higher the reputation, the lower the rating
ri. In earlier work [1], it was assumed that ratings are
private knowledge. However, after analysis, it was concluded
that this would contradict its purpose. The reputation of
each network operator, in order to be meaningful, must be
freely available to everyone, including the competitors of
the network operators. For example, in the Amazon.com
Marketplace, the buyers have the right to rate the seller they
buy from on a scale from one to five (with five being the
best), and these ratings are publicly available [33]. Similarly,
on eBay, the buyers can leave sellers feedback (negative,
neutral, or positive), which over time is viewed as reputation,
and is also publicly available [34].

The bidding strategy functions bi : [0, 1]→ R+ are nonneg-
ative in value for all i ∈ N . The aim is to solve the game
for pure-strategy Bayesian Nash equilibrium(-a) as defined
in Equation (3), Section IV-2.

The problem will be divided into two cases: generic and
restricted case. In the former, no additional assumptions
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about the game than those already stated in the previous
section will be made, and we will concentrate on finding a
symmetric equilibrium. In the latter, on the other hand, the
problem will be simplified by considering only two network
operators, letting the costs be drawn from the uniform
distribution, and focusing on bidding strategies, which are
linear functions of cost.

B. Generic Case

Suppose that all network operators use the same strictly
increasing in ci bidding strategy function; i.e., bi = bi(ci) =

b(ci) for all i ∈ N . In this case, the equilibrium profile
(b∗, . . . , b∗) is called symmetric. In its generic form, the
problem proves complicated enough for the analytical so-
lution not to be achievable using the existing methods of
solving auctions. It would seem that since the problem
is a modified version of the standard FPA, the standard
analytical approach, found for example in [22], [35]–[37],
should apply. However, this is not the case. To see why, note
that each network operator i faces an optimization problem

max
bi

E

[
bi − ci

∣∣∣∣ wbi + (1− w)ri < min
j 6=i

(wb(Cj) + (1− w)rj)

]
.

Noting that

min
j 6=i

(wb(Cj) + (1− w)rj) ≥ wmin
j 6=i

b(Cj) + (1− w) min
j 6=i

rj ,

and assuming that w 6= 0, yields

max
bi

E

[
bi − ci

∣∣∣∣ b−1

(
bi +

1− w
w

(ri −min
j 6=i

rj)

)
< min

j 6=i
Cj

]
(6)

where we have used the fact that b is strictly increasing, and
hence, it is invertible and minx b(x) = b(minx x) for all x.

Let C1:N−1 = minj 6=i Cj be the lowest order statistic of an
i.i.d. random sample Cj for all j 6= i with the distribution
function FC1:N−1

. Hence, the identity (6) becomes

max
bi

(
bi − ci

)(
1− FC

(
b−1

(
bi +

1− w
w

(ri −min
j 6=i

rj)

)))N−1

(7)
where we have used the fact that the distribution function
of an ith order statistic of an i.i.d. random sample is defined
as in Equation (1).

Finally, recalling that at a symmetric equilibrium bi = b(ci)

and letting k =
(1−w)

w
(ri−minj 6=i rj), the identity (7) becomes

d

dci
b
(
b−1(b(ci) + k)

)
·
[
1− FC(b−1(b(ci) + k))

]N−1

= (N − 1)(b(ci)− ci)
[
1− FC(b−1(b(ci) + k))

]N−2

· fC(b−1(b(ci) + k)). (8)

It is rather difficult (if even possible) to solve the resulting
ordinary differential equation in (8). Therefore, it can be
concluded that even serious simplification of the problem
is not enough to heuristically derive an optimal bidding
strategy function for each network operator i.

However, it is possible to gain some insight into the
problem by analyzing a handful of boundary (or special)

cases; that is, w = 0, w = 1, and ri = rj for all i 6= j. In all
three cases, the problem simplifies enough for the analytical
analysis to be tractable, as presented below.

1) Special Case w = 0: When w = 0, the utility function
simplifies to

ui(b, c, r) =


bi − ci if ri < min

j 6=i
rj ,

0 if ri > min
j 6=i

rj .
(9)

Since the reputation ratings, ri, are common knowledge, the
probability of winning, i.e., the probability of the event such
that ri < minj 6=i rj for all i, is either 0 or 1, and does not
depend on the value of the bid, bi. In other words, each
network operator knows in advance whether they won, tied,
or lost based on their own and their opponents reputation
ratings since these are deterministic in nature. Hence, it is
clear that the network operator with the lowest reputation
rating will have an incentive to bid abnormally high since
they are guaranteed a win regardless of the value of their
bid. The remaining network operators, on the other hand,
will be indifferent to the value of the submitted bids as it
is impossible for them to win regardless of the values of
their bids. In case of a tie, i.e., in case there is more than
one network operator with the lowest reputation rating, each
has an equal probability of winning the auction, and this
probability is independent of the values of their bids. Hence,
in this case, the network operators also have an incentive to
bid abnormally high. Formally,

Proposition 1. Suppose ci is i.i.d. over the interval [0, 1] for
all i ∈ N and ri ∈ [0, 1] for all i ∈ N is common knowledge.
Let N0 ⊆ N be the set of all those network operators with
the lowest reputation rating. If w = 0, then every network
operator j ∈ N0 will have an incentive to bid abnormally
high, i.e., bj → ∞, while every remaining network operator
k ∈ N \N0 will be indifferent to the value of their bid.

The formal proof of Proposition 1 is given in Appendix A.
In real life, the end-user will be constrained by a fixed

budget. Therefore, when w = 0, the real value of the bid
will not tend to infinity; rather it is expected to oscillate
in the region of the highest price the end-user is willing to
pay for the service. In this way, the network operator will
extract the entire consumer surplus from the end-user who
is looking for a premium service of the best possible quality.

2) Special Case w = 1: When w = 1, on the other hand,
the problem reduces to that of standard FPA auction. The
utility of each network operator i becomes

ui(b, c, r) =


bi − ci if bi < min

j 6=i
bj ,

0 if bi > min
j 6=i

bj .
(10)

Network operator i, conjecturing that other network opera-
tors follow the symmetric equilibrium bidding strategy b and
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submit their costs truthfully, solves

max
bi

E

[
bi − ci

∣∣∣∣ bi < min
j 6=i

b(Cj)

]
= max

bi
E

[
bi − ci

∣∣∣∣ b−1(bi) < min
j 6=i

Cj

]
= max

bi
E
[
bi − ci

∣∣ b−1(bi) < C1:N−1

]
= max

bi

∫ 1

b−1(bi)
(bi − ci)dFC1:N−1

(t)

= max
bi

(bi − ci)(1− FC1:N−1
(b−1(bi))), (11)

where, as before, C1:N−1 = minj 6=i Cj is the lowest order
statistic of an i.i.d. random sample Cj for all j 6= i with
the distribution function FC1:N−1

, and its associated density
fC1:N−1

. The first-order condition yields

1− FC1:N−1
(b−1(bi))− (bi − ci)

fC1:N−1
(b−1(bi))

d
dbi

b(b−1(bi))
= 0. (12)

Recalling that at a symmetric equilibrium bi = b(ci), the
identity (12) becomes

d

dci
b(ci)− b(ci)

fC1:N−1
(ci)

1− FC1:N−1
(ci)

= −ci
fC1:N−1

(ci)

1− FC1:N−1
(ci)

.

Since b(1) = 1, we have

b(ci) =
1

1− FC1:N−1
(ci)

∫ 1

ci

tdFC1:N−1
(t)

=
N − 1

(1− FC(ci))N−1

∫ 1

ci

t(1− FC(t))N−2fC(t)dt. (13)

The symmetric bidding strategy in Equation (13) constitutes
a symmetric pure-strategy Bayesian Nash equilibrium of the
standard FPA auction when w = 1. Formally,

Proposition 2. Suppose ci is i.i.d. over the interval [0, 1] for
all i ∈ N and ri ∈ [0, 1] for all i ∈ N is common knowledge.
If w = 1, then the symmetric equilibrium bidding strategy
function of the standard procurement first-price sealed-bid
auction,

b∗FPA(ci) =
1

1− FC1:N−1
(ci)

∫ 1

ci

tdFC1:N−1
(t), (14)

constitutes a symmetric pure-strategy Bayesian Nash equi-
librium of the Digital Marketplace variant of a procurement
first-price sealed-bid auction.

The formal proof of Proposition 2 can be found in [1].
The next natural question to ask is whether b∗FPA con-

stitutes an equilibrium for w 6= 1. The following conjecture
summarizes this point,

Conjecture 3. Suppose ci are i.i.d. over the interval [0, 1] for
all i ∈ N and ri ∈ [0, 1] for all i ∈ N are common knowledge.
If the symmetric equilibrium bidding strategy function of the
standard procurement first-price sealed-bid auction, b∗FPA,
constitutes a symmetric pure-strategy Bayesian Nash equi-
librium of the Digital Marketplace variant of a procurement
first-price sealed-bid auction, then w = 1.
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Figure 2. The performance of standard FPA bidding strategy, b∗, for costs,
reputation ratings and bids aggregated in Table I

The conjecture can be rephrased as “If w 6= 1, then
b∗FPA does not constitute a symmetric pure-strategy Bayesian
Nash equilibrium of the Digital Marketplace variant of a
procurement first-price sealed-bid auction.” The formal proof
of this statement is rather difficult. However, the following
argument shows why it might hold.

Suppose for the time being that b∗(ci) = b∗FPA(ci) for every
value of the price weight w ∈ [0, 1]. It is possible to estimate
numerically how well such a bidding strategy performs for
all values of w. To this end, a simple Monte Carlo simulation
scenario was constructed where the network operators’ costs
and reputation ratings were pseudo-randomly generated and
drawn from a uniform distribution U [0, 1].

Table I and Figure 2 depict the output from a single
simulation for N = 3 network operators. In this particular
example, for w ∈ (0.65, 1], network operator 1 who is char-
acterized by the lowest cost of all three network operators,
wins the auction; that is, his compound bid is the lowest.
At w = 0.65, an intersection occurs of network operator 1’s
and 3’s compound bids, and after that, for w ∈ [0, 0.65),
network operator 3 becomes the winner. If the simulation
was repeated n times, and the intersection would fall within
a close neighborhood of w = 0.65 in the vast majority of
cases, then b∗ is quite likely to be an equilibrium bidding
strategy in the interval w ∈ (0.65, 1]. This is predicated on
the fact that, as w → 1, the offered price dominates the value
of the compound bid; that is, the offered price is weighted
more than the reputation rating (see Equation (4)).

The methodology is as follows:
1) Generate cost/reputation rating/bid triplet using the

Monte Carlo methods.
2) Find the winner for w = 1, network operator i, say (in

Figure 2 that would be network operator 1).
3) Decrease the value of w until network operator i no
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Table I
THE OUTPUT FROM A SINGLE RUN OF THE MONTE CARLO SIMULATION FOR N = 3 NETWORK OPERATORS

Cost, ci Reputation rating, ri Bid, b∗(ci)
Network operator 1 0.2548 0.3889 0.5032
Network operator 2 0.2728 0.5528 0.5152
Network operator 3 0.4084 0.2031 0.6056
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Figure 3. The histogram of intersections, simulated for n = 10, 000 runs
and N = 3 network operators
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Figure 4. The empirical probability distribution associated with the
histogram in Figure 3

longer wins, and save the value of w for which that
happens. Henceforth, such an event shall be denoted
by I, and called the event when an intersection has
occurred.

4) If the intersection did not occur, I = 0, increase the
counter that counts the frequency of such an event,
and then discard that run.

5) Repeat n number of times.

By way of example, Figure 3 depicts the empirical density
function of the intersections simulated for n = 10, 000 runs
and N = 3 network operators, while Figure 4 shows the
associated empirical distribution function. The probability
of an intersection occurring equals P{I = 1} = 0.67. It
can be concluded from the figures that, on average, the
intersections occur at w̄ ≈ 0.6, which represents the mean
of the distribution. However, the peak observed in a close
neighborhood of w̄ is not significant enough to conclude that
bidding according to b∗ is the best strategy one can take for
w ∈ (w̄, 1].

A more formal argument goes as follows. Figure 4 depicts
the probability that an intersection has occurred within an
interval (−∞, w] given that an intersection has occurred, I =

1; that is, if the former event is denoted by W , then the
figure describes P{W ∈ (−∞, w] | I = 1}. From this, the
probability of winning for network operator i (as defined in

the list above) given any w is

P{winning | w} =

= 1− P{W ∈ [w,∞) ∩ I = 1}
= 1− P{W ∈ [w,∞) | I = 1}P{I = 1}
= 1− (1− P{W ∈ (−∞, w] | I = 1})P{I = 1}. (15)

In order to verify Equation (15), set w ∈ {0.25, 0.75} and
run a Monte Carlo simulation, which counts the number of
times when the network operator with the lowest cost is
the winner; i.e., the winner of the auction for w = 1. When
w = 0.25,

P{winning | w = 0.25} = 1− (1− 0.13)0.67 = 0.4171

according to Equation (15), while the numerically obtained
result equals

P{winning | w = 0.25} = 0.4136.

When w = 0.75,

P{winning | w = 0.75} = 1− (1− 0.68)0.67 = 0.7856

according to Equation (15), while the numerically obtained
result equals

P{winning | w = 0.75} = 0.7866.
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Clearly, the prediction based on Equation (15) converges
to the numerically obtained result. Moreover, it is worth
noting that for w = 0.25, bidding according to b∗ guarantees
the probability of winning for the network operator with the
lowest cost of only 0.4171, which is below 50%. Thus, the
network operators will definitely deviate from b∗ for low
values of w. On the other hand, for w = 0.75, b∗ seems
to achieve a relatively high probability of winning for the
network operator with the lowest cost; i.e., the probability
of 0.7856. However, the argument is incomplete in the sense
that it only considers the probability of winning rather than
the expected utility.

3) Special Case ri = rj: In the last extreme case, when
all the network operators are characterized by the same
reputation rating, i.e., when ri = rj for all i 6= j and w 6= 0,
it can easily be verified that the problem simplifies to the
special case w = 1. To see why, let r = ri for all i ∈ N . Then,
for all i ∈ N and w 6= 0

β(bi, r) < min
j 6=i

β(bj , r)

⇐⇒ 1

w

(
bi +

1− w
w

r

)
<

1

w
min
j 6=i

(
bj +

1− w
w

r

)
⇐⇒ bi +

1− w
w

r < min
j 6=i

bj +
1− w
w

r

⇐⇒ bi < min
j 6=i

bj .

Hence, the utility of each network operator i simplifies to

ui(b, c, r) =


bi − ci if bi < min

j 6=i
bj ,

0 if bi > min
j 6=i

bj .

Formally,

Corollary 4. Suppose ci is i.i.d. over the interval [0, 1] for
all i ∈ N and ri ∈ [0, 1] for all i ∈ N is common knowledge.
Suppose ri = rj for all i 6= j, and w 6= 0. Then, the problem
simplifies to the special case w = 1, and hence, b∗FPA is the
symmetric equilibrium bidding strategy (Proposition 2).

C. Restricted Case N = 2

In this section, we will restrict our attention to only two
network operators. Since the problem in its generic form
proved too complex to be solved analytically, this section
will explore whether in a much simplified scenario it is pos-
sible to find a closed-form solution. From the mathematical
standpoint, restricting the number of network operators to
two considerably simplifies the optimization problem that
each network operator faces, since it is no longer necessary
to consider the minimum of β in the specification of network
operators’ utility function (Equation (5)).

To this end, let N = 2. The utility function for each
network operator i thus becomes

ui(b, c, r) =


bi − ci if β(bi, ri) < β(bj , rj),
1
2

(bi − ci) if β(bi, ri) = β(bj , rj),

0 otherwise.
(16)

Furthermore, the assumption about the symmetric equi-
librium profile is relaxed; that is, network operators are
permitted to use differing bidding strategies.

The analysis is conducted in two steps. Firstly, it is
assumed that information is complete; that is, that each
network operator not only knows their own cost and rep-
utation rating, but also those of their opponent’s. Secondly,
the standard case is considered; that is, that the reputation
ratings of the network operators are assumed to be known,
while the costs are private knowledge.

1) Complete Information: Here, we assume that informa-
tion is complete; i.e., that each network operator knows their
own and their opponent’s cost and reputation rating. In total,
there are 7 different bidding scenarios to consider.

Figure 5 shows the first 4 cases for which ri < rj . (Notice
that exactly the same reasoning applies to the situation when
ri > rj .) If ci < cj , network operator i is guaranteed a
victory and a positive profit as long as they bid within the
highlighted part of the β(b, r) curve depicted in Figure 5a.
Thus, their optimal bidding strategy would be to bid slightly
less than their opponent’s compound bid evaluated at their
opponent’s cost, β(cj , rj); that is, bi = cj + 1−w

w
(rj − ri) − ε

where ε > 0 is very small. Network operator j, on the other
hand, should find it optimal to bid bj = cj . To see why,
suppose network operator j bids b̂j > cj . Since network
operator i’s reputation and cost are strictly lower than those
of network operator j’s, they can undercut the network
operator j’s bid by a small amount so that b̂i < b̂j and still
make positive profit. But, in response, network operator j

will find it optimal to lower their bid so that it undercuts
that of network operator i’s; that is, b̂j < b̂i. This process
will continue until one of the network operators is forced
to bid their cost. Since network operator i’s reputation and
cost are strictly lower than those of network operator j’s,
we conclude that bj = cj and bi = cj + 1−w

w
(rj − ri)− ε where

ε > 0 is very small.
If ci = cj , arguing in the similar manner as previously,

network operator i’s optimal bidding strategy would be to
bid bi = cj + 1−w

w
(rj − ri)− ε where ε > 0 is very small; while

network operator j should bid bj = cj (Figure 5b).
If ci > cj , there are two cases to consider. If β(ci, ri) <

β(cj , rj), then network operator i still has some room for
maneuver, and should find it optimal to bid bi = cj+ 1−w

w
(rj−

ri) − ε where ε > 0 is very small; while network operator j
to bid bj = cj (Figure 5c). If β(ci, ri) ≥ β(cj , rj), on the
other hand, the roles are reversed, and network operator j
should find it optimal to bid bj = ci + 1−w

w
(ri − rj)− ε where

ε > 0 is very small; while network operator i to bid bi = ci

(Figure 5d).
Figure 6 depicts the remaining 3 cases for which ri = rj . If

ci < cj , network operator i’s optimal bidding strategy would
be to bid bi = cj−ε where ε > 0 is very small; while network
operator j should bid bj = cj (Figure 6a).

If ci = cj , both network operators should bid their costs;
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Figure 5. Different bidding scenarios for ri < rj : (a) ci < cj , (b) ci = cj , (c) ci > cj with β(ci, ri) < β(cj , rj), and (d) ci > cj with
β(ci, ri) ≥ β(cj , rj)
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that is, bi = ci and bj = cj (Figure 6b).
If ci > cj , network operator j’s optimal bidding strategy

would be to bid bj = ci − ε where ε > 0 is very small; while
network operator i should bid bi = ci (Figure 6c).

It can be concluded that the bidding strategies depend
only on costs if ri = rj . In the remaining cases, they are
asymmetric in the sense that the winning network operator
is characterized by

bi = cj +
1− w
w

(rj − ri)− ε with ε > 0 being very small,

while the losing network operator by bidding their own cost

bj = cj .

Hence, when dealing with incomplete information, we will
exploit these results by concentrating on equilibrium bidding
strategies, which are linear functions of cost.

2) Incomplete Information: Here, we assume the standard
case; that is, that reputation ratings for both network opera-
tors are known at the time of bidding; however, their costs
are private knowledge. Suppose that the network operators
use a strategy function bi : [0, 1]→ R defined by the rule

bi(ci) = mi + nici, for all mi ∈ R, ni > 0, (17)

and the costs are independently drawn from the uniform
distribution over the interval [0, 1]. In other words, (al-
though somewhat counter-intuitive) we allow for negative
bids from the network operators. The motivation for such
an assumption will become clear later on in this section.
Notice, moreover, that the strategy function is assumed to be
linear in cost. Each network operator i faces an optimization
problem

max
bi

E [bi − ci | wbi + (1− w)ri < w(mj + njCj) + (1− w)rj ] .

(18)
If w = 0, then the result described in Proposition 1,

Section IV-B1, holds. Otherwise, for 0 < w ≤ 1, each network
operator i solves

max
bi

E

[
bi − ci

∣∣∣∣ 1

nj

(
bi +

1− w
w

(ri − rj)−mj

)
< Cj

]
= max

bi

∫ 1

1
nj

(bi+
1−w
w

(ri−rj)−mj)
(bi − ci)dFC(t)

= max
bi

(
bi − ci

)(
1− 1

nj
bi −

1

nj

(
1− w
w

(ri − rj)−mj

))
.

(19)

The first-order condition yields

1− 2

nj
bi +

1

nj
ci −

1

nj

(
1− w
w

(ri − rj)−mj

)
= 0

⇐⇒ bi =
nj

2
− 1

2

(
1− w
w

(ri − rj)−mj

)
+

1

2
ci. (20)

(Notice that the second-order condition is satisfied; i.e.,
d2

db2i
E[·|·] = − 2

nj
< 0 since nj > 0.) Similar argument for

network operator j yields

bj =
ni

2
− 1

2

(
1− w
w

(rj − ri)−mi

)
+

1

2
cj . (21)

Table II
AN EXEMPLARY SET OF COST-REPUTATION PAIRS FOR TWO NETWORK

OPERATORS

Cost, ci Reputation rating, ri
Network operator 1 0.75 0.25
Network operator 2 0.25 0.75

Thus, it follows

ni = nj =
1

2
,

mi =
nj

2
− 1

2

(
1− w
w

(ri − rj)−mj

)
,

mj =
ni

2
− 1

2

(
1− w
w

(rj − ri)−mi

)
.

Solving the above equations simultaneously yields the equi-
librium bidding strategy, for all i

b′i(ci) =
1

2
− 1− w

3w
(ri − rj) +

1

2
ci.

Formally,

Proposition 5. Let there be N = 2 network operators.
Suppose ci is independently drawn from uniform distribution
over the interval [0, 1] for all i ∈ N , and ri ∈ [0, 1] for all i ∈ N
is common knowledge. Then the equilibrium bidding strategy
for all w ∈ (0, 1] is given by

b′i(ci) =
1

2
− 1− w

3w
(ri − rj) +

1

2
ci. (22)

The formal proof of Proposition 5 is given in Appendix A.
Observe that the pair of strategies (b′i, b

′
j) does not constitute

a symmetric equilibrium.
By way of example, Table II depicts a particular set of

cost-reputation pairs of two network operators. Figure 7
shows the value of the compound bid, β, for different values
of w for both network operators, while Figure 8 depicts the
value of the bid (or offered price), b′i, for different values of
w for both network operators. The numerical data in Table II
suggests that network operator 2 should be the winner for
the values of w → 1 since network operator 2’s cost is
strictly lower than that of their opponent’s. On the other
hand, network operator 1 should be the winner for the values
of w → 0 since network operator 1’s reputation rating is
strictly lower that that of their opponent’s (which implies that
network operator 1’s reputation is strictly higher than that of
their opponent’s). This prediction agrees with the numerical
output shown in Figures 7 and 8. Let wc denote the value
of w for which an intersection between the compound bids
of both network operators occurs (if it exists). In Figure 7,
wc = 0.4. Hence, network operator 2 wins the auction for
the values of w ∈ (wc, 1], while network operator 1 for the
values of w ∈ [0, wc). Notice, moreover, that since the range
of the strategy function, bi, was modified to span the entire
real line, that is,

bi : [0, 1]→ R,
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network operator 2, as a result, bids below their cost for
values of w < wc (Figure 8). However, this does not
automatically disqualify the equilibrium bidding strategies
given by Equation (22). The following observations show
why.

Firstly,

Proposition 6. Suppose both network operators bid ac-
cording to b′i bidding strategies. Then they are guaranteed
nonnegative profit in case of winning (or a tie).

The formal proof of Proposition 6 is given in Appendix A.
The proposition implies that even though the equilibrium

bidding strategies suggest that one of the network operators
may bid negatively, they will not win the auction, and hence,
are guaranteed profit at worst equal to zero. Therefore, the
possibility of one of the network operators bidding below
their cost or negatively will not matter to any of the network
operators, and will not lead to an outcome in which the
service is sold for a negative price.

Secondly, let (Q,M) be the direct mechanism induced by
the equilibrium bidding strategies, b′i, in Equation (22) where
Q = (Qi, Qj) and M = (Mi,Mj). Here, Qi represents the
allocation rule defined by

Qi(ci, cj) =


1 if β(b′i(ci), ri) < β(b′j(cj), rj),
1
2

if β(b′i(ci), ri) = β(b′j(cj), rj),

0 otherwise,
(23)

while Mi is the payment rule defined by

Mi(ci, cj) = Qi(ci, cj)b′i(ci). (24)

Suppose network operator j reveals their cost truthfully.
The equilibrium payoff function for network operator i

characterized by cost ci but revealing ĉi is

˜̃ui(ĉi) = E [Mi(ĉi, Cj)− ciQi(ĉi, Cj)]

= E
[
(b′i(ĉi)− ci)Qi(ĉi, Cj)

]
= E

[
b′i(ĉi)− ci

∣∣ β(b′i(ĉi), ri) < β(b′j(Cj), rj)
]
. (25)

It turns out that it is in network operator i’s best interest to
reveal their cost truthfully as well; i.e., ĉi = ci. Moreover,
both network operators cannot be better off by not partici-
pating in the auction; i.e., their equilibrium payoff function
is nonnegative, ˜̃ui(ci) ≥ 0. Formally,

Proposition 7. The direct mechanism (Q,M) where Q =

(Qi, Qj) and M = (Mi,Mj) (with Qi and Mi defined in
Equations (23) and (24) respectively) satisfies both the IC
and IR constraints.

Thirdly, suppose that economic agents are computers who
bid on behalf of the network operators. This assumption
is reasonable since there currently are estimated 6.1 billion
mobile subscribers around the world [38]. In other words,
bidding on a per-call basis would have to be automated
by the network operators in order to make the process
manageable. One way of achieving such an automation
would be to utilize the concept of a direct mechanism. In
a direct mechanism, economic agents submit their costs
(which need not be truthful) directly to the mechanism,
which then computes the bids and chooses the winner on
their behalf. By the Revelation Principle (which is stated
in Section IV-3), we know that for every mechanism and
an equilibrium for that mechanism, there exists an incentive
compatible direct mechanism, which yields the same out-
comes as in the given equilibrium of the original mechanism.
In our case, the direct mechanism (Q,M) is the direct
representation of the DMP variant of an FPA. Since it is
incentive compatible, it is in best interest of the economic
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agents to reveal their costs truthfully. Furthermore, because
it is individually rational, it is also in their best interest to
participate in the mechanism [22]. Therefore, the possibility
of one of the network operators bidding below their cost or
negatively will not matter to any of the network operators
and will not lead to an outcome in which the service is sold
for a negative price.

V. FUTURE WORK

In the restricted case, the possibility of one of the network
operators bidding below their cost or negatively might seem
counter-intuitive and irrational. Therefore, one of the future
directions will include an in-depth analysis of this problem.
The most straightforward solution is to constrain the opti-
mization problem in Equation (18); that is, each network
operator i tries to solve

max
bi

E [bi − ci | wbi + (1− w)ri < w(mj + njCj) + (1− w)rj ]

subject to ci − bi ≤ 0.

The constraint ci− bi ≤ 0 ensures that each network operator
bids above or equal to their cost. However, this problem
is much more complicated than its unconstrained version in
Equation (18). Not only is it necessary to solve the nonlinear
constrained optimization problem for each network operator
i, but also it needs to be done simultaneously [39]. The
preliminary analysis of the problem, which employs the
application of the Karush-Kuhn-Tucker Conditions theorem
seems to suggest that the most likely candidate for the
solution would be

b∗i (ci) = max
{
ci, b
′
i(ci)

}
for all i ∈ N.

However, this has yet to be verified.

VI. CONCLUSIONS

This paper has presented the results of the game-theoretic
analysis of network selection mechanism proposed in the
Digital Marketplace. All things considered, it can be con-
cluded that the analytical analysis of the Digital Marketplace
variant of procurement first-price sealed-bid auction is math-
ematically intractable for all but special cases considered
in this paper. It is, however, vital to have at least partially
accurate predictions of the behavior of the network operators
prior to implementation.

In the generic case, where there are N network oper-
ators and costs are drawn from an arbitrary continuous
distribution, derivation of the equilibrium bidding behavior
is complicated. Nevertheless, some light was shed on the
problem in a handful of special cases: w = 0, w = 1, and
ri = rj . In the first case, we showed that network operators
will find it beneficial to submit abnormally high bids, since
their bid is independent of the probability of winning the
auction. In the remaining two cases, when w = 1 and
ri = rj , we showed that the problem reduces to a standard

procurement first-price sealed-bid auction, and therefore,
the symmetric equilibrium bidding behavior of the standard
procurement first-price auction constitutes an equilibrium of
the Digital Marketplace auction.

In the restricted case, where there are two network oper-
ators and costs are uniformly distributed, we successfully
derived the equilibrium bidding strategies that are linear
functions of cost. However, we showed that the derived
bidding strategy functions constitute an asymmetric equi-
librium; that is, their closed-form expression is not identical
for both network operators. This implies that the analysis
of the case with more than two network operators might
not be analytically possible, and hence, indirectly explains
the reason for unsuccessful analysis of the generic case.
Furthermore, we showed that although the derived equi-
librium bidding behavior allows for negative bids, it does
not lead to negative profit in case of winning (or a tie)
of either network operator. In fact, we established that the
direct mechanism representation of the Digital Marketplace
auction satisfies both individual rationality and incentive
compatibility constraints. Therefore, if the auction were to
be automated through the use of a direct mechanism, the
network operators would find it in their best interest to
participate in the auction, and they would reveal their costs
truthfully.

APPENDIX
PROOFS

Proof of Proposition 1: Let w = 0 and let |N0| = M be
the number of network operators with the lowest reputation
rating such that M ∈ Z+. Since N is finite and N0 ⊂ N ,
then M ≤ |N |. Now, each j ∈ N0 is facing a maximization
problem

max
bj

1

M
(bj − cj) , for all j ∈ N0.

Since 1 ≤M ≤ |N |, and since bj ∈ R+ and R+ is not bounded
from above, this implies that the maximization problem is
unbounded; that is, bj →∞ for all j ∈ N0.

The remaining network operators k ∈ N − N0 will try to
solve

max
bk

0, for all k ∈ N −N0,

since rk > rj = mini∈N ri. Hence, each network operator
k ∈ N − N0 is indifferent to the value of their bid, which
concludes the proof.

Proof of Proposition 5: Suppose there are two network
operators: network operator 1 and network operator 2 with
cost-reputation pairs (c1, r1) and (c2, r2) respectively. Suppose
that network operator 2 follows b′2 equilibrium bidding strat-
egy. We will argue that it is optimal for network operator 1 to
follow b′1 equilibrium bidding strategy. First, notice that b′1 is
strictly increasing and continuous function of cost (similarly
is b′2). Suppose that network operator 1 bids an amount b1.
Since b′1 is strictly increasing, there exists unique cost ĉ1



222

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such that ĉ1 = b′−1
1 (b1). Network operator 1’s expected utility

when bidding b′1(ĉ1) is

ũ1(b′1(ĉ1), c1)

= E
[
b′1(ĉ1)− c1

∣∣ wb′1(c1) + (1− w)r1 < wb′2(c2) + (1− w)r2
]

=
1

2

(
1− 2

3
· 1− w

w
(r1 − r2) + ĉ1 − 2c1

)
·
(

1− ĉ1 −
2

3
· 1− w

w
(r1 − r2)

)
.

We thus obtain that

ũ1(b′1(c1), c1)− ũ1(b′1(ĉ1), c1) =
1

2
(c1 − ĉ1)2 ≥ 0

regardless of whether ĉ1 ≥ c1 or ĉ1 ≤ c1. We have thus argued
that if network operator 2 follows b′2, network operator 1
with a cost c1 cannot benefit by bidding anything other
than b′1(c1). Similar argument can be used to show that
it is optimal for network operator 2 to follow b′2 when
network operator 1 is following b′1. Hence, (b′1, b

′
2) constitutes

a Bayesian-Nash equilibrium profile. Similar argument can
be used to show that it is optimal for network operator 2 to
reveal their cost truthfully, which concludes the proof.

Proof of Proposition 6: Let there be two network
operators: network operator 1 and network operator 2 with
cost-reputation pairs (c1, r1) and (c2, r2) respectively. Suppose
that both network operators follow the equilibrium bidding
strategy, b′i. Without loss of generality, we need to show that
network operator 1’s bid is always at least as high as their
cost whenever they win or draw with network operator 2;
that is, b′1(c1) ≥ c1.

First of all, notice that if r1 ≤ r2,

b′1(c1) =
1

2
− 1− w

3w
(r1 − r2) +

1

2
c1 ≥

1

2
(1 + c1) ≥ c1,

for all c1 ∈ [0, 1]. Thus, we need only to consider the case
when r1 > r2.

Suppose r1 > r2. If c1 > c2, and since b′1(c1) is strictly
increasing in c1, network operator 1 will lose for all values
of w ∈ (0, 1]. If c1 = c2, network operator 1 will lose for all
values of w ∈ (0, 1), except at w = 1 when there will be a
draw. But at w = 1, network operator 1’s bid is at least as
high as their cost; i.e.,

b′1(c1) =
1

2
(1 + c1) ≥ c1, for all c1 ∈ [0, 1].

If c1 < c2, it is sufficient to show that the intersection of b′1(c1)

and c1 in terms of w can never occur before the intersection
of β(b′1(c1), r1) and β(b′2(c2), r2). First of all, we need to check
that both intersections do occur; that is,

b′1(c1) = c1 ⇐⇒ w =
1

1 + 3
2
· 1−c1
r1−r2

.

Similarly,

β(b′1(c1), r1) = β(b′2(c2), r2) ⇐⇒ w =
1

1 + 3
2
· c2−c1
r1−r2

.

Since r1 > r2 and c1 < c2, we have 0 < r1 − r2 ≤ 1 and
0 < c2 − c1 ≤ 1. Therefore, this implies

0 < w =
1

1 + 3
2
· 1−c1
r1−r2

≤ 1,

and

0 < w =
1

1 + 3
2
· c2−c1
r1−r2

≤ 1.

Now, suppose that the intersection of b′1(c1) and c1 occurs
before that of β(b′1(c1), r1) and β(b′2(c2), r2). We must thus
have

1

1 + 3
2
· c2−c1
r1−r2

<
1

1 + 3
2
· 1−c1
r1−r2

⇐⇒ 1− c2
r1 − r2

< 0.

But since c2 ∈ [0, 1] and r1 > r2 by assumption,

0 <
1− c2
r1 − r2

we reach a contradiction, and this concludes the proof.
Proof of Proposition 7: Let there be two network oper-

ators: network operator 1 and network operator 2 with cost-
reputation pairs (c1, r1) and (c2, r2) respectively. Suppose that
both network operators participate in the direct mechanism
(Q,M). Firstly, we show that the mechanism is incentive
compatible. Without loss of generality, suppose that network
operator 2 truthfully submits their cost to the mechanism.
We argue that it is optimal for network operator 1 to also
submit their cost truthfully. Suppose to the contrary; that is,
that network operator 1 has an incentive not to reveal their
cost truthfully by submitting ĉ1. Thus, their expected utility
becomes

˜̃u1(ĉ1)

= E

[
b′1(ĉ1)− c1

∣∣∣∣ 2b′1(ĉ1)− 1 +
4

3
· 1− w

w
(r1 − r2) < C2

]
=

(
1

2
− 1

3
· 1− w

w
(r1 − r2) +

1

2
ĉ1 − c1

)
·
(

1− ĉ1 −
2

3
· 1− w

w
(r1 − r2)

)
.

The first-order condition yields ĉ1 = c1 and the second-
order condition is satisfied. Hence, this shows that (Q,M) is
incentive compatible.

Secondly, we show that (Q,M) is individually rational.
Since the mechanism is incentive compatible, each network
operator reveals their cost truthfully. Hence, for all c1

˜̃u1(c1) =

(
1

2
− 1

3
· 1− w

w
(r1 − r2)− 1

2
c1

)
·
(

1− c1 −
2

3
· 1− w

w
(r1 − r2)

)
=

1

2

(
1− c1 −

2

3
· 1− w

w
(r1 − r2)

)2

≥ 0.

Therefore, (Q,M) is individually rational.
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